
CSE 304/504
Compiler Design
Overview
YOUNGMIN KWON / TONY MIONE

Course Objective
Learn how compilers are designed and implemented

◦ How to write grammars
◦ How to parse and translate grammars
◦ Theory behind them

Learn details of programming languages
◦ How programming language elements are implemented
◦ Symbol management
◦ Runtime environments
◦ MIPS & Intel assembly languages

Become familiar with useful tools and improve development skills
◦ Lexical scanner
◦ Parser generators
◦ Debugging skills…

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Course Materials
Textbook:

◦ “Compilers Principles, Techniques, and Tools” 2nd edition by Alfred V. Aho,
Monica S. Lam, Ravi Sethi, and Jeffrey Ullman

Recommended Texts:

Lexical scanner and Parser generator tools:
◦ “lex & yacc” by John R. Levine, Tony Mason, and Doug Brown

Additional Compiler Information:
◦ Engineering a Compiler”, Cooper, Keith, D., Torczon, Linda, Elsevier, 2012,

ISBN 978-0-12-088478-0.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

Course Organization
Learn overall compiling steps using the tools

◦ Build a simple compiler for an abstract stack machine
◦ Become familiar with Lex and Yacc tools (Lexical scanner and Parser generator)

Lexical analysis
◦ Regular expressions
◦ Nondeterministic Finite Automata (NFA), Deterministic Finite Automata (DFA)

Symbol Management
◦ Scope
◦ Lifetime

Parsing
◦ Context-free grammars
◦ Top-Down parsing, Bottom-Up parsing

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Course Organization
(continued)
Semantic analysis

◦ Syntax directed translation
◦ Type checking

MIPS assembly code generation (without optimization)
◦ Runtime environment
◦ MIPS assembly language
◦ Translation to MIPS assembly language

Intermediate code generation

Code generation
◦ Register allocation and assignment

Code optimization
◦ Global code optimization

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Language Processors
Compiler: a program that reads a program in one language (the source
language) and translates it into an equivalent program in another language
(the target language).

The target program is a self-sufficient program that can handle user’s input
and produce output.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

Language Processors
Interpreter: without producing a target program, an interpreter executes
the source program on user’s input.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Language Processors
Hybrid model: Java source code is compiled into bytecodes and the bytecodes are
interpreted by a virtual machine or…

In newer Java implementations (last decade or so) Just-In-Time (JIT) compiler is
used to translate the bytecodes into native machine language immediately before
they run the program. The native code can be run directly on the processor and is
much faster than interpreting bytecodes.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8

Language Processors
Preprocessor (some languages):

◦ Collects the source code stored in separate files
◦ Handles macro ‘expansion’.

Assembler:
◦ Translates assembly language to a relocatable machine

code.

Linker:
◦ Combines relocatable object files and libraries so that code

in one file can refer to locations in another file.
◦ Builds a single executable with all addresses resolved.

Loader:
◦ Loads all executable files into memory for execution.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

The Structure of a Compiler
Front end (analysis part)

◦ Breaks up source program into pieces [Lexical analyzer]
◦ Imposes grammatical structure on them [Parser]
◦ Syntactic and Semantic checking [Semantic Analyzer]
◦ Produces intermediate representation of the source program [Intermediate code generator]

Back end (synthesis part)
◦ Optimizes the intermediate representation [Machine independent code optimizer]
◦ Produces the target program [Code Generator / Optimizer]

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Phases of a Compiler

Lexical analysis
◦ source text -> tokens

Syntax analysis
◦ tokens -> parse tree

Semantic analysis
◦ parse tree -> syntax tree (type checking)

Intermediate code generation
◦ syntax tree -> machine independent code
◦ e.g. three address code: 1 target address and 1 ~ 2 source

addresses; at most 1 operator for 1 instruction

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

Phases of a Compiler
(continued)

Code optimization (Machine-independent)
◦ optimization (fast, short, less power) on the intermediate

code
◦ General mathematical transformations

Code generation
◦ intermediate code -> target machine code

Code optimization (Machine-dependent)
◦ Leverages knowledge of CPU idiosynchrocies to generate

more efficient code.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

Phases of a Compiler
(continued)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

Grouping Phases into passes
In an implementation, several phases are grouped into passes

◦ e.g.) front-end phases are grouped into one pass, optimization is left as an
optional pass, and the code generation makes another pass.
◦ Lexical analysis, Syntax analysis, Semantic analysis, Intermediate code generation
◦ Code optimization
◦ Code generation

Some compilers have several front-ends and one back-end to handle
multiple programming languages for a single target machine

Some compilers have a front-end and multiple back-ends to handle
multiple different target machines.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

Modern Compile System
Architecture

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

• Instead of building 9 compilers (3 languages for each of 3 architectures)
• Build 3 front ends and 3 back ends.
• To add a new language, just build a single front end!
• To support all languages on a new CPU, build a single back end!

Programming Language Basics

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

Static policy: allows the compiler to decide an issue.

Dynamic policy: allows the decision to be made at runtime.

e.g.) Scoping rule
◦ Scope of a declaration x is the region of the program where x refers to this

declaration.
◦ Static scope or lexical scope: if it is possible to determine the scope of a

declaration by looking only at the program.
◦ Dynamic scope: the same x can refer to different declarations of x as the

program runs

Static Scoping and Block
Structure

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

Environments and States
Environment: mapping from names to locations in the store (l-values)

State: mapping from locations in store to their values (mapping from l-
values to r-values)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

Parameter Passing Mechanism

Actual parameter (arguments): the parameters used in the call of a
procedure.

Formal parameter: the parameters in the procedure definition.

Call-by-Value: actual parameter is evaluated and placed in the location
corresponding to the formal parameter of the callee.

Call-by-Reference: the address of the actual parameter is passed to the
callee as the value of the corresponding formal parameter.

Call-by-Name: callee runs as if the actual parameters were substituted for
the formal parameters in the code.

In C, C++, Java, the basic type parameters are passed by Call-by-Value
mechanism. Composition types like objects and arrays are passed by their
addresses (but… Structures in C are passed by value).

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

Questions?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

