
Lecture 7:
Red Black Trees (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Describe a Red-Black tree with the largest and smallest ratio
of red nodes.

To minimize the ratio of red-black nodes, make all black
(possible forn = 2k − 1)

9

11 1573

To maximize the ratio of red nodes, interleave with red nodes
asreal leaves

9

11 1573

...................

#red/n ≤ n/2 + n/8 + n/32 = .656n

#black/n ≤ n/4 + n/16 + n/64 = .328n

n− n
max∑

i=1

(1/4)i = 2n/3

Rotations

The basic restructuring step for binary search trees are left
and right rotation:

Y

a b

c
X

X

Y
a

b c

a

b c

Y

X

a b

c
X

Y

1. Rotation is a local operation changingO(1) pointers.

2. An in-order search tree before a rotationstays an in-order
search tree.

3. In a rotation, one subtree gets one level closer to the root
and one subtree one level further from the root.

LEFT-ROTATE(T,x)
y ← right[x] (* Set y*)
right[x]← left[y] (* Turn y’s left into x’s right*)
if left[y] = NIL

thenp[left[y]] ← x
p[y]← p[x] (* Link x’s parent to y *)
if p[x] = NIL

thenroot[T]← y
else ifx = left[p[x]]

thenleft[p[x]] ← y
elseright[p[x]]← y

left[y]← x
p[x]← y

Note the in-order property is preserved.

2

3

4

6

7

11

9 18

19

22

20

17

14

12

Left-Rotate(T, x)

7

4

3

3

6

18

19

22

201712

14

11

9

x

y

y

x higher

samelower

Red-Black Insertion

Since red-black trees haveΘ(lg n) height, if we can preserve
all properties of such trees under insertion/deletion, we have
a balanced tree!
Suppose we just did a regular insertion. Under what
conditions does it stay a red-black tree?
Since every insertion take places at a leaf, we will change a
black NIL pointer to a node with two black NIL pointers.

?

To preserve the black height of the tree, the new node must
be red. If its new parent is black, we can stop, otherwise we
must restructure!

How can we fix two reds in a row?

It depends upon our uncle’s color:

R

R R Assume

red uncle..

grandparent - MUST be black

Red

parent

Red

new node

If our uncle is red, reversing our relatives’ color either solves
the problem or pushes it higher!

R

R

Note that after the recoloring:

1. The black height is unchanged.

2. The shape of the tree is unchanged.

3. We are done if our great-grandparent is black.

If we get all the way to the root, recall we can always color a
red-black tree’s root black. We always will, so initially itwas
black, and so this process terminates.

The Case of the Black Uncle

If our uncle was black, observe that all the nodes around us
have to be black:

R

R

B

A black uncle

For a RB tree, after a red

node was a black root
X

Left as RB trees by our color change or are nil

old red

new

red

Had to be

black given

red child.

Solution - rotate right about B:

R

A

B

X

Changing A to black is necessary

because of the color of X.

Then changing B to red

leaves everybodies

black height the same.

Since the root of the subtree is now black with the same black-
height as before, we have restored the colors and can stop!

A double rotation can be required to set things up depending
upon the left-right turn sequence, but the principle is the
same.
DOUBLE ROTATION ILLUSTRATION

Pseudocode and Figures

Deletion from Red-Black Trees

Recall the three cases for deletion from a binary tree:
Case (a) The node to be deleted was a leaf;

A

Y

A

Possible color height change

Case (b) The node to be deleted had one child;

A

Y

A

B

B

Possible color height change

Case (c) relabel to node as its successor and delete the
successor.

A

B

B

A

Y

possible color height change

Keep this

node the

same color

as before

relabeling.

Deletion Color Cases

Suppose the node we remove wasred, do we still have a red-
black tree?
Yes! No two reds will be together, and the black height for
each leaf stays the same.
However, if the dead nodey was black, we must give each
of its decendants another black ancestor. If an appropriate
node is red, we can simply color it black otherwise we must
restructure.
Case (a) black NIL becomes “double black”;
Case (b) redβ becomes black and blackβ becomes “double
black”;
Case (c) redβ becomes black and blackβ becomes “double

black”.
Our goal will be to recolor and restructure the tree so as to get
rid of the “double black” node.

In setting up any case analysis, we must be sure that:

1. All possible cases are covered.

2. No case is covered twice.

In the case analysis for red-black trees, the breakdown is:
Case 1: The double black nodex has a red brother.
Case 2:x has a black brother and two black nephews.
Case 3:x has a black brother, and its left nephew is red and
its right nephew is black.
Case 4:x has a black brother, and its right nephew is red (left
nephew can be any color).

Conclusion

Red-Black trees let us implement all dictionary operationsin
O(log n). Further, in no case are more than 3 rotations done
to rebalance. Certain very advanced data structures have data
stored at nodes which requires a lot of work to adjust after a
rotation — red-black trees ensure it won’t happen often.
Example: Each node represents the endpoint of a line, and
is augmented with a list of segments in its subtree which it
intersects.
We will not study such complicated structures, however.

