
CSE 304 Compiler
Design
A Simple Compiler (1)
YOUNGMIN KWON / TONY MIONE

Simple Compiler: Objective
Learn the overall phases of a compiler

Learn how to write a grammar

Translate source code to an abstract stack machine code
◦ Lexical scanner
◦ Parser
◦ Code generation

Learn abstract stack machines

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Syntax Definition
Context-Free Grammars
◦ Naturally describe the hierarchical structure of many programming languages

e.g. if-else statement in C language
◦ if (expression) statement else statement

◦ In the context-free grammar
◦ stmt -> IF (expr) stmt ELSE stmt,

◦ stmt and expr are nonterminals representing statements and expressions
◦ IF, ELSE, (, and) are tokens

◦ Such rules are called a production and -> may be read as “can have the form”

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

Context-Free Grammar
4 Components

1. A set of tokens (terminals)
2. A set of nonterminals
3. A set of productions composed of

◦ left side: a nonterminal
◦ arrow: -> (can also use ::=)
◦ right side: a sequence of terminals and nonterminals

4. A start symbol (first production is for the start symbol)

Productions with the same left side can be grouped (separated by |)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Context-Free Grammar (Example)
Example

◦ list -> list + digit
list -> list – digit
list -> digit
digit -> 0 | 1 | 2 | … | 9

◦ string -> string + string
| string – string
| digit

digit -> 0 | 1 | 2 | … | 9

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Context-Free Grammar: Derivations and
Language

A grammar derives strings by beginning with the start symbol and repeatedly replacing the
nonterminals with the body of the corresponding production.

All terminal strings derived from the start symbol form the language defined by the grammar.

e.g. we can deduce that 9-5+2 is a list as follows
◦ 9, 5, 2 are digits by the productions digit -> 9, digit -> 5, digit -> 2
◦ 9 is a list by the production list -> digit (9 is a digit)
◦ 9-5 is a list by the production list -> list – digit (9 is a list, 5 is a digit)
◦ 9-5+2 is a list by the production list -> list + digit (9-5 is a list, 5 is a digit)

Parsing is the process of finding the deduction tree for a grammar from a terminal string.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

Context-Free Grammar (Ambiguity)
string -> string + string

| string – string
| digit

digit -> 0 | 1 | 2 | … | 9

• The grammar for string is ambiguous.
• e.g. Two parse trees for 9 - 5 + 2
• (9 - 5) + 2 and 9 - (5 + 2)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Associativity to fix the ambiguity
Left associativity:
◦ 9 – 5 + 2 should be read as (9 – 5) + 2
◦ list -> list + digit

| list – digit
| digit

◦ If 5 + 2 became a list first, there are no productions that can derive further.

Right associativity:
◦ a = b = c should be read as a = (b = c)
◦ right -> letter = right

| letter
letter -> a | b | … | z

◦ If a = b became a right first, there are no productions that can derive further.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8

Parse trees for 9 - 5 + 2 and a = b = c

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

Precedence to fix the ambiguity
Precedence

◦ 1 + 2 * 3 should be read as 1 + (2 * 3) not (1 + 2) * 3

To fix the precedence, we can add a new nonterminal term
◦ expr -> expr + term

| expr – term
| term

term -> term * digit
| term / digit
| digit

digit -> 0 | 1 | … | 9

Observe that if 1 + 2 became an expr first, we cannot build a parse tree: there are no
productions like expr -> expr * term

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Simple Compiler: Syntax for expressions
expr -> expr + term

| expr – term
| term

term -> term * factor
| term / factor
| factor

factor -> NUMBER
| IDENTIFIER
| (expr)

Exercise: with the context-free grammar above, build a parse tree for
x - 2 * (3 + y)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

Simple Compiler: Syntax for statements
stmt -> ID := expr ;

| IF expr THEN stmt
| IF expr THEN stmt ELSE stmt
| WHILE expr DO stmt
| BEGIN opt_stmts END

opt_stmts -> ε
| opt_stmts stmt

Exercise: with the context-free grammar above, build a parse tree for
IF x
THEN

x := 0;
ELSE

BEGIN
y := y + 1;
x := 1;

END

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

Syntax-Directed Definition
Specifies the translation of a construct in terms of attributes
associated with its syntactic components

1. Associate a set of attributes to each grammar symbol
◦ E.g. attributes: type, memory location of a code, string …
2. Add a set of semantic rules for computing values of the

attributes associated with the symbols in the production
Types of Attributes:
◦ Inherited attributes: attributes that are dependent on it’s parent,

sibling, and self nodes
◦ Synthesized attributes: attributes that are dependent on it’s child

and self nodes.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

Postfix Notation
Postfix notation of an expression E can be inductively defined as

◦ If E is a variable or a constant, postfix notation of E is E itself
◦ If E is an expression of the form E1 op E2, the postfix notation of E is E’1 E’2 op, where E’1 and E’2 are the

postfix notations for E1 and E2

◦ If E is of the form (E1), the postfix notation of E is the postfix notation of E1

e.g. the postfix notation of (9-5)+2 is 95-2+

To evaluate the postfix notation, repeatedly find the left most operator and replace the operator
and the two numbers on its left with their evaluation.

e.g. 95-2+ -> 42+ -> 6

Exercise: evaluate the postfix notation 952+-3*

[Note: Automating evaluation of postfix expressions can be done easily using a stack!]

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

Syntax-Directed Definition for infix to
postfix translation

Production Semantic Rule
expr -> expr1 + term expr.t = expr1.t | term.t | ‘+’

expr -> expr1 - term expr.t = expr1.t | term.t | ‘-’

expr -> term expr.t = term.t

term -> 0 term.t = ‘0’

term -> 1 term.t = ‘1’

… …

term -> 9 term.t = ‘9’

where | means the string concatenation.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

Syntax-Directed Definition for infix to
postfix translation

Example attributes for 9 – 5 + 2

• Exercise: Update the syntax-directed definition with factor and
compute the attributes of 1 - 2 * 3 + 4

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

Syntax-Directed Definition: tree traversal
One way to compute the attributes is to traverse the parse tree in the
depth first manner.

Depth first traversal
procedure visit(node N) {

foreach child C of N, from left to right {
visit(C);

}
evaluate semantic rules at node N;

}

The picture on the right is an example of depth first traversal

Check how the attributes in the parse tree (9-5+2) of the previous
page is computed by the depth first traversal.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

Translation Scheme
Definition: translation Scheme is a context-free grammar in which program fragments
called semantic actions are embedded within the right sides of productions
Translation Scheme is an alternative way of translation without manipulating strings.
◦ If we perform the semantic actions as we encounter them while depth first traversing the tree, we

can produce the same postfix translation.

Example
◦ rest -> + term { print(‘+’) } rest1

The parse tree below shows an extra leaf from the semantic action

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

Translation Scheme

Actions translating 9+5-2 into 95-2+• Actions for infix to postfix translation

• Exercise: Update the translation scheme with factor and check
how 1 - 2 * 3 + 4 is translated into a postfix notation.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

Questions?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

