CSE 304 Compiler
Design

Lexical Analysis

YOUNGMIN KWON / TONY MIONE

The Role of the Lexical
Analyzer

token
source Lexical = S Lt semantic
program Analyzer | _ analysis
getNextToken
Symbol
Table

Why separating lexical analysis and parsing
> Simplify design (comments, white spaces...)
> Improve compiler efficiency (simpler algorithm)
° Improve compiler portability

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Specification of Tokens

String and Language
o Alphabet (character class): any finite set of symbols.

> A string of some alphabet: a finite sequence of symbols drawn from the alphabet.
o Language: any set of strings over some fixed alphabet.

Operations on Language

OPERATION DEFINITION AND NOTATION
Union of L and M LUM ={s|sisin L or sisin M}
Concatenation of L and M | LM = {st | sisin L and ¢t is in M}
Kleene closure of L L* =UR, L*
Positive closure of L Lt =u, L}

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Regular Expressions

Rules that define the regular expression over alphabet 2

e € is a regular expression denoting {e}

e If a € X, a is a regular expression denoting {a}

e (r)|(s) is a regular expression denoting L(r) U L(s)
e (r)(s) is a regular expression denoting L(r)L(s)

e (r)* is a regular expression denoting (L(r))*

e (r) is aregular expression denoting L(r),
where r and s are regular expressions denoting L(r) and L(s)

Exercise: Find the language .. (a (b|c)*)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Nonregular Sets

Balanced or nested structure
ce->(e)

Repeating strings
o {wcw | w is a string of a’s and b’s}

Arbitrary number of repetitions
°nHaja,..a,

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Finite Automata

A recognizer for a language L is a program that takes a string x as an input and
answers “yes” if x € Land “no” otherwise.

Nondeterministic Automata (NFA) consist of

. a set of status S
a set of input symbol X
a transition function move: maps (S,X) to S

an initial state so € S

=

. a set of final states F C §

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

NFA example

b
STATE a b €
0 {0,1} {0} 0
1 0 {2} 0
2 0 {3} 0
3 0 0 0

In NFA, the same input string can result in different states.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Finite Automata

Deterministic Finite Automata (DFA)
o DFA is a special case of NFA with

o No state has an e-transition

o Each state has at most 1 edge for each input symbol.

DFA accepting (alb)*abb

NFA accepting aa*|bb”

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Simulating DFA

§ = S0, b b
¢ = nextChar();
while (¢ '= eof) { start O

s = move(s, c); @ |
¢ = nextChar();
} a
- 2 - " "n.
if (s is in F) return "yes"; DFA accepting (a|b)*abb
else return "no";

Exercise:
1. Check if aabbabb is in the language of (a|b)*abb
2. Check if aabbaa is in the language of (a|b)*abb

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

NFA to DFA

Goal: Starting with an NFA, produce Dtrans, a transition table for an
equivalent DFA along with a set of states that comprise the DFA,

Dstates.

Idea: Create ‘sets of states’, T, where each NFA state in T can be reached
after a specific input string. The creation of these sets handle ¢-
transitions.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

NFA to DFA

OPERATION DESCRIPTION

e-closure(s) | Set of NFA states reachable from NFA state s
on e-transitions alone.
e-closure(T) | Set of NFA states reachable from some NFA state s
in set T on e-transitions alone; = U e-closure(s).
move(T, a) Set of NFA states to which there is a transition on
input symbol a from some state s in 7.

initially, e-closure(sg) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {
mark T’
for (each input symbol a) {
U = e-closure(move(T, a));
if (U is not in Dstates)
add U as an unmarked state to Dstates;
Dtran[T,a] = U,
) ,

The subset construction

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

NFA to DFA Conversion

push all states of T" onto stack;
initialize e-closure(T) to T}
while (stack is not empty) {
pop t, the top element, off stack;
for (each state u with an edge from ¢ to u labeled €)
if (w is not in e-closure(T)) {
add u to e-closure(T);
push u onto stack;

