Lecture 10:
Linear Sorting (1997)

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena

Argue that insertion sort Is better than Quicksort for sorting
checks

In the best case, Quicksort takesn lgn). Although using
median-of-three turns the sorted permutation into the b
case, we lose if insertion sort is better on the given data.
123467911—5

In insertion sort, the cost of each insertion is the number
items which we have to jump over. In the check example,
expected number of moves per items is small, séWe win

If c << lgn.

Why do we analyze the average-case performance of a
randomized algorithm, instead of the worst-case?

In a randomized algorithm, the worst case is not a mattel
the input but only of luck. Thus we want to know what kind ¢

luck to expect. Every input we see is drawn from the unifot
distribution.

How many calls are made to Random in randomized
quicksort in the best and worst cases?

Each call to random occurs once in each call to partition.
The number of partitions i®(n) in any run of quicksort!!

There is some potential variation depending upon what \
do with intervals of sizé — do you call partition on intervals
of size one? However, there is no asymptotic differen

between best and worst case.

The reason — any binary tree witheaves has — 1 internal
nodes, each of which corresponds to a call to partition in:
guicksort recursion tree.

Can we sort in better thann lgn?

Any comparison-based sorting program can be thought o
defining a decision tree of possible executions.

Running the same program twice on the same permuta
causes it to do exactly the same thing, but running it
different permutations of the same data causes a diffel
sequence of comparisons to be made on each.

(1,3,2) (3,1,2) (2,3,1) (3,2,1)

Claim: the height of this decision tree is the worst-ca
complexity of sorting.

Once you believe this, a lower bound on the time complex
of sorting follows easily.

Since any two different permutations ofelements requires
a different sequence of steps to sort, there must be atrléa
different paths from the root to leaves in the decision tiee,
at leastn! different leaves in the tree.

Since only binary comparisons (less than or greater than)
used, the decision tree is a binary tree.

Since a binary tree of heighthas at mos?” leaves, we know
n! < 2" orh > lg(n!).

By inspectionn! > (n/2)"2, since the lastn/2 terms
of the product are each greater thap2. By Sterling’s
approximation, a better bound ig8! > (n/e)"” where
e = 2.718.

h >lgn/e)t =nlgn —nlge=Q(nlgn)

Non-Comparison-Based Sorting

All the sorting algorithms we have seen assume bin:
comparisons as the basic primative, guestions of the fosm
x beforey?”.

Suppose you were given a deck of playing cards to sort. M
likely you would set up 13 piles and put all cards with tf
same number in one pile.

A2345678910JQK

A2345678910JQK

A2345678910JQK

A2345678910JQK

With only a constant number of cards left in each pile, you ¢
use insertion sort to order by suite and concatenate evegytl

together.

If we could find the correct pile for each card in consta
time, and each pile getg(1) cards, this algorithm tak&3(n)
time.

Bucketsort

Suppose we are sorting numbers froml to m, where we
know the numbers are approximately uniformly distributec
We can set um buckets, each responsible for an interval
m/n numbers from tom

R R N

1 m/n m/n+l 2m/n 2m/n+1 3m/n m

Given an input number, it belongs in bucket number
If we use an array of buckets, each item gets mapped to
right bucket inO(1) time.

With uniformly distributed keys, the expected number
items per bucket is 1. Thus sorting each bucket takes

time!

The total effort of bucketing, sorting buckets, and concate
Ing the sorted buckets togetheri$n).

What happened to odt(n lgn) lower bound!

We can use bucketsort effectively whenever we underst;
the distribution of the data.

However, bad things happen when we assume the wr
distribution.

Suppose in the previous example all the keys happened t
1. After the bucketing phase, we have:

X X

x X x X

X
X %X x e

Xy XX
IR || || || || |

1 m/n m/n+l 2m/n 2m/n+1 3m/n . - m

We spent linear time distributing our items into buckets a
learned nothing. Perhaps we could split the big bucke
recursively, but it is not certain that we will ever win urges
we understand the distribution.

Problems like this are why we worry about the worst-ca
performance of algorithms!

Such distribution techniques can be used on strings Inst
of just numbers. The buckets will correspond to letter rang
Instead of just number ranges.

The worst case “shouldn’t” happen if we understand t
distribution of our data.

Real World Distributions

Consider the distribution of names in a telephone book.

e Will there be a lot of Skiena’s?
e Will there be a lot of Smith’s?
e Will there be a lot of Shifflett’'s?

Either makesure you understand your data, or use a go
worst-case or randomized algorithm!

The Shifflett’'s of Charlottesville

For comparison, note that there are seven Shifflett’'s

various spellings) in the 1000 page Manhattan telephc
directory.

Shitfiett DeDOM K Ruckerpville «--aanassaa <7957 SINMET JHMeS ZZ1Y WINMMSOUY K
Shiffiett Debra S SR 617 Quinque <-------- 985-8813 Shiffiett Jomes § 801
Shiffiett Delma SRB09 - c-c-ccnvcncnnnasns 985-3688 Shiffiett James C Stanordsville «» ..
MY CIOMt -coccnevovinvrens 823-5901 Shiffiett James € Earlysville ««coe-.
Shifflsit & Shiftiett James E Jr 552 Clevaland Av
100 Groaonbeier Tafeeer.vrrrmnscrenvannn 973-7195 Shiffiett James £ & Lols LongMeados
Shiffiett Denise Rt 627 Dyke «-cancccacess -8007 Shiffiett Jamas £ & Vernell RW71 - -.
Shiffiatt Dennis Stanardsville <<vv--cv-e-- 985-4560 Shifflett James J 1430 Rugby Av ~--.
Shiffiett Dennis B Stanardsville --------.- =2924 Shiffiett James K 5t George Av - ---
mmmmsm m-m;lsumgm%smw ‘
Shiffiett Diana 508 Bainbridga Av -+ -~--- 979-7035 Shiffieit James O Stanardevie «.- -
mumida RAG ------eeaens -4227 James ngg‘l’vndmn
Shiffiett REG2ZL -emvensaccnascan 0747443 Shiffiett James R ESMOM «oe:

