
Lecture 10:
Linear Sorting (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Argue that insertion sort is better than Quicksort for sorting
checks

In the best case, Quicksort takesΘ(n lg n). Although using
median-of-three turns the sorted permutation into the best
case, we lose if insertion sort is better on the given data.

1 2 3 4 6 7 9 11 — 5
In insertion sort, the cost of each insertion is the number of
items which we have to jump over. In the check example, the
expected number of moves per items is small, sayc. We win
if c << lg n.



Why do we analyze the average-case performance of a
randomized algorithm, instead of the worst-case?

In a randomized algorithm, the worst case is not a matter of
the input but only of luck. Thus we want to know what kind of
luck to expect. Every input we see is drawn from the uniform
distribution.



How many calls are made to Random in randomized
quicksort in the best and worst cases?

Each call to random occurs once in each call to partition.
The number of partitions isΘ(n) in any run of quicksort!!

There is some potential variation depending upon what you
do with intervals of size1 – do you call partition on intervals
of size one? However, there is no asymptotic difference



between best and worst case.
The reason – any binary tree withn leaves hasn − 1 internal
nodes, each of which corresponds to a call to partition in the
quicksort recursion tree.



Can we sort in better thann lg n?

Any comparison-based sorting program can be thought of as
defining a decision tree of possible executions.
Running the same program twice on the same permutation
causes it to do exactly the same thing, but running it on
different permutations of the same data causes a different
sequence of comparisons to be made on each.



a1 < a2 ?

a1 < a3 ?a2 < a3 ?

a1 < a3 ?(1,2,3) (2,1,3) a2 < a3 ?

(1,3,2) (3,1,2) (2,3,1) (3,2,1)

T F

T

T

T

T

F

F

F

F

Claim: the height of this decision tree is the worst-case
complexity of sorting.



Once you believe this, a lower bound on the time complexity
of sorting follows easily.
Since any two different permutations ofn elements requires
a different sequence of steps to sort, there must be at leastn!
different paths from the root to leaves in the decision tree,ie.
at leastn! different leaves in the tree.
Since only binary comparisons (less than or greater than) are
used, the decision tree is a binary tree.
Since a binary tree of heighth has at most2h leaves, we know
n! ≤ 2h, or h ≥ lg(n!).
By inspection n! > (n/2)n/2, since the lastn/2 terms
of the product are each greater thann/2. By Sterling’s
approximation, a better bound isn! > (n/e)n where
e = 2.718.



h ≥ lg(n/e)n = n lg n − n lg e = Ω(n lg n)



Non-Comparison-Based Sorting

All the sorting algorithms we have seen assume binary
comparisons as the basic primative, questions of the form “is
x beforey?”.
Suppose you were given a deck of playing cards to sort. Most
likely you would set up 13 piles and put all cards with the
same number in one pile.
A 2 3 4 5 6 7 8 9 10 J Q K
A 2 3 4 5 6 7 8 9 10 J Q K
A 2 3 4 5 6 7 8 9 10 J Q K
A 2 3 4 5 6 7 8 9 10 J Q K
With only a constant number of cards left in each pile, you can
use insertion sort to order by suite and concatenate everything



together.
If we could find the correct pile for each card in constant
time, and each pile getsO(1) cards, this algorithm takesO(n)
time.



Bucketsort

Suppose we are sortingn numbers from1 to m, where we
know the numbers are approximately uniformly distributed.
We can set upn buckets, each responsible for an interval of
m/n numbers from1 to m

1 m/n m/n+1 2m/n 2m/n+1 3m/n ... ... m

x x x x x xx x

Given an input numberx, it belongs in bucket number
⌈xn/m⌉.
If we use an array of buckets, each item gets mapped to the
right bucket inO(1) time.
With uniformly distributed keys, the expected number of
items per bucket is 1. Thus sorting each bucket takesO(1)



time!
The total effort of bucketing, sorting buckets, and concatenat-
ing the sorted buckets together isO(n).
What happened to ourΩ(n lg n) lower bound!



We can use bucketsort effectively whenever we understand
the distribution of the data.
However, bad things happen when we assume the wrong
distribution.
Suppose in the previous example all the keys happened to be
1. After the bucketing phase, we have:

1 m/n m/n+1 2m/n 2m/n+1 3m/n ... ... m

xx x

x x x
x

x

x

xx x

xx

xx

xx

We spent linear time distributing our items into buckets and
learnednothing. Perhaps we could split the big bucket
recursively, but it is not certain that we will ever win unless
we understand the distribution.



Problems like this are why we worry about the worst-case
performance of algorithms!
Such distribution techniques can be used on strings instead
of just numbers. The buckets will correspond to letter ranges
instead of just number ranges.
The worst case “shouldn’t” happen if we understand the
distribution of our data.



Real World Distributions

Consider the distribution of names in a telephone book.

• Will there be a lot of Skiena’s?

• Will there be a lot of Smith’s?

• Will there be a lot of Shifflett’s?

Either makesure you understand your data, or use a good
worst-case or randomized algorithm!



The Shifflett’s of Charlottesville

For comparison, note that there are seven Shifflett’s (of
various spellings) in the 1000 page Manhattan telephone
directory.


