
CSE 304 : Compiler Design

Syllabus

Term: Spring 2025
Instructor: Tony Mione
Course Meeting Times: Tue & Thur, 9:00 – 10:20 AM

Office: B425
Phone: +82 032-626-1226
Email: antonino.mione@sunykorea.ac.kr
Office Hours:
 Mon/Wed: 10:30-12:00 AM

Tue, Wed: 1:00-2:00 PM
 Thur: 11:00-12:00 PM

(or by appointment) [B425]
Course Homepage: www3.cs.stonybrook.edu/~amione/CSE304_Course/index.html
Brightspace:

Lecture: https://mycourses.stonybrook.edu/d2l/home/1802416

Text: Aho, Alfred V., Lam, Monica S., Sethi, Ravi, Ullman, Jeffrey Compiler
Principles, Techniques, and Tools, Publ, ISBN 978-0321486813
Recommended Reference: Levine, John, Brown, Doug, and Mason, Tony, lex &
yacc, O’Reilly, ISBN 978-1565920002

Course Overview
Studying compilers will give the student an in depth knowledge of programming
languages, including text analysis, grammar and semantics, as well as the
theories behind them. It also teaches a wealth of knowledge about programming
language internals. This helps the student to write more efficient high level
language code as they will understand the language’s memory management,
scoping, and instruction scheduling.
Specifically, we will discuss how to write grammars for languages, how to parse
and translate code in the language, and the theories behind these tasks. Over the
course of the semester, we will implement a compiler for a small language that
will generate MIPS assembler code. Through the implementation, we will learn
how programming language elements are implemented, how to set up a runtime
environment, and an assembly language.
There will be lectures in class but some self study will be essential including text
book readings and a few suggested supplemental videos.

https://mycourses.stonybrook.edu/d2l/home/1802416

Course Objectives/Outcomes

Upon completion of the courses, students are expected to:

• An ability to use of formal attributed grammars for specifying the syntax
and semantics of programming languages.

• Working knowledge of the major phases of compilation, particularly
lexical analysis, parsing, semantic analysis, and code generation.

• An ability to design and implement a significant portion of a compiler for
a language chosen by the instructor.

Major Topics Covered in the Course:
• Learn overall compiling steps using important tools
• Lexical analysis (Regular expressions, NFA, DFA)
• Syntax analysis (Context‐free grammars, Top‐Down parsing, Bottom‐Up

parsing)
• Semantic analysis (Syntax directed translation, Type checking)
• Runtime environment (Memory allocation)
• Code generation (x86 assembly language, runtime environment, register

allocation and assignment)

Prerequisite
- C or higher: CSE216 or CSE 219 or CSE 260; CSE 220
- Advisory Prerequisites: CSE 303 or CSE 350

Grades and Evaluation
The course provides a total of 500 points distributed across the below
categories.
Your grade in the course will be based on the following work:

Assignments – 15% (75 points) - A number of assignments will be given from
textbook problems to help the student understand the theoretical concepts in the
text.
Project – 40% (200 points) – A large project will be given in several (4-5)
segments that will involve implementing part of a compiler for a small language.
Combined, these form the term project that should be functional by the end of
the semester.
Class Attendance/Participation – 5% (25 points) – missing more than 20% of
the classes will result in a grade of F
Midterm Exam 1 – 10% (50 points) - A midterm exam based on reading and
concepts presented in the lecture.
Midterm Exam 2 – 10% (50 points) - A midterm exam based on reading and
concepts presented in the lecture.
Final Exam – 20% (100 points) - A cumulative final exam will provide questions
that will cover the key concepts taught through the entire semester.

Final Grade Calculation
The final grade is based on the accumulated points from all quizzes, exams, and
assignments (with the entire class comprised of 500 points). Letter grades are
given on the following scale:

Letter Minimum
Percentage

Minimum
‘points’

A 93 465
A- 90 450
B+ 87 435
B 83 415
B- 80 400
C+ 77 385
C 73 365
C- 70 350
D+ 67 335
D 60 300
F <60 <300

Attendance
The range of topics covered in this course is extensive, and due to the limited
lecture
and lab time, these topics are covered in an intensive manner. Therefore,
attendance
at both lectures and lab are mandatory in order to keep up and perform well.

– Attendance will be taken in the beginning of each lecture and lab session.
– If a student has over 20% unexcused absences, the final course grade will

be an F.

Re-grading
For re-grading of an assignment or exam, please meet with the person
(instructor or teaching assistant) responsible for the grading. All such requests
that are later than one week from the date the graded work is returned to the
class will not be entertained.
Important note: On assignments and/or the compiler project: Regrading will ONLY

be considered in cases where I may have run the code incorrectly. Upon correcting

the code, if functionality is shown to work, the grade will be adjusted. I will NOT

regrade on the basis of the compiler specification being ‘vague’ or failing to state a

specific behavior. I will try to make the specifications as precise as possible but if

something seems ambiguous, you should ask in class, in person during office

hours, or by email. If there is enough confusion, I will announce more specific

guidelines to the class either in person or by email.

Programming Assignments

Extensions
Programming assignments must be turned in on the day they are due. Students
are urged to plan ahead to avoid problems such as congestion or failure of
computer facilities at the last minute. If your assignment is incomplete or is not
working by the due date, turn in whatever you have. Note due to limited
resources for grading, programs which do not compile or run for testing may not
be graded. If some sort of emergency prevents you from submitting your
assignment on time, supplying me with suitable documentation and notification
prior to the assignment deadline will be considered. A penalty may be applied.

Course Schedule
Following is a tentative schedule for the class topics:

Week/Day Lecture Topics Readings Tests/Vids Assign/Tests

W1: 2/25 Course Overview

2/27 Compiler Design Overview Aho: Chapter 1

W2: 3/4 Lexical analysis: Regular Expressions, Transition

diagrams, NFA, DFA, Conversion from NFA to

DFA

Aho: Chapter 3

(3.1-3.8)

 Assign 1:

Lexer

3/6 Lex & Yacc / PLY Aho: Chapter 2

W3: 3/11 Simple compiler: Syntax Definitions, Syntax-

directed Translation

3/13 Simple Compiler: Translation to abstract stack

machine

W4: 3/18 Introduction to Symbol Management PLP: c26-c32

3/20 Runtime Storage Management A1 Due

W5: 3/25 Implementing a Symbol Table Assign 2:

Symtab

3/27 Midterm I Review

W6: 4/1 Midterm I Midterm I

4/3 Syntax analysis: Top‐Down Parsing

(Nonrecursive Predictive Parsing)

Aho: Chapter 4

(4.1-4.4)

 A2 Due

W7: 4/8 Syntax analysis: Bottom-Up Parsing (SLR Parser) Aho: Chapter 4

(4.5-4.6)

 Assign 3:

Parser

4/10 Syntax analysis: Bottom-Up Parsing (LR Parser,

LALR Parser)

Aho: Chapter 4

(4.7-4.8)

W8: 4/15 Syntax directed translation: Overview, S-

attributed definitions / Top-Down Translation of

L-attributed definitions / Bottom-Up translation of

Inherited attributes

Aho: Chapter 5

(5.1-5.5)

4/17 Type Checking Aho: Chapter 6

(6.3-6.5)

W9: 4/22 Runtime environments Aho: Chapter 7

(7.1-7.3)

4/24 Assembly language A3 Due

W10: 4/29 Review for Midterm II

5/1 Midterm II Midterm II

W11: 5/6 Subs Children’s Day/Budda’s BD : No class

5/8 Intermediate code generation (Three address code,

Part 1)

Aho: Chapter 6

(6.1-6.2)

 Assign 4: Int

CodeGen

W12: 5/13 Intermediate code generation (Three address code,

Part 2)

Aho: Chapter 6

(6.6-6.8)

5/15 TBD

W13: 5/20 Code Generation Aho: Chapter 8 A4 Due

5/22 Code Optimization Assign 5:

CodeGen

W14: 5/27 TBD

5/29 TBD

W15: 6/3 Review for Final A5 Due

6/10 Final Exam : 9:00-11:30 AM

Useful Additional Links and Videos

Compiler Design Overview
https://www.youtube.com/watch?v=Qkwj65l_96I&list=PLEbnTDJUr_IcPtUXFy2b1sGRPsLFMghhS

Compiler Design Tutorials
https://www.tutorialspoint.com/compiler_design/index.htm

Symbol Management
https://www.youtube.com/watch?v=TpcCXwAAgqE
https://www.youtube.com/watch?v=Dd3DWRpqI40

Lex/Flex tutorial
https://www.youtube.com/watch?v=54bo1qaHAfk

Yacc/Bison tutorial
https://www.youtube.com/watch?v=__-wUHG2rfM

Lexical Analysis
https://www.youtube.com/watch?v=4nx8LEGy9kI

Parsing: Top Down (LL)

Finding First and Follow Sets

https://www.youtube.com/watch?v=SBnjVW8dUqo&t=34s

Parsing Table Generation

https://www.youtube.com/watch?v=XpZZrQjOAJY
https://www.youtube.com/watch?v=iLXOsKQ4MDs

Parsing: Bottom Up (LR)

Computing LR/SLR(1) Items
https://www.youtube.com/watch?v=caGd_-TvPLc

Generating Parsing Tables
https://www.youtube.com/watch?v=ZZiVhS4yhi4

Generating LR(1) & LALR(1) Parsing Tables
https://www.youtube.com/watch?v=DYnyOeEXWuU

LR(0) & SLR(1) Parsing
https://www.youtube.com/watch?v=NJb-STjE0KY

Basic Semantic Analysis
https://www.youtube.com/watch?v=57U6pQRnSJA&list=PLcpyJ7lWP9oxIB7GvoiNItFO2rh8FussO&index=3
https://www.youtube.com/watch?v=5BaDD81QxKs&list=PLcpyJ7lWP9oxIB7GvoiNItFO2rh8FussO&index=5

Code Generation
https://www.youtube.com/watch?v=-ti07Z0xKKg

Code Optimization
https://www.youtube.com/watch?v=D7JmYNaYt4k

https://www.youtube.com/watch?v=Qkwj65l_96I&list=PLEbnTDJUr_IcPtUXFy2b1sGRPsLFMghhS
https://www.tutorialspoint.com/compiler_design/index.htm
https://www.youtube.com/watch?v=TpcCXwAAgqE
https://www.youtube.com/watch?v=Dd3DWRpqI40
https://www.youtube.com/watch?v=54bo1qaHAfk
https://www.youtube.com/watch?v=__-wUHG2rfM
https://www.youtube.com/watch?v=4nx8LEGy9kI
https://www.youtube.com/watch?v=SBnjVW8dUqo&t=34s
https://www.youtube.com/watch?v=XpZZrQjOAJY
https://www.youtube.com/watch?v=iLXOsKQ4MDs
https://www.youtube.com/watch?v=caGd_-TvPLc
https://www.youtube.com/watch?v=ZZiVhS4yhi4
https://www.youtube.com/watch?v=DYnyOeEXWuU
https://www.youtube.com/watch?v=NJb-STjE0KY
https://www.youtube.com/watch?v=57U6pQRnSJA&list=PLcpyJ7lWP9oxIB7GvoiNItFO2rh8FussO&index=3
https://www.youtube.com/watch?v=5BaDD81QxKs&list=PLcpyJ7lWP9oxIB7GvoiNItFO2rh8FussO&index=5
https://www.youtube.com/watch?v=-ti07Z0xKKg
https://www.youtube.com/watch?v=D7JmYNaYt4k

Academic Dishonesty
You may discuss the practice problems with anyone you like, however each
students' assignment (including coding) which they submit must be their own
work, and only their own work. Any evidence that source code or solutions
have been copied, shared, or transmitted in any way (this includes using
source code downloaded from the Internet or written by others in previous
semesters!) will be regarded as evidence of academic dishonesty.

Guidelines for Assignments

Working together to find a good approach for solving a programming problem is
cooperation; listening while someone dictates a solution is cheating. You must
limit collaboration to a high-level discussion of solution strategies, and stop short
of actually writing down a group answer. Anything that you hand in, whether it is
a written problem or a computer program, must be written in your own words. If
you base your solution on any other written solution, you are cheating

Guidelines for Taking Exams
When taking an exam, you must work completely independently of everyone
else. Any collaboration here, of course, is cheating. All examinations will be
closed-notes and closed-book. No electronic devices of any kind will be
permitted to be used during exams. All cell phones must be silenced or turned off
during exams. You will be allowed one sheet of notes, both sides (8.5 x 11 or A4).

General Guidelines

Be advised that any evidence of academic dishonesty will be treated with

utmost seriousness. We do not distinguish between cheaters who copy

others' work and cheaters who allow their work to be copied.

If you cheat, you will be given an F on the assignment. Any incidence of cheating
will be reported to Academic Affairs. If you have any questions about what
constitutes cheating, please ask.

Students with Disabilities
If you have a physical, psychological, medical or learning disability that may
impact your course work, please let the instructor know. Reasonable
accommodation will be provided if necessary and appropriate. All information
and documentation are confidential.

Critical Incident Management
The University expects students to respect the rights, privileges, and property of
other people. Faculty are required to report to the Office of Judicial Affairs any
disruptive behavior that interrupts their ability to teach, compromises the safety
of the learning environment, or inhibits students' ability to learn.

	Course Overview
	Course Objectives/Outcomes
	Major Topics Covered in the Course:
	Prerequisite
	Grades and Evaluation
	Final Grade Calculation

	Attendance
	Re-grading
	Programming Assignments
	Extensions

	Course Schedule
	Useful Additional Links and Videos
	Compiler Design Overview
	Compiler Design Tutorials
	Symbol Management
	Lex/Flex tutorial
	Yacc/Bison tutorial
	Lexical Analysis
	Parsing: Top Down (LL)
	Finding First and Follow Sets
	Parsing Table Generation
	Parsing: Bottom Up (LR)
	Computing LR/SLR(1) Items
	Generating Parsing Tables
	Generating LR(1) & LALR(1) Parsing Tables
	LR(0) & SLR(1) Parsing
	Basic Semantic Analysis
	Code Generation
	Code Optimization

	Academic Dishonesty
	Guidelines for Assignments
	Guidelines for Taking Exams
	General Guidelines

	Students with Disabilities
	Critical Incident Management