}

Computing e-closure(T)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

NFA to DFA Conversion example

NFA STATE DFA STATE | a | b
{Oala 234’ 7} A B o
{1,2,3,4,6,7,8} B B | D
{1,2,4,5,6,7} C B |C
{1,2,4,5,6,7,9} D B | E
{1,2,3,5,6,7,10} E B|C

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

NFA to DFA Conversion example

NFA STATE DFA STATE | a | b

{0,1,2,4,7} A B|C

{1,2,3,4,6,7,8} B B | D

e {1,2,4,5,6,7} C B|C

{1,2,4,5,6,7,9} D B | E

1. € -closure(0), orA={0, 1, 2,4, 7} {1,2,3,5,6,7,10} E B|C

2. mark A and compute
a. Dtran|[A, a] = € -closure(move(A,a)) (DFA state B)
b. Dtran[A, b] = € -closure(move(A,b)) (DFA state C)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Regular Expression to NFA
(Thompson’s Construction Algorithm)

Let N(s) and N(t) be NFAs for s and t

i O CRTO N0

(s) : N((s)) = N (s)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Regular Expression to NFA: (a|b)*abb

e)—20)

=

Start b

Exercise:
- Build an NFA for a(a|b)*b

- Convert the NFA to a DFA

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Simulating NFA

) S = e-closure(sg);
) ¢ = nextChar();

) while (¢ != eof) {

) S = e-closure(move(S,¢));

) ¢ = nextChar();

5 g e
) f(SNF!=0)return "yes"; .
) else return "no";

1
2
3
4
5
6
7
8

Quiz:
* Check if ababa will be accepted
by the NFA on the right

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Lexical Analyzer

P, {action, }
P3 { action, }

pr 1 action, }

Specification of a lexical analyzer

Lex
program

Input buffer
lexeme
lexemeBegin\ %orward
Automaton
simulator
Lex Transition
compiler table

Actions

Model of Lex compiler

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Pattern Matching with NFAs

For patterns p4, ..., P,
> Construct NFAs N(p.), ... ,N(p.)

o Add a start state s, and add € transitions
from s, to each N(p).

> To match the longest pattern, keep
simulating the NFA until there are no
more transitions.

> Move backward to the last state with an
accepting state.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Pattern Matching Example

b b
NFAs for a, abb, a*b+ Combined NFA
. a a b b~
0 . 2 - L?__! - l8_ none
1 -
3 7
7 States for aaba

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

The lookahead operator

r1/r2: match astringin r1 only if followed by a string in r2

° E.g.in Fortran: DO5I=1.25 vs DO5I=1,25
DO/ {letter or digit}*={letter or digit}¥,

Implementing lookahead operator
> When converting to NFA, treat / as €

° When a string is recognized, truncate the lexeme at the position where the last
transition on the (imaginary) / occurred.

Eg. IF / \(.* \) {letter}
o IF (123) a

any

start e) lette
OO (o)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Regular Expressions to DFA

Important States of NFA
o An NFA state is important if it has a non-€ transition
o Subset construction algorithm uses only important states (e-closure(move(T,a)))
o Two subsets can be identified if

1. They have the same important states and
2. They both have an accepting state or neither have one.

° Thompson’s construction builds an important state exactly when a symbol in the
alphabet appears.

Augmented regular expression
o Append a unique marker # to a regular expression r: (r)#

> Any DFA state with a transition on # is an accepting state.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Regular Expressions to DFA

Position: label non-€ leaves of a syntax tree for a regular i
expression with a unique number. s \

/
#
For a node n in a syntax tree, let r be the subexpression / \ 6
corresponding to n.

° nullable(n): if r can generate an empty string. / \

o firstpos(n): the set of positions that can match the first symbols / \ 4
of the strings generated by .

o |lastpos(n): the set of positions that can match the last symbols ‘
of the strings generated by . ! (alb)*abbs

J N

For a position i, followpos(i): the set of positions j such that « b
there is some input string ...cd... such that i correspondstoc ' 2
and j to d.

5

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Regular Expressions to DFA

NODE n 7ullable(n) b firstpos(n)
A leaf labeled € true 0
A leaf with position i false {i} s
An or-node n = ¢;le, | nullable(cy) or | firstpos(ci) U firstpos(cy) ; Pé \
nullable(c,) 2 ,
A cat-node n = ¢ic | nullable(c;) and if (nullable(cy)) e \ 6
nullable(cy) firstpos(c1) U firstpos(cz) 2 2
else ﬁrstpos(gl) / \ 2
A star-noden = ¢ * true firstpos(ey) £ A
| 7N B
followpos(i) . a
. . . . 3
° If nis a cat-node with left c1 and right c2, and i !
lastpos(c1), then all positions in firstpos(c2) are in / \ (a[b)*abb#
followpos(i).
a b
o If nis astar-node and i € lastpos(n), then all positions in 1)

firstpos(n) are in followpos(i).

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Regular Expressions to DFA

Example NODE n | followpos(n) -
1 {1,2,3}
(123} o (6} 2 {1,2,3}
(afb)*abb# 3 {4
(1,23} ¢ (5} (6} # (6} 4 {5}
5 6
{1,2,3} o {4} {5} b{5) 6 {@}
{12:3) 5431 {4} b {4}

{12} *{1,2} {3} a {3}

(3 0 (5) &)
A graph built by followpos

{12} .1 {1,2)

PN

{1} a {1} {21 b {2}

Construct NFA without e-transition

1. Make all positions in the firstpos of the root initial states
2. Label each edge (i,j) with the symbol at position i.

3. Make the position for # the only accepting state.

\v4

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 25

Regular Expressions to DFA

Apply the subset construction algorithm directly to the implicit NFA.
1. Construct a syntax tree for (r)#

2. Construct, nullable, firstpos, lastpos, and followpos

3. Construct Dstates and Dtran using the algorithm below. The start state is
firstpos(root), the accepting states are the ones with the position for #.

initialize Dstates to contain only the unmarked state firstpos(ng),
where ng is the root of syntax tree T for (r)#;
while (there is an unmarked state S in Dstates) {
mark S;
for (each input symbol a) {
let U be the union of followpos(p) for all p
in S that correspond to a;
if (U is not in Dstates)
add U as an unmarked state to Dstates;
Dtran[S,a] = U,

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Regular Expressions to DFA

Example NODE n | followpos(n)
{123} 5 16} 1 {1’2’3}
123 5 {6} # (6
{ } o {5} {6} # {6} 4 {5}
6
{123} o {4} {5} & {5) 2 {@}
1123)c43) {4} b {4}

{1,2} *{1,2} {3} a {3}

{52} 61,2)

2N

{1t a {1} {2} b {2}

Exercise: Build a DFA for a(a|b)*b

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Minimizing the number of DFA
states

Make every state has a transition on every input symbol. (add a dead state d if
necessary)

String w distinguishes states s and t if feeding w from the states ended up with
an accepting state in one case and a non-accepting state in the other.

e Starting from F and S-F,
keep partitioning the
states until they are not
distinguishable.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Minimizing the number of DFA states

1. Start with an initial partition IT with two groups, F and S — F, the
accepting and nonaccepting states of D.

2. Apply the procedure of Fig. 3.64 to construct a new partition Ilpey.

initially, let IIpew = II;
for (each group G of IT) {
partition G into subgroups such that two states s and ¢
are in the same subgroup if and only if for all
input symbols a, states s and ¢ have transitions on a
to states in the same group of II;
/* at worst, a state will be in a subgroup by itself */
replace G in Ilpey by the set of all subgroups formed;

Figure 3.64: Construction of Iyew

3. If Hpew =11, let gy, = IT and continue with step (4). Otherwise, repeat
step (2) with Ipey in place of II.

4. Choose one state in each group of Ilgn,, as the representative for that
group. The representatives will be the states of the minimum-state DFA
D'. The other components of D' are constructed as follows:

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Questions?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

