
Full Class
CSE 114 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING



Announcements
Midterm II

◦ Grades are up (average: 38.5 of 50)

Assignments
◦ 6 : Being graded
◦ 7 : Due Nov 6

Topics:
◦ Static and non-static members in a class (“full class”)
◦ Visibility control of objects
◦ Memory representation of an object with static and non-static members

Reading: follow the lecture notes closely and use textbook as a reference 

[Notes + Chapters 9, 10 ,11, 12]

2



Expanding the program structure again
Now mix static and dynamic members (fields and methods) in a class

See the needs for both in a class by understanding how they are used

See program_structure_6.txt

See Account.java that now contains a mix of static and dynamic members in a class

Also see UseAccount.java

3



Visibility control on state info in objects
public vs. private

With private, you would have to provide getters (readers) and setters (writers) unless you want 
to hide the private member data from outside

With public, you can access the fields (static and non-static) directly without using getters and 
setters

Why use private? Why hide state info?
◦ It makes software more maintainable! 

See AccountPublic.java and UseAccountPublic.java

4



Memory representation of a class with
static and dynamic members
See Account.java and UseAccount.java

5



Dynamic objects referencing static 
members

6

jims

johns

marys

joes

Account

[idgenerator
sumBalance]



Static objects referencing dynamic 
members ???

7

jims

johns

marys

joes

Account

[balance]

[balance]

[balance]

[balance]



Using static fields vs. using an
additional class
See static_or_another_class.txt

8



Variables in Java
1. Local variables

◦ within a method (function)

2. Instance variables (aka dynamic fields; non-static or dynamic variables)
◦ within a class without the static keyword
◦ a copy in each instance of the class (if you create 234 instances, there will be 234 copies)

3. Static variables (aka class variables)
◦ within a class with the static keyword
◦ only one copy in the entire class
◦ shared by all the instances of the class

9



Lifetime of these variables
1. Local variables
• alive only while the method is running/executing

2. Instance variables (aka dynamic fields; non-static or dynamic variables)
• alive as long as an instance (object) is alive
• when does an instance die, i.e., goes away from memory?

3. Static variables (aka class variables)
• alive as long as the program is alive, i.e., until the main exits

10



Static objects vs. dynamic objects
Static object, e.g., the Account object

What do you mean?
◦ Well, it is a ‘meta-object’.

Dynamic objects, e.g., objects created as instances of a class (e.g., Account) using new

11


