
What is an Object�Oriented Programming Language�

Kathleen Fisher and John C� Mitchell

Computer Science Dept�� Stanford University� Stanford� CA �����

fkfisher�mitchellg�cs�stanford�edu

June ��� ����

Abstract

This document is a set of rough notes on basic features of object�oriented programming
languages� It is based on the �rst section of the paper �Notes on typed object�oriented pro�
gramming�� Proc� Theoretical Aspects of Computer Software� Springer LNCS ���� 	��
� pages
�

�����

� Introduction

�Object orientation� is both a language feature and a design methodology� This paper is primarily
about language features� However� some aspects of object�oriented design are important for under�
standing the power and usefulness of object�oriented languages� In general� object�oriented design
is concerned with the way that programs may be organized and constructed� Objects provide a
program�structuring tool whose importance seems to increase with the size of the programs we
build�

Roughly speaking� an object consists of a set of operations on some hidden� or encapsulated�
data� A characteristic of objects is that they provide a uniform interface to a variety of system
components� For example� an object can be as small as a single integer or as large as a �le system
or output device� Regardless of its size� all interactions with an object occur via simple operations
that are called �message sends� or �member function invocations�� The use of objects to hide
implementation details and provide a �black box� interface is useful for the same reasons that data
and procedural abstraction are useful�

Although this paper is about language features� not methodology� we describe object�oriented
design brie�y since this design paradigm is one of the reasons for the success of object�oriented
programming� The following list of steps is taken from �Boo�	
� one of many current books on
object�oriented design�

	� Identify the objects at a given level of abstraction�

�� Identify the semantics �intended behavior
 of these objects�

�� Identify the relationships among the objects�

�� Implement the objects�

	



June ��� ���� �

This is an iterative process based on associating objects with components or concepts in a system�
The process is iterative because an object is typically implemented using a number of �sub�objects��
just as in top�down programming a procedure is typically implemented by a number of �ner�grained
procedures�

The data structures used in the early examples of top�down programming �see �Dij��

 were
very simple and remained invariant under successive re�nements of the program� Since these re�ne�
ments involved simply replacing procedures with more detailed versions� older forms of structured
programming languages� such as Algol� Pascal� and C� were adequate� When solving more complex
tasks� however� it is often the case that both the procedures and the data structures of a program
need to be re�ned in parallel� Object�oriented languages support this joint re�nement of function
and data�

� Basic Concepts

Not suprisingly� all object�oriented languages have some notion of an �object�� which is essentially
some data and a collection of methods that operate on that data� There are two �avors of object�
oriented languages� class�based and delegation�based� These �avors correspond to two di�erent
ways of de�ning and creating objects� In class�based languages� such as Smalltalk �GR��
 and
C�� �ES��
� the implementation of an object is speci�ed by its class� In such languages� objects
are created by instantiating their classes� In delegation�based languages� such as Self� objects are
de�ned directly from other objects by adding new methods via method addition and replacing old
methods via method override� In the remainder of the paper� we will focus on the more common
class�based languages�

Although there is some debate as to what exactly constitutes an object�oriented programming
language �besides merely having objects
� there seems to be general agreement that such a language
should provide the following features� dynamic lookup� subtyping� inheritance� and encapsulation�
Brie�y� a language supports dynamic lookup if when a message is sent to an object� the method
body to execute is determined by the run�time type of the object� not its static type� Subtyping
means that if some object ob� has all of the functionality of another object ob� � then we may use
ob� in any context expecting ob� � Inheritance is the ability to use the de�nition of simpler objects
in the de�nitions of more complex ones� Encapsulation means that access to some portion of an
object�s data is restricted to that object �or perhaps to its descendants
� We explore these features
in more detail in the following subsections�

��� Dynamic lookup

In any object�oriented language� there is some way to invoke the methods associated with an object�
In Smalltalk� this process is called �sending a message to an object�� while in C�� it is �calling a
member function of an object�� To give a neutral syntax� we write

receiver�operation

for invoking operation on the object receiver � For expositional clarity� we will use the Smalltalk
terminology for the remainder of this section�

Sending messages is a dynamic process� the method body corresponding to a given message
is selected according to the run�time identity of the receiver object� The fact that this selection
is dynamic is essential to object�oriented programming� Consider� for example� a simple graphics
program that manipulates �pictures� containing many di�erent kinds of shapes� squares� circles�



June ��� ���� �

triangles� etc� Each square object �knows� how to draw a square� each circle �knows� how to draw

a circle� etc� When the program wants to display a given picture� it sends the draw message to each
shape in the picture� At compile�time� the most we know about an object in the picture is that it is
some kind of a shape and hence has some draw method� At run�time� we can �nd the appropriate
draw method for each shape by querying that shape for its version of the draw method� If the
shape is a square� it will have the square draw method� etc� �

There are two main views for what sending a message means operationally� In the �rst view�
each object contains a �method table� that associates a method body with each message de�ned
for that object� When a message is sent to an object at run�time� the corresponding method is
retrieved from that object�s method table� As a result� sending the same message to di�erent
objects may result in the execution of di�erent code� In the example above� a square shape draws
a square in response to the draw message� while a circle draws a circle� This behavior is called
dynamic lookup� or� variously� dynamic binding� dynamic dispatch� and run�time dispatch� Both
C�� and Smalltalk support this model of message sending�

The second view of message sending treats each message name as an �overloaded� function�
When a message m is sent to an object ob � ob is treated as the �rst argument to an overloaded
function named m � Unlike the traditional overloading of arithmetic operators� the appropriate code
to execute when m is invoked is selected according to the run�time type of ob � not its static type�
In this view� the methods of an object are not actually part of the object� Each object consists
solely of its state� The methods from all the objects in a program are collected together by name�
For example� the circle and square objects from above would simply contain their local state� i�e��
the circle might contain its center and radius� the square its corner points� The draw methods
from each would be collected into some �method repository�� When the draw message is sent to
some object ob � the dynamic type of ob is determined and the appropriate draw code selected
from the repository� If ob were a circle� the circle draw method would be executed� etc� In this
view� we again get the important characteristic that sending the same message to di�erent objects
can result in the execution of di�erent code� Languages such as CLOS �Ste��
 and Dylan �App��

support this model of message sending� A theoretical study appears in �CGL��
�

The second view is somewhat more �exible than the �rst� In particular� in the second approach
it is possible to take more than the �rst argument into account in the selection of the appropriate
method body to execute� For example� if we write

receiver�operation�arguments


for invoking an operation with a list of arguments� then the actual code invoked can depend on
the receiver alone �as explained above
� or on the receiver and one or more arguments� When the
selection of code depends only on the receiver� it is called single dispatch� when it also depends on
one or more arguments� it is called multiple dispatch� Multiple dispatch is useful for implementing
operations such as equality� where the appropriate comparisons to use depend on the dynamic type
of both the receiver object and the argument object�

Although multiple dispatch is in some ways more general than the single dispatch found in
C�� and Smalltalk� there seems to be some loss of encapsulation� This apparent loss arises
because in order to de�ne a function on di�erent kinds of arguments� that function must typically
have access to the internal data of each function argument� For example� suppose we wanted to
de�ne a same center method that compares the centers of any two shapes and returns true if

�In C�� � only member functions designated virtual are selected dynamically� Non�virtual member functions are
selected according to the static type of the receiver object� Needless to say� this distinction is the source of some
confusion�



June ��� ���� �

they match� Using multiple dispatch� we can write such a function by giving one version of the
method for each pair of shapes we wish to consider� circle and circle� circle and square� square
and circle� etc� Notice that this same center method does not conceptually belong to any one of
the shapes� and yet it must have access to the internal data of each shape object in order to do
any meaningful comparisons� This external access of object internals violates the standard notions
of encapsulation for object�oriented languages� It is not clear that this loss of encapsulation is
inherent to multiple dispatch� However� current multiple dispatch systems do not seem to o�er any
reasonable encapsulation of private or local data for objects�

��� Subtyping

The basic principle associated with subtyping is substitutivity� if A is a subtype of B� then any
expression of type A may be used without type error in any context that requires an expression of
type B� We will write �A �� B� to indicate that A is a subtype of B�

The primary advantage of subtyping is that it permits uniform operations over various types of
data� For example� subtyping makes it possible to have heterogeneous data structures containing
objects that belong to di�erent subtypes of some common base type� Consider as an example a
queue containing various bank accounts to be balanced� These accounts could be savings accounts�
checking accounts� investment accounts� etc�� but each is a subtype of bank account so balancing is
done in the same way for each� This uniform treatment is generally not possible in strongly typed
languages without subtyping�

Subtyping in an object�oriented language also allows functionality to be added with minimal
modi�cation to the system� If objects of a type B lack some desired behavior� then we may wish to
replace objects of type B with objects of another type A that have the desired behavior� In many
cases� the type A will be a subtype of B� By designing the language so that substitutivity is allowed�
one may add functionality in this way without any other modi�cation to the original program�

An example illustrating this use of subtyping occurs in building a series of prototypes of an
airport scheduling system� In an early prototype� one would de�ne a class airplane with methods
such as position� orientation� and acceleration that would allow a control tower object to
a�ect the approach of an airplane� In a later prototype� it is likely that di�erent types of airplanes
would be modeled� If one adds classes for Boeing ����s and Beechcrafts� these would be subtypes
of airplane� containing extra methods and �elds re�ecting features speci�c to these aircraft� By
virtue of the subtyping relation� all Beechcrafts are instances of airplane and the general con�
trol algorithms that apply to all airplanes can be used for Beechcrafts without modi�cation or
recompilation�

��� Inheritance

Inheritance is a language features that allows new classes to be de�ned as increments to existing
ones� It is an implementation technique� For every object or class of objects de�ned using in�
heritance� there is an equivalent de�nition that does not use inheritance� obtained by expanding
the de�nition so that inherited code is duplicated� The importance of inheritance is that it saves
the e�ort of duplicating �or reading duplicated
 code� and that when one class is implemented by
inheriting from another� changes to one a�ect the other� This has a signi�cant and sometimes
debated impact on program maintenance and modi�cation�

Using a neutral notation� we can illustrate by a simple example the form of inheritance that
appears in most object�oriented languages� The two classes below de�ne objects with private data



June ��� ���� �

v and public methods f and g � The class B is de�ned by inheriting the declarations of A � rede�ning
the function g � and adding a private variable w �

class A �

private

val v � ���

public

fun f�x� � ��� g����� ���

fun g�y� � ��� original definition ���

end�

class B � extend A with

private

val w � ���

public

fun g�y� � ��� new definition ���

end�

The simplest� but not most e�cient� implementation of inheritance is to incorporate the relationship
between classes explicitly in the run�time representation of objects� as is done in Smalltalk� For
the example classes A and B above� this implementation is shown in Figure 	� This �gure shows
data structures representing the

A Class� stores pointers to the A Template and A Method Dictionary�

A Template� gives the names and order of data associated with each A object�

A Method Dictionary� contains pointers to the names and code for methods de�ned
in the A Class�

B Class� stores pointers to the B Template� B Method Dictionary and base class A �

B Template� gives the names and order of data associated with each B object�

B Method Dictionary� contains pointers to the names and code for methods de�ned
in the B Class�

The �gure also shows an A object a and a B object b � Both of these objects contain pointers to
their class and storage for their data�

We can see how this data�structure allows us to �nd the correct methods to execute at run�time
by tracing the evaluation of the expression b� f�
� The sequence of events is�

	� We �nd the method dictionary for B objects by following b �s class pointer to the B Class and
then accessing the class�s method dictionary�

�� We search the B method dictionary for method name f �

�� Since f is not there� we follow the B Class�s base class pointer to the A Class and then access
the A method dictionary�

�� We �nd the function f in the A method dictionary�

�� When the body of f refers to g� we begin the search for the g method with the b object�
guaranteeing that we �nd the g function de�ned in the B Class�



June ��� ���� �

�

�

�

�

��

��

�

�

�

�

�

��

Class Object

A Method Dictionary

f

g

���g
�������

original de�nition

v

A Template

A ClassA Object

v data

w data

v

w

B ClassB Object

v data

B Template

B Method Dictionary

new de�nitiong

Figure 	� Smalltalk�style representation of B object inheriting from class A�



June ��� ���� �

This implementation may be optimized in several ways� The �rst is to cache recently�found
methods� Another possibility is to expand the method tables of derived classes to include the
method tables of their base classes� This expansion eliminates the upward search through the
method dictionaries of more than one class� Since the dictionaries contain only pointers to functions�
this duplication does not involve a prohibitive space overhead� C�� makes this optimization�

A more signi�cant optimization may be made in typed languages such as C�� � where the set
of possible messages to each object can be determined statically� If method dictionaries� or virtual

function tables �vtables
 in C�� terminology� can be constructed so that all subtypes of a given
class A store pointers to the common methods in the same relative positions in their respective
vtables� then the o�set of a method within any vtable can be computed at compile�time� This
optimization reduces the cost of method lookup to a simple indirection without search� followed by
an ordinary function call� In untyped languages such as Smalltalk� this optimization is not possible
because at compile�time� all we know about an object is that it is an object� In general� we do not
know what messages it understands� let alone where the corresponding methods are stored�

Figure � shows a schematic C�� representation of the example classes A and B given above�
This �gure contains an A object a and a B object b � Each of these objects stores its instance
variables and has a pointer to its class�s vtable� The A vtable contains pointers to the methods
de�ned in the A class� while the B vtable contains pointers to all the methods de�ned in B and to
those de�ned in A but not rede�ned in B � �The expression A � �f denotes the f function de�ned in
the A Class and the ��� denotes C�� �s address�of operator
 By duplicating the f method pointer
in the B vtable� we do not have to access the A vtable when manipulating a B object�

We may see how this data structure works by tracing the evaluation of the expression b�f�
�
The sequence of events is essentially��

	� We �nd the vtable for B objects by following b �s vtable pointer�

�� At compile�time� we may determine that the f method is the �rst entry in the B vtable� so
we retrieve the f method from the vtable without searching�

�� When the body of f refers to g � we retrieve the g method from b �s vtable� guaranteeing that
we use the g function de�ned in the B class�

For more information� see �ES��� Section 	���c
�

��� Encapsulation

Objects are used in most object�oriented programming languages to provide encapsulation barriers
similar to those given by abstract data types �ADT�s
� However� because object�oriented languages
have inheritance� object�oriented encapuslation can be more complex than simple abstract data
types� In particular� there are two �clients� of the code in a given ADT� the implementor� who
�lives� inside the encapsulation barrier� and the general client� who �lives� outside and may only
interact with the ADT via its interface� A graphic representation of this relationship appears in
Figure �� Because of inheritance� there are three �clients� of the code in a given object de�nition�
not two� The additional �client�� the inheritor� uses the given object de�nition via inheritance to
implement new object de�nitions� Because object de�nitions have two external clients� there are
two interfaces to the �outside�� the public interface lists what the general client may see� while the

�The actual process is somewhat more complicated because of multiple inheritance� See �ES��� Chapter ��� for
more details�



June ��� ���� �

�

�
�
�
�
��R

�
�
�
���

�

�

A object

v data

B object

v data

w data

A vtable

�A��f

�A��g

B vtable

�A��f

�B��g

���g
�������

���new de�nition���

���original de�nition���

Figure �� A C���style representation of A and B objects where class B inherits from class A�

General

Client

I

n

t

e

r

f

a

c

e

���XXX
Implementation

ADT

Figure �� In ADT�style encapsulation� the general client interacts with the ADT implementation
through a single interface�



June ��� ���� �

General

Client

���XXX

CC��

Implementation

Object

P

u

b

l

i

c

P r o t e c t e d

Inheritor

Figure �� In object�oriented encapsulation� the general client interacts with the object implemen�
tation via the public interface� while the inheritors interact via the protected interface�

protected interface lists what inheritors may see� �This terminology comes from C�� �
 A graphic
representation appears in Figure �� It is typically the case that the public interface is a subset of the
protected one� In Smalltalk� these interfaces are generated automatically� the public interface lists
the methods of an object� while the protected interface lists its methods and its instance variables�
In C�� � the programmer explicitly declares which components of an object are public� which are
protected� and which are private� visible only in the object de�nition itself�

The encapsulation provided by object�oriented languages helps insure that programs can be
written in a modular fashion and that the implementation of an object can be changed without
forcing changes in the rest of the system� In particular� as long as the public interface of an object
remains unchanged� modi�cations to its implementation do not force general clients to change their
code� Similarly� if implementation modi�cations preserve an object�s protected interface� inheritors
need not update their code� either ��

� ADT�s vs� objects

The encapuslation bene�ts provided by objects are the same as those realized by abstract data types�
However� because object�oriented languages provide dynamic lookup� subtyping� and inheritance
in addition to encapsulation� objects may be used more �exibly than ADT�s� The importance of
these added features becomes apparent when we wish to use related data abstractions in similar
ways� We illustrate this point with the following example involving queues�

�In both cases� however� they may have to recompile�



June ��� ���� 	�

A typical language construct for de�ning an abstract data type is the ML abstype declaration�
which we use below to de�ne a queue ADT�

exception Empty�

abstype queue � Q of int list

with

fun mk�Queue�� � Q�nil�

and is�empty�Q�l�� � l�nil

and add�x�Q�l�� � Q�l � 	x
�

and first �Q�nil�� � raise Empty

� first �Q�x��l�� � x

and rest �Q�nil�� � raise Empty

� rest �Q�x��l�� � Q�l�

and length �Q�nil�� � 


� length �Q�x��l��� � � length �Q�l��

end�

In this example� a queue is represented by a list� However� only the functions given in the declaration
may access the list� This restriction allows the invariant that list elements appear in �rst�in��rst�out
order to be maintained� regardless of how queues are used in client programs�

A drawback of the kind of abstract data types used in ML and other languages such as CLU
�LSAS��� L� �	
 and Ada �US ��
 becomes apparent when we consider a program that uses both
queues and priority queues� For example� suppose that we are simulating a system with several
�wait queues�� such as a bank or hospital� In a teller line or hospital billing department� customers
are served on a �rst�come� �rst�served basis� However� in a hospital emergency room� patients are
treated in an order that takes into account the severity of their injuries or ailments� Some aspects
of this kind of �wait queue� are modeled by the abstract data type of priority queues� shown below�

abstype pqueue � Q of int list

with

fun mk�PQueue�� � Q�nil�

and is�empty�Q�l�� � l�nil

and add�x�Q�l�� �

let fun insert�x�nil� � 	x�int


� insert�x�y��l� � if x�y then x��y��l else y��insert�x�l�

in Q�insert�x�l�� end

and first �Q�nil�� � raise Empty

� first �Q�x��l�� � x

and rest �Q�nil�� � raise Empty

� rest �Q�x��l�� � Q�l�

and length �Q�nil�� � 


� length �Q�x��l��� � � length �Q�l��

end�

For simplicity� like the queues above� this queue is de�ned only for integer data� Although the
priority of a queue element may come from any ordered set� we use the integer value as the priority�
with lower numbers given higher priority�



June ��� ���� 		

Note that the signature of priority queues� the list of available methods and their associated
types� is the same as for ordinary queues� both have the same number of operations� and each
operation has the same type� except for the di�erence between the type names pqueue and queue�
However� if we declare both queues and priority queues in the same scope� the second declarations
of is empty� add� first� rest� and length hide the �rst� This name clashing requires us to re�
name them� say as q is empty� q add� q first� q rest� q length and pq is empty� pq add�

pq first� pq rest� pq length�

In a hospital simulation �or real�time hospital management
 program� we might occasionally
like to treat priority queues and ordinary queues uniformly� For example� we might wish to count
the total number of people waiting in any line in the hospital� To write this code� we would like to
have a list of all the queues �both priority and ordinary
 in the hospital and go down the list asking
each queue for its length� But if the length operation is di�erent for queues and priority queues�
we have to decide whether to call q length or pq length� even though the correct operation is
uniquely determined by the data� This shortcoming of ordinary abstract data types is eliminated
in object�oriented programming languages by a combination of subtyping and dynamic lookup�

Another drawback of traditional abstract data types becomes apparent when considering the
implementation of the priority queue above� Although the priority queue�s version of the add func�
tion is di�erent from the queue�s version� the other �ve functions have identical implementations� In
an object�oriented language� we may use inheritance to de�ne pqueue from queue �or vice versa
�
giving only the new add function�

� Object�oriented vs� conventional program organization

Because object�oriented languages have subtyping� inheritance� and dynamic lookup� programs
written in an object�oriented style are organized quite di�erently from those written in a tradi�
tional style� In this section� we illustrate some of the di�erences between object�oriented and
�conventional� program organizations via an extended example� We give two versions of a pro�
gram that manipulates several kinds of geometric shapes� One version uses classes� the other does
not�

Without classes� we use records �or struct�s
 to represent each shape� For each operation
on shapes� we have a function that tests the type of shape passed as an argument and branches
accordingly� We illustrate this program structure using a C program� with each shape represented
as a struct �analogous to a Pascal or ML record
� The code appears in Appendix A� We will refer
to this program as the �typecase� version� since each function is implemented by a case analysis
on the types of shapes� For brevity� the only shapes are circles and rectangles�

We can see the advantage of object�oriented programming by rewriting the program so that
each object has the shape�speci�c operations as methods� This version appears in Appendix B�

Some observations�

� We can see the di�erence between the two program organizations in the following matrix� For
each function� center� move� rotate and print� there is code for each geometric shape� in
this case circle and rectangle� Thus we have eight di�erent pieces of code�

class function

center move rotate print

circle c center c move c rotate c print

rectangle r center r move r rotate r print



June ��� ���� 	�

In the �typecase� version� these functions are arranged by column� while in the class�based
program� they are arranged by row� Each arrangement has some advantages when it comes
to program maintenance and modi�cation� In the object�oriented approach� adding a new
shape is straightforward� The code detailing how the new shape should respond to the
existing operations all goes in one place� the class de�nition� Adding a new operation is more
complicated� since the appropriate code must be added to each of the class de�nitions� which
could be spread throughout the system� In the �typecase� version� the reverse situation is
true� adding a new operation is relatively easy� but adding a new shape is di�cult�

� There is a loss of encapsulation in the typecase version� since the data manipulated by rotate�
print and the other functions has to be publicly accessible� In contrast� the object�oriented
solution encapsulates the data in the circle and square objects� Only the methods of these
objects may access this data�

� The �typecase� version cannot be statically type�checked in C� It could be type�checked in
a language with a built�in �typecase� statement which tests the type of an struct directly�
An example of such a language feature is the Simula inspect statement� Adding such a
statement would require that every struct be tagged with its type� a process which requires
about the same amount of space overhead as making each struct into an object�

� In the typecase version� �subtyping� is used in an ad hoc manner� We coded circle and
rectangle so that they have a shared �eld in their �rst location� This is a hack to implement
a tagged union that could be avoided in a language providing disjoint �as opposed to C
unchecked
 unions�

� The complexity of the two programs is roughly the same� In the �typecase� version� there
is the space cost of an extra data �eld �the type tag
 and the time cost� in each function�
of branching according to type� In the �object� version� there is a hidden class or vtbl

pointer in each object� requiring essentially the same space as a type tag� In the optimized
C�� approach� there is one extra indirection in determining which method to invoke� which
corresponds to the switch statement in the �typecase� version� �Although in practice a
single indirection will frequently be more e�cient than a switch statement�
 A Smalltalk�like
implementation would be less e�cient in general� but for methods that are found immediately
in the subclass method dictionary �or via caching
� the run�time e�ciency may be comparable�

A similar example appears in �Str��� Sections �������
�

� Advanced topics

��� Inheritance is not subtyping

Perhaps the most common confusion surrounding object�oriented programming is the di�erence
between subtyping and inheritance� One reason subtyping and inheritance are often confused is
that some class mechanisms combine the two� A typical example is C�� � where A will be recognized
by the compiler as a subtype of B only if B is a public parent class of A� Combining these mechanisms
is an elective design decision� however� there seems to be no inherent reason for linking subtyping
and inheritance in this way�

We may see the di�erences between inheritance and subtyping most clearly by considering an
example� Suppose we are interested in writing a program that requires dequeues� stacks� and



June ��� ���� 	�

queues� One way to implement these three classes is �rst to implement dequeue and then to
implement stack and queue by appropriately restricting �and perhaps renaming
 the operations of
dequeue� For example� stack may be obtained from dequeue by limiting access to those operations
that add and remove elements from one end of the dequeue� Similarly� we may obtain queue

from dequeue by restricting access to those operations that add elements at one end and remove
them from the other� This method of de�ning stack and queue by inheriting from dequeue is
possible in C�� through the use of private inheritance� �We are not recommending this style
of implementation� we use this example simply to illustrate the di�erences between subtyping and
inheritance�
 Note that although stack and queue inherit from dequeue� they are not subtypes of
dequeue� To see this point� consider a function f that takes a dequeue d as an argument and then
adds an element to both ends of d� If stack or queue were a subtype of dequeue� then function
f should work equally well when given a stack s or a queue q� However� adding elements to
both ends of either a stack or a queue is not legal� hence� neither stack nor queue is a subtype
of dequeue� In fact� the reverse is true� Dequeue is a subtype of both stack and queue� since
any operation valid for either a stack or a queue would be a legal operation on a dequeue� Thus�
inheritance and subtyping are di�erent relations� we de�ned stack and queue by inheriting from
dequeue� but dequeue is a subtype of stack and queue� not the other way around�

A more detailed comparison of the two mechanisms appears in �Coo��
� which analyzes the
inheritance and subtyping relationships between Smalltalk�s collection classes� In general� there is
little relationship between the two relations� See �Sny��
 for more examples�

��� Object types

There are two forms of types we might give to objects� The �rst is a type that simply gives the
interface to its objects� The second is an interface plus some implementation information� In the
�rst case� the elements of a type will be all objects that have a given interface� We call such
types �interface types�� In the second case� a type will contain only those elements that also have
a certain representation� The type that C�� gives to an object is of the second form� since all
objects of the same type are guaranteed to have the same implementation�

Since the �rst form of type is more basic� we begin by discussing it� The following example
uses the syntax of Rapide� an experimental language designed for prototyping software and mixed
software�hardware systems �BL��� MMM�	� KLM��� KLMM��
�

type Point is interface

x�val � Int�

y�val � Int�

distance � Point �� Int�

end interface�

Objects of type Point must have two integer methods� called x val and y val� and a method
called distance� This distance method requires only one argument� since the method belongs to
a particular point and therefore may compute the distance between the point passed as an actual
parameter and the particular point to which the method belongs� In other words� the intended
use of the distance method of a point object p is to compute the distance between p and another
point object q� by a call of the form p�distance�q
� Of course� since the interface gives only
the names of methods and their types� the distance method is not actually forced to compute the
distance between two points� If we wish to specify that distance must compute distance� then
a more expressive form of speci�cation must be added to the interface� One signi�cant feature of



June ��� ���� 	�

this type interface for Points is that the type name Point appears within it� Hence interface types
seem to be recursively�de�ned types�

To discuss object types in general� we introduce the syntax fjm� �A�� � � � � mk �Akjg for the interface
type specifying methods m�� � � � � mk of types A�� � � � � Ak � respectively� Using this notation� we may
recursively de�ne the type Point as

Point � fjx val � Int� y val � Int� distance � Point� Intjg

Objects that have this interface type are guaranteed to have integer x val and y val methods�
They are also guaranteed to have a method distance that returns an integer whenever it is given
another object with the Point interface� Objects with this interface are not required to have
any particular implementation� For example� an object that stores a point in polar coordinates
and implements x val and y val as functions that convert the stored polar coordinates into their
cartesian counterparts may be given this interface type� just as the obvious cartesian implementation
may� It is also the case that objects with the Point interface may have more methods than just
those listed in the interface� For example� the polar point object described above must have some
�elds storing the polar coordinates of the point� These �elds are not re�ected in the Point interface�

If the type of an object is its interface� then subtyping for object types is �compatibility�
or �conformance� of interfaces� More speci�cally� if one interface provides all of the methods of
another with compatible types� then every object of the �rst type should be acceptable in any
context expecting an object of the second type� This kind of subtyping is of the form�

fjx � Point� c � Colorjg �� fjx � Pointjg

which we call �width� subtyping� �We use the sumbol �� to denote the subtype relation between
types�
 This subtyping �judgement� says that we may consider any object that has the interface
fjx � Point� c � Colorjg to have the interface fjx � Pointjg as well� In other words� we may put an
object with interface fjx � Point� c � Colorjg into any context expecting an object with interface
fjx �Pointjg and be guaranteed that no type errors will result� We may see the justi�cation for this
guarantee by considering what a context C�ob
 may ask of its argument object ob � Since C expects
to be given an object with the fjx � Pointjg interface� all it �knows� about its argument object is
that it has an x method that returns a Point object� Hence all it may do with ob is ask for its
x method and then treat the result as a Point� Since any object with the fjx � Point� c � Colorjg

interface has an x method that returns an Point object� giving such an object to our context can
not result in any type errors�

It is also generally possible to specialize the type of one or more methods to a subtype� This
subtyping� which we call �depth� subtyping� is of the form�

fjx � ColorPointjg �� fjx � Pointjg

if we assume that ColorPoint �� Point � This subtyping judgement says that we may consider
any object with interface fjx � ColorPointjg to have interface fjx � Pointjg as well� In other words�
we may put any object with interface fjx � ColorPointjg into any context expecting a fjx � Pointjg

object and not produce any type errors� As above� we may see the justi�cation for this guarantee
by considering what such a context might ask of its argument� Because it expects an object with
interface fjx � Pointjg � all it �knows� about its argument object is that it has an x method that
returns a Point object� and hence that is all it may ask for� If we give such a context some object
cp with interface fjx � ColorPointjg � the context may only ask cp for its x value� at which point
cp returns something with interface ColorPoint� Because we know that ColorPoint �� Point �



June ��� ���� 	�

we are guaranteed that this result object may be safely treated as a Point object� Hence no type
errors may result from putting a fjx � ColorPointjg object into a context expecting a fjx � Pointjg

object�
Combining these two forms of subtyping� we have

fjx � ColorPoint� c � Colorjg �� fjx � Pointjg

An alternative form of object type is an interface type with some additional guarantees about
the form of the implementations of objects given that type� The types that C�� gives to its objects
have this �avor� If we know that a particular object ob has type B� then we know ob has all of the
methods and the associated types that are listed in the class B� We are also guaranteed that the
implementation of ob is an extension �perhaps trivial
 of the implementation given by class B�

These implementation guarantees are important for objects with binary operations �those that
take another object of the same type as an argument
� and they permit more e�cient implementa�
tions of objects� For these types� subtyping must take into account both interface subtyping and
compatibility of implementations� Since the implementation of an object is intended to be hidden�
the second form of type should not give any explicit information about the implementation� Instead�
it appears that �implementation types� are properly treated as a form of partially�abstract types�
This is a current research topic� with some of the basic ideas explained in �CW��� KLM��� PT��

using bounded existential types�

��� Method specialization

It is relatively common for one or more methods of an object to take objects of the same type as
parameters or return objects of the same type as results� For example� consider points with the
following interface�

type Point is interface

x � Int

move � Int �� Point

eq � Point �� Bool

end interface�

�For simplicity� we drop the y coordinate and work with one�dimensional points�
 The move method
of a point p returns a Point� Similarly� the eq method takes as a parameter an object of Point
type�

When colored points are de�ned in terms of points� it is desirable that the types of the methods
be specialized to return or use colored points instead of points� Otherwise� we e�ectively lose type
information about the object we are dealing with whenever we send the move method� and we are
restricted to using only point methods when comparing colored points for equality� If it is possible
to inherit a move method de�ned for points in such a way that the resulting method on colored
points has type Int�Colored Point � then we say thatmethod specialization occurs� This form of
method specialization is called �mytype� specialization because the type that changes is the type
of the object that contains the methods �Bru��� Bru��
� It is also meaningful to specialize types
other than the type of the object itself when de�ning a derived class�

Method specialization is generally not provided in existing typed object�oriented languages�
but it is common to take advantage of method specialization �in e�ect
 in untyped object�oriented
languages� Therefore� if we are to devise typed languages to support useful untyped programming
idioms� we need to devise type systems that support method specialization�



June ��� ���� 	�

Acknowledgements� Thanks to Brian Freyburger and Steve Fisher for several insightful discussions
of C�� � to Andy Hung for the drawings in Section ��� and to Luca Cardelli and Sandeep Singhal
for comments on drafts of this paper�

References

�App��� Apple Computer� Dylan� an object�oriented dynamic language� Apple Computer� 	����

�BL��� F� Belz and D�C� Luckham� A new approach to prototyping Ada�based hardware�software
systems� In Proc� ACM Tri�Ada��� Conference� December 	����

�Boo�	� G� Booch� Object�Oriented Design with Applications� Benjamin Cummings� Redwood City� CA�
	��	�

�Bru��� K� Bruce� The equivalence of two semantic de�nitions of inheritance in object�oriented languages�
In Proc� Mathematical Foundations of Programming Language Semantics� pages 	���	�
� Berlin�
	���� Springer LNCS ����

�Bru��� K� Bruce� Safe type checking in a statically�typed object�oriented programming language� In
Proc ��th ACM Symp� Principles of Programming Languages� pages �������� 	����

�CGL��� Castagna� Ghelli� and Longo� A calculus for overloaded functions with subtyping� In ���� ACM

Conf� Lisp and Functional Programming� pages 	���	��� 	����

�Coo��� W�R� Cook� Interfaces and speci�cations for the Smalltalk��� collection classes� In ACM Conf�

Object�oriented Programming� Systems� Languages and Applications� pages 	�	�� 	����

�CW��� L� Cardelli and P� Wegner� On understanding types� data abstraction� and polymorphism�
Computing Surveys� 	�

��
�	����� 	����

�Dij��� E�W� Dijkstra� Notes on structured programming� In O�J� Dahl� E�W� Dijkstra� and C�A�R�
Hoare� editors� Structured Programming� Academic Press� 	����

�ES��� M� Ellis and B� Stroustrop� The Annotated C�� Reference Manual� Addison�Wesley� 	����

�GR��� A� Goldberg and D� Robson� Smalltalk	
�� The language and its implementation� Addison
Wesley� 	����

�KLM�
� Dinesh Katiyar� David Luckham� and John Mitchell� A type system for prototyping languages�
In Proc� ���st ACM Symp� on Principles of Programming Languages� 	��
�

�KLMM�
� Dinesh Katiyar� David Luckham� S� Meldal� and John Mitchell� Polymorphism and subtyping
in interfaces� In ACM Workshop on Interface De�nition Languages� 	��
�

�L��	� B� Liskov et al� CLU Reference Manual� Springer LNCS 		
� Berlin� 	��	�

�LSAS��� B� Liskov� A� Snyder� R� Atkinson� and C� Scha�ert� Abstraction mechanisms in clu� Comm�

ACM� �����
����� 	����

�MMM�	� J�C� Mitchell� S� Meldal� and N� Madhav� An extension of Standard ML modules with subtyping
and inheritance� In Proc� �
th ACM Symp� on Principles of Programming Languages� pages ����
���� January 	��	�

�PT��� Benjamin C� Pierce and David N� Turner� Statically typed friendly functions via partially
abstract types� Technical Report ECS�LFCS�������� University of Edinburgh� LFCS� April
	���� Also available as INRIA�Rocquencourt Rapport de Recherche No� 	����

�Sny��� A� Snyder� Encapsulation and inheritance in object�oriented programming languages� In Proc�

ACM Symp� on Object�Oriented Programming Systems� Languages� and Applications� pages ���

�� October 	����

�Ste�
� G�L� Steele� Common Lisp� The language� Digital Press� 	��
�



June ��� ���� 	�

�Str��� B� Stroustrop� The C�� Programming Language� Addison�Wesley� 	����

�US ��� US Dept� of Defense� Reference Manual for the Ada Programming Language� GPO ��������
����
��� 	����

A Shape program� Typecase version

�include �stdio�h�

�include �stdlib�h�

��

� We use the following enumeration type to ��tag�� shapes�

� The first field of each shape struct stores what particular

� kind of shape it is�

��

enum ShapeTag �Circle	 Rectangle
�

��

� The following struct Pt and functions newPt and copyPt are

� used in the implementations of the Circle and Rectangle

� shapes below�

��

struct Pt �

float x�

float y�


�

struct Pt� newPt�float xval	 float yval
 �

struct Pt� p � �struct Pt �
malloc�sizeof�struct Pt

�

p��x � xval�

p��y � yval�

return p�


�

struct Pt� copyPt�struct Pt� p
 �

struct Pt� q � �struct Pt �
malloc�sizeof�struct Pt

�

q��x � p��x�

q��y � p��y�

return q�


�

��

� The Shape struct provides a flag that is used to get some static

� type checking in the operation functions �center	 move	 rotate	

� and print
 below�

��

struct Shape �

enum ShapeTag tag�


�



June ��� ���� 	�

��

� The following Circle struct is our representation of a circle�

� The first field is a type tag to indicate that this struct

� represents a circle� The second field stores the circle�s

� center point and the third field holds its radius�

��

struct Circle �

enum ShapeTag tag�

struct Pt� center�

float radius�


�

��

� The function newCircle creates a Circle struct from a given

� center point and radius� It sets the type tag to ��Circle���

��

struct Circle� newCircle�struct Pt� cp	 float r
 �

struct Circle� c � �struct Circle�
malloc�sizeof�struct Circle

�

c��center�copyPt�cp
�

c��radius�r�

c��tag�Circle�

return c�


�

��

� The function deleteCircle frees resources used by a Circle�

��

void deleteCircle�struct Circle� c
 �

free �c��center
�

free �c
�


�

��

� The following Rectangle struct is our representation of a rectangle�

� The first field is a type tag to indicate that this struct

� represents a rectangle� The next two fields store the rectangles

� top�left and bottom�right corner points�

��

struct Rectangle �

enum ShapeTag tag�

struct Pt� topleft�

struct Pt� botright�


�

��

� The function newRectangle creates a rectangle in the location

� specified by parameters tl and br� It sets the type tag to

� ��Rectangle���



June ��� ���� 	�

��

struct Rectangle� newRectangle�struct Pt� tl	 struct Pt� br
 �

struct Rectangle� r � �struct Rectangle�
malloc�sizeof�struct Rectangle

�

r��topleft�copyPt�tl
�

r��botright�copyPt�br
�

r��tag�Rectangle�

return r�


�

��

� The function deleteRectangle frees resources used by a Rectangle�

��

void deleteRectangle�struct Rectangle� r
 �

free �r��topleft
�

free �r��botright
�

free �r
�


�

��

� The center function returns the center point of whatever shape

� it is passed� Because the computation depends on whether the

� shape is a Circle or a Rectangle	 the function consists of a

� switch statement that branches according to the type tag stored

� in the shape s� If the tag is Circle	 for instance	 we know

� the parameter is really a circle struct and hence that it has

� a ��center�� component which we can return� Note that we need

� to insert a typecast to instruct the compiler that we have a

� circle and not just a shape� Note also that this program

� organization assumes that the type tags in the struct are

� set correctly� If some programmer incorrectly modifies a type tag

� field	 the program will no longer work and the problem cannot

� be detected at compile time because of the typecasts�

��

struct Pt� center �struct Shape� s
 �

switch �s��tag
 �

case Circle� �

struct Circle� c � �struct Circle�
 s�

return copyPt�c��center
�


�

case Rectangle� �

struct Rectangle� r � �struct Rectangle�
 s�

return newPt��r��botright��x � r��topleft��x
��	

�r��botright��x � r��topleft��x
��
�


�


�


�

��

� The move function receives a Shape parameter s and moves it

� dx units in the x�direction and dy units in the y�direction�



June ��� ���� ��

� Because the code to move a Shape depends on the kind of shape	

� this function inspects the Shape�s type tag field within a switch

� statement� Within the individual cases	 typecasts are used to

� convert the generic shape parameter to a Circle or Rectangle as

� appropriate�

��

void move �struct Shape� s	float dx	 float dy
 �

switch �s��tag
 �

case Circle� �

struct Circle� c � �struct Circle�
 s�

c��center��x �� dx�

c��center��y �� dy�


�

break�

case Rectangle� �

struct Rectangle� r � �struct Rectangle�
 s�

r��topleft��x �� dx�

r��topleft��y �� dy�

r��botright��x �� dx�

r��botright��y �� dy�


�


�


�

��

� The rotate function rotates the shape s ninety degrees� Like

� the center and move functions	 this code uses a switch statement

� that checks the type of shape being manipulated�

��

void rotate �struct Shape� s
 �

switch �s��tag
 �

case Circle�

�� Rotating a circle is not a very interesting operation� ��

break�

case Rectangle� �

struct Rectangle� r � �struct Rectangle�
s�

float d � ��r��botright��x � r��topleft��x
 �

�r��topleft��y � r��botright��y

�����

r��topleft��x �� d�

r��topleft��y �� d�

r��botright��x �� d�

r��botright��y �� d�


�

break�


�


�

��

� The print function outputs a description of its Shape parameter�

� This function again selects its processing based on the type tag

� stored in the Shape struct�



June ��� ���� �	

��

void print �struct Shape� s
 �

switch �s��tag
 �

case Circle� �

struct Circle� c � �struct Circle�
 s�

printf��circle at ���f ���f radius ���f �n�	

c��center��x	 c��center��y	 c��radius
�


�

break�

case Rectangle� �

struct Rectangle� r � �struct Rectangle�
 s�

printf��rectangle at ���f ���f ���f ���f �n�	

r��topleft��x	 r��topleft��y	

r��botright��x	 r��botright��y
�


�

break�


�


�

��

� The body of this program just tests some of the above functions�

��

void main�
 �

struct Pt� origin � newPt��	�
�

struct Pt� p� � newPt��	�
�

struct Pt� p� � newPt��	�
�

struct Shape� s� � �struct Shape�
newCircle�origin	�
�

struct Shape� s� � �struct Shape�
newRectangle�p�	p�
�

print�s�
�

print�s�
�

rotate�s�
�

rotate�s�
�

move�s�	�	�
�

move�s�	�	�
�

print�s�
�

print�s�
�

deleteCircle��struct Circle�
s�
�

deleteRectangle��struct Rectangle�
s�
�

free�origin
�

free�p�
�

free�p�
�


�



June ��� ���� ��

B Shape program� Object�oriented version

�include �stdio�h�

�� �The following is a running C�� program	 but it does not represent

�� an ideal C�� implementation� The code has been kept simple so

�� that it can be understood by readers who are not well�versed in C��
�

�� The following class Pt is used by the shape objects below� Since

�� Pt is a class in this version of the program	 the ��newPt�� and

�� ��copyPt�� functions may be implemented as class member functions�

�� For readability	 we have in�lined the function definitions and

�� named both of these functions ��Pt��� these overloaded functions

�� are differentiated by the types of their arguments�

class Pt �

public�

Pt�float xval	 float yval
 �

x � xval�

y�yval�


�

Pt�Pt� p
 �

x � p��x�

y � p��y�


�

float x�

float y�


�

�� Class shape is an example of a ��pure abstract base class	��

�� which means that it exists solely to provide an interface to

�� classes derived from it� Since it provides no implementations

�� for the methods center	 move	 rotate	 and print	 no ��shape��

�� objects can be created� Instead	 we use this class as a base

�� class� Our circle and rectangle shapes will be derived from

�� it� This class is useful because it allows us to write

�� functions that expect ��shape�� objects as arguments� Since

�� our circles and rectangles are subtypes of shape	 we may pass

�� them to such functions in a type�safe way�

class Shape �

public�

virtual Pt� center�
���

virtual void move�float dx	 float dy
���

virtual void rotate�
���

virtual void print�
���


�

�� Class Circle consolidates the center	 move	 rotate	 and print

�� functions for circles� It also contains the object constructor



June ��� ���� ��

�� ��Circle	�� corresponding to the function ��newCircle�� and the

�� object destructor ���Circle	 corresponding to the function

�� ��deleteCircle�� from the typecase version� Note that the

�� compiler guarantees that the Circle�s methods are only called on

�� objects of type Circle� The programmer does not need to keep an

�� explicit tag field in the object�

class Circle � public Shape �

public�

Circle�Pt� cn	 float r
 �

center� � new Pt�cn
�

radius� � r�


�

virtual �Circle�
 �

delete center��


�

virtual Pt� center�
 �

return new Pt�center�
�


�

void move�float dx	 float dy
 �

center���x �� dx�

center���y �� dy�


�

void rotate�
 �

�� Rotating a circle is not a very interesting operation� ��


�

void print�
 �

printf��circle at ���f ���f radius ���f �n�	

center���x	 center���y	 radius�
�


�

private�

Pt� center��

float radius��


�

�� Class Rectangle consolidates the center	 move	 rotate	 and print

�� functions for rectangles� It also contains the object constructor

�� ��Rectangle	�� corresponding to the function ��newRectangle�� and the

�� object destructor ���Rectangle	 corresponding to the function

�� ��deleteRectangle�� from the typecase version� Note that the

�� compiler guarantees that the Rectangle�s methods are only called on

�� objects of type Rectangle� The programmer does not need to keep an

�� explicit tag field in the object�

class Rectangle � public Shape �

public�

Rectangle�Pt� tl	 Pt� br
 �

topleft� � new Pt�tl
�



June ��� ���� ��

botright� � new Pt�br
�


�

virtual �Rectangle�
 �

delete topleft��

delete botright��


�

Pt� center�
 �

return new Pt��botright���x � topleft���x
��	

�botright���x � topleft���x
��
�


�

void move�float dx	float dy
 �

topleft���x �� dx�

topleft���y �� dy�

botright���x �� dx�

botright���y �� dy�


�

void rotate�
 �

float d � ��botright���x � topleft���x
 �

�topleft���y � botright���y

�����

topleft���x �� d�

topleft���y �� d�

botright���x �� d�

botright���y �� d�


�

void print �
 �

printf��rectangle coordinates ���f ���f ���f ���f �n�	

topleft���x	 topleft���y	

botright���x	 botright���y
�


�

private�

Pt� topleft��

Pt� botright��


�

��

� The body of this program just tests some of the above functions�

��

void main�
 �

Pt� origin � new Pt��	�
�

Pt� p� � new Pt��	�
�

Pt� p� � new Pt��	�
�

Shape� s� � new Circle�origin	 � 
�

Shape� s� � new Rectangle�p�	 p�
�

s���print�
�



June ��� ���� ��

s���print�
�

s���rotate�
�

s���rotate�
�

s���move��	�
�

s���move��	�
�

s���print�
�

s���print�
�

delete s��

delete s��

delete origin�

delete p��

delete p��





