
Computer Science 
Principles
CHAPTER 8 – DATA REPRESENTATION AND COMPRESSION



Announcements
Read Chapter 8 in the Conery textbook (Explorations in Computing)

Acknowledgement: These slides are revised versions of slides prepared by Prof. Arthur Lee, Tony 
Mione, and Pravin Pawar for earlier CSE 101 classes. Some slides are based on Prof. Kevin 
McDonald at SBU CSE 101 lecture notes and the textbook by John Conery. 
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Data and Computers
Computers are multimedia devices, dealing with a vast array of information categories

◦ Information is data (basic values, facts) that has been organized or processed into useful form

Computers store, present and help us modify various kinds of data: numbers, text, audio, images 
and graphics, video

Information can be represented in one of two ways: analog or digital
◦ Analog data: a continuous representation, analogous to the actual information it represents
◦ Digital data: a discrete representation that breaks the information up into separate elements
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Analog vs. Digital
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Many Ways Developed to Represent 
Numbers
Egyptian hieroglyphs:

Babylonian numerals:

Many others:
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References:
• http://goo.gl/BSrWTH
• http://goo.gl/r8NcKF
• Wikipedia

Arabic 0 1 2 3 4 5 6 7 8 9 10

Chinese 〇 一 二 三 四 五 六 七 八 九 十

Roman I II III IV V VI VII VIII IX X

Devanagari (Hindi) ० १ २ ३ ४ ५ ६ ७ ८ ९ १०

=	 1 ∗ 60' + 57 ∗ 60+ + 46 ∗ 60 + 40
=	424,000

http://goo.gl/BSrWTH
http://goo.gl/r8NcKF


Positional Notation
The modern Western style and some other styles of writing numbers use positional notation
• The position of a digit determines how much it contributes to the number’s value

With decimal (base 10), place-values are powers of 10:
…, 103, 102, 101, 100, 10-1 , 10-2, 10-3, …
…, 1000s, 100s, 10s, 1/10 s, 1/100 s, 1/1000 s, …

642.15 really means (6 x 102) + (4 x 101) + (2 x 100) + (1 x 10-1) + (5 x 10-2)

Early computers represented numbers with base 10, but they were very unreliable. It was too 
hard to make the computer maintain 10 distinct voltages for the 10 digits.
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Binary Numbers
Modern digital computers use binary digits (base-2 numbers: 0 and 1)
◦ The word bit is short for binary digit

The hardware determines how bits are stored
◦ Hard drive: magnetized spots on surface of disk
◦ Flash drive: presence/absence of electrons in a memory cell
◦ Optical disc (CD/DVD): pits and lands (flat spots)

As computational thinkers, we do not need to worry so much about how the bits are stored
◦ Instead, we will focus on what bits are stored
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Binary Numbers
With binary we have just two digits, 0 and 1, and the place-values are powers of 2:

…, 23, 22, 21, 20

..., 8, 4, 2, 1

For example: 11002 written as a base-10 (decimal) number is:

(1 x 23) + (1 x 22) + (0 x 21) + (0 x 20)

= 8 + 4 + 0 + 0 = 1210

Important to note: 11002 and 1210 are two different representations of the same quantity
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Binary Numbers
Binary can also represent fractions, for example:

…, 23, 22, 21, 20, 2-1, 2-2, 2-3, …

..., 8s, 4s, 2s, 1s, 1/2s, 1/4s, 1/8s, …

The number 1011.0112 written as a decimal number is:

(1 x 23) + (0 x 22) + (1 x 21) + (1 x 20) + (0 x 2-1) + (1 x 2-2) + (1 x 2-3)

= 8 + 0 + 2 + 1 + 0 + 1/4 + 1/8 = 11.37510

All data in a modern machine is stored using binary numbers
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Decimal è Binary Conversion
To convert a decimal number to binary, perform these steps:

1. Repeatedly divide the decimal number by 2.
2. Set aside the remainder of each division.
3. Use the quotient for the next round of division.
4. When the quotient reaches 0, write down all of the remainders in order from last to first. This value is 

your answer.

This algorithm is easier to understand with examples
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Decimal è Binary Example #1
Convert 1210 to binary

12 / 2 = 6 remainder 0

6 / 2 = 3 remainder 0

3 / 2 = 1 remainder 1

1 / 2 = 0 remainder 1

Answer: 11002

Note that we write the remainders in the reverse order of how they are generated
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Decimal è Binary Example #2
Convert 12310 to binary

123 / 2 = 61 remainder 1

61 / 2 = 30 remainder 1

30 / 2 = 15 remainder 0

15 / 2 = 7 remainder 1

7 / 2 = 3 remainder 1

3 / 2 = 1 remainder 1

1 / 2 = 0 remainder 1

Answer: 11110112
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The Function dec2bin()
Function dec2bin() returns a string of 0s and 1s giving the binary representation of an integer

def dec2bin(decimal):
binary = ""
while decimal > 0:

remainder = decimal % 2
binary = str(remainder) + binary
decimal = decimal // 2

return binary

print(dec2bin(23)) # "10111"
print(dec2bin(100)) # "1100100"
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Encoding Data (next)
To store information in a computer’s memory we have to encode it somehow: an encoding is a 

pattern of 0s and 1s

◦ The pattern is a representation of some real-world object, like a letter, number, sound clip, or video

Encoding is not the same as encryption
◦ Both use codes, but in this slide set we will explore standard ways of representing data, not hiding data

A set of k bits can represent up to 2k items. Let’s see why.

◦ Each bit can be 0 or 1 (two options)

◦ With 2 bits, we can represent 22 = 4 items

◦ With 3 bits, we can represent 23 = 8 items

◦ …

With k bits, we can represent 2k items
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Representing Characters
ASCII (American Standard Code for Information Interchange) includes 7-bit and 8-bit schemes 
for representing characters used in the English language

Each letter, number, punctuation mark, etc. is mapped to a 7-bit number
◦ See ASCII.txt

Examples: capital letter “A” is 65; lowercase letter “a” is 97

A newer scheme called Unicode includes codes for over 100 alphabets
◦ Modern languages (Greek, Cyrillic, Arabic, Hebrew, Korean, Chinese, Japanese, ...) and ancient 

languages (hieroglyphics, runes, ...)

◦ Also includes technical symbols, emojis, and other symbols
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Representing Characters
Here are three ways to include a Unicode symbol in a Python string:
1. Copy and paste text from an e-mail, a web page, etc.
2. Use a function named chr (short for “character”)

• Pass it a code number. It will return a one-letter string containing that symbol. 
Example: chr(9829) gives ' '

• Find code numbers at www.charbase.com or similar websites that have lists of Unicode symbols
3. Use an escape sequence ‘\uXXXX’ where XXXX is the 4-digit hexadecimal (base 16) code 

number

'I \u2665 cats'   à 'I cats’

See data_rep.py for more examples
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Hexadecimal Numbers
In software, sometimes it’s more 
natural to write numbers in base 16, 
called hexadecimal

With hexadecimal we have 16 digits:
◦ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
◦ A-F correspond to the numbers 10-15
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Hexadecimal Numbers
Place-values in hexadecimal are powers of 16:
…, 163, 162, 161, 160, 16-1, 16-2, 16-3, …

◦ 51E16 = (5 × 162) + (1 × 161) + (14 × 160) = 1,31010

◦ FAD16 = (15 × 162) + (10 × 161) + (13 × 160) = 4,01310

Changing the base of a number doesn’t change the magnitude (value) of a number
◦ The representation for a number gets longer as the base decreases
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Hexadecimal Numbers
Hexadecimal is used widely in web design for giving colors

When giving the Unicode for a character as an escape sequence with \u, we always use 

hexadecimal

◦ In contrast, the chr() function expects the decimal representation

For creating the heart symbol 

◦ Use 9829 (base 10) for chr()
◦ Use 2665 (base 16) for the escape sequence

The related ord() function returns the Unicode value of a character in decimal format:

◦ ord('A') returns 65 and ord('x') returns 120

See data_rep.py for more examples
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Hexadecimal Numbers
The binary representation for a string can be hard to read:

01001001 00100111 01101101 00100000 01100001
01100110 01110010 01100001 01101001 01100100
00100000 01101111 01100110 00100000 01100011
01101111 01110111 01110011 00101110

It’s a little easier to deal with codes in hexadecimal:

49 27 6D 20 61 66 72 61 69 64 20 6F 66 20 63 6F 77 73 2E

Recall that in hexadecimal we have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters A through F 
for ten through fifteen

◦ Note that each hexadecimal digit corresponds with four binary digits (bits)

20



Binary ↔ Hexadecimal
To convert a hexadecimal number to a binary number, simply convert each 
digit in the hexadecimal number into a four-digit binary number.

For example:
D2B516 = 11010010101101012

To convert a binary number to a hexadecimal, convert every four binary 
digits from right to left in the binary number into a hexadecimal digit.

For example: 
0100011111102 = 47E16
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Groups of Bits
A byte is a collection of 8 bits
• A 7-bit ASCII value fits in single byte

A 32-bit integer requires 4 bytes (32 ÷ 8 = 4)

A central processing unit (CPU) operates on several bytes at a time, called a word
• A word is a collection of two or more bytes
• Typical word size are 32 bits (4 bytes) and 64 bits (8 bytes)

Memory capacity is often described in terms of megabytes or gigabytes
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Error Detection
Errors in values can be caused by circumstances beyond our control
• The storage medium itself has a flaw or is deteriorating
• Data can be corrupted by interference during transfer over wires or wirelessly
• Even solar activity itself can affect electronic devices and disrupt electronic communication

The general method for detecting errors is to add extra information to the data
• Add extra data to a document before storing it in a file
• Append error checking data to a message while sending it
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Error Detection
The basic procedure for enabling error-free communication:
1. Sender adds error-checking information
2. After receiving the message, the receiver analyzes the message along with the extra data to 

see if an error occurred
3. If an error occurred, the receiver will ask the sender to send the message again

A simple method for error-checking is to use a parity bit
• Add one extra bit to the end of the text
• Here, “text” means any string: an entire message or a single character
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Error Detection
The value of the extra bit should make the total number of '1' bits an even number
• This property is called even parity

Example: parity bits for 8-bit ASCII characters

Example for encoding the message "ATG" in ASCII
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ASCII Value Parity Bit Total Message
A = 01000001 0 (since A has two 1's) 01000001 0

C = 01000011 1 (since C has three 1's) 01000011 1

Original Message Parity Bit Total Message
01000001 01010100 01000111 1 (since the original message has 9 1's) 01000001 01010100 01000111 1



Error Detection
The receiver treats the parity bit like any other bit in the incoming message
• It is included in the count of the number of 1 bits
• To get the message contents, the receiver discards the last bit

Example: when sending an 8-bit ASCII 'C', the bit stream is 010000111: the digits in the code for 
'C' plus a parity bit
• The receiver reads 9 bits and sees there was an even number of 1 bits; no error detected
• The receiver discards the 9th bit
• The remaining bits are the contents of the message: 01000011, which is the ASCII code for 'C’

Note: It is a very simple scheme. It can only be used to detect single or any other odd number 
(e.g., three, five, etc.) of errors in the output. An even number of flipped bits (errors) will make 
the parity bit appear correct even though the data is erroneous.
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Aside: Communication Protocols
For this error-checking plan to work, the sender and receiver both have to agree on a 
communication protocol
• The protocol defines a message structure and also specifies what actions are taken during the 

transmission or receipt of a message
• In our simple protocol, the sender and receiver agree in advance the parity bit is the last bit

Two of the most important protocols used today are Transmission Control Protocol (TCP) and 
Internet Protocol (IP)
• Used extensively in Internet communication, including the Web and online video games
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Computing Parity Bits
How can we write a function that computes the parity bit for a message?

First, we need to understand some different logic functions when dealing with bits
◦ We are familiar with "and" and "or", which has the behavior shown below:
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Input Output
A B AND OR
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1



Computing Parity Bits
There is also a logic function called “exclusive or”, abbreviated as XOR

◦ The XOR of variables a and b is true if either one of them is true, but not if both are true

It is uncommon in programming to use XOR in Boolean expressions (True/False expressions)
• Rather, XOR is used (almost) exclusively in bitwise operations, which are expressions that involve 0s and 

1s
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Input Output
A B AND OR XOR
0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0



Computing Parity Bits
Python has uses different symbols for bitwise operators

In Python:
◦ XOR is denoted using the caret, ^
◦ Bitwise and is denoted by the ampersand, &
◦ Bitwise or is denoted by the vertical bar, or pipe, |
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Input Output
A B AND

A & B
OR

A | B
XOR
A ^ B

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0



Computing Parity Bits
Let’s consider a function that computes a parity bit. Here’s the algorithm:
1. Initialize the return value p to 0.
2. Iterate over all the bits in the input code, updating p using the XOR operator: p = p ^ bit

• If a bit is 0, it won’t change p.
• But if it's a 1, it sets p to the opposite value.

Here’s why this works. We start with p = 0. Every time we see a 1, we “flip” the parity bit by 
replacing p with 

p XOR 1.

For example, if the data contain three 1s, then p will flip three times: p = 0 è1 è 0 è 1, so 
the parity bit will be 1
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The parity() Function
Given a string containing only 0s and 1s, the parity() function computes the parity bit

def parity(bits):
p = 0
for bit in bits :

p = p ^ int(bit)
return p

Examples:
parity('1000001') # returns 0
parity('1000011') # returns 1

See data_rep.py
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Groups of Bits
We can define our own encoding schemes for objects

Suppose we wanted to encode DNA sequences, which are strings containing the letters A, C, G, and T
• We need only 2 bits to represent 4 different things

We could create a dictionary to map a letter to a 2-bit code
Example: “A” è 00

“C” è 01
“G” è 10
“T” è 11

We will now look at a famous algorithm for compressing data which produces a new, original binary 
encoding scheme for a given input data-set
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Text Compression
Data compression algorithms reduce the amount of space needed to store a piece of data

A data compression technique can be:
• Lossless (no information lost)
• Lossy (information lost)

There are many algorithms for compressing files (including photos, images and other types of 
data) but we’ll focus on a lossless technique for text compression called Huffman coding

We will first need to explore a few data structures before we can understand how Huffman 
coding works
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Binary Trees 
• In mathematics and computer science, a tree consists of data 

values stored at nodes, which are connected to each other in a 
hierarchical manner by edges
• Like a family tree, a tree shows parent-child relationships

• Each node in the tree, except for a special node called the root, 
has exactly one parent node
• Nodes can be connected to 0 or more child nodes immediately 

beneath them in the tree

• A node with at least one child is called an interior node 
(colored ‘w’hite in the figure) 

• Towards the bottom of a tree we find nodes with no children; 
such nodes are called leaves (shaded ‘g’ray in the figure)
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Binary Trees
In a binary tree, every node has either 0, 1 or 2 children

Used in this context, the word “binary” refers to the 
maximum number of children that a node can have. It 
does not refer to bits.
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Huffman Coding
Huffman coding is a scheme for encoding letters based on the idea of using shorter codes for 
more commonly used letters

• ASCII uses 7 or 8 bits to store every letter, regardless of how often that letter is used in real 
text

• Imagine if we could find a way to store commonly used letters like R, S, T, N, L, E, etc. using 
fewer bits

For large data-sets consisting only of characters, the potential savings is huge

• This is what Huffman coding accomplishes
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Huffman Coding
A Huffman tree is a binary tree that is at the center of Huffman coding

Inside of each node of a Huffman tree we store:
1. A letter
2. The frequency of how often that letter appears in words
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The Hawaiian Alphabet
We will use the Hawaiian alphabet as part of a running example to understand how Huffman 
coding works

Hawaiian words are spelled with:
◦ Five vowels A, E, I, O, U, and
◦ Seven consonants H, K, L, M, N, P, W

Also, the ' symbol, called the okina, is used between two vowels when they should be 
pronounced as separate syllables
• Example: “a'a” is pronounced “ah-ah”
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The Hawaiian Alphabet
The table to the right shows the frequency of each letter in 
Hawaiian words

We will use this knowledge to find an efficient encoding of 
the 13 symbols
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Data Structures for Huffman Coding
In an earlier lecture we learned about a special kind of list called a priority queue
• Every item inserted into a priority queue has a corresponding numerical priority
• The priority queue always makes sure that the item with highest priority is at the front of the list

The PriorityQueue class in the SpamLab implements the priority queue concept
• The insert() method adds an item to the priority queue
• The pop() method removes the item at the front of the list, which is guaranteed to be the item of 

highest priority

We will use a priority queue to help us build a Huffman tree
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Data Structures for Huffman Coding
In the BitLab lab there is a class called Node we can use to build Huffman trees

When creating a Node object, we give the letter and the letter’s frequency, as in this example:
from PythonLabs.BitLab import Node
leaf = Node('M', 0.032)

The above Node object creates a leaf node

The Huffman coding algorithm will take a set of such nodes, one per letter, and insert them into 
a priority queue

The priority queue will put the node with lowest frequency at the front of the list
◦ In other words, a letter’s frequency will serve as its “priority”, with high-frequency letters 

having the lowest priority
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Data Structures for Huffman Coding
If we want to create an interior node, which has one or two children, we have to “tell” the Node 
object which nodes are its children, as in this example:

t0 = Node('W', 0.009)
t1 = Node('P', 0.030)
t2 = Node(t0, t1)
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Huffman Coding: The Algorithm
1. Make leaf nodes for every symbol in the alphabet
2. Put these nodes into a priority queue
3. Remove the first two nodes from the queue
4. Create a new interior node using these two nodes
5. Insert the new node back into the queue.

• If there are still two more nodes in the queue, go to step 3
• Otherwise, stop

Let’s see how this would work if we consider only the vowels (to make the example simpler)
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Huffman Coding: Example #1
Below is the priority queue that would be created, with the front of the queue on the left:
We see that U and E are the two front nodes

So, we remove them from the queue, create a new interior node, and insert the new node into 
the queue, as we’ll see on the next slide
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Huffman Coding: Example #1

Above the horizontal line is the content of the priority queue
• Note how the queue has one fewer entry in it now

Next we’ll remove the nodes for I and O, create a new node with these two nodes as children 
and add the new node back into the queue
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Huffman Coding: Example #1

Next we’ll remove the nodes with the weights 0.225 and 0.326, and combine them into a new 
interior node
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Huffman Coding: Example #1

Finally, we have only two nodes left, so we remove them both, and combine them into a new 
interior node
• This last node we create becomes the root of the binary tree
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Huffman Coding: Example #1
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Huffman Coding: Example #1
With the tree completed, we now attach 0’s and 1’s to the edges connected to the left child and 
right child of each node, respectively
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Huffman Coding: Example #1
Starting at the root, we trace the path from the root to each node to generate the codes for 
each letter:
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The build_tree() Function
We can now implement a function build_tree() that will build a Huffman tree from the list of 
frequencies

The function read_frequencies() from the BitLab module will load the frequencies stored 
from a file into a dictionary

The build_tree() function then adds the frequencies into Node objects, which are in turn 
added into the priority queue

Finally, a while loop assembles the Huffman tree by removing items two at a time from the 
priority queue and re-inserts the resulting “merged” pairs back into the queue
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The build_tree() Function
from PythonLabs.BitLab import Node, read_frequencies, init_queue
def build_tree(filename):

pq = init_queue(read_frequencies(filename))
while len(pq) > 1:

n1 = pq.pop() # remove 1st element
n2 = pq.pop() # remove 2nd element
pq.insert(Node(n1,n2))

return pq[0]

See huffman.py

53



Huffman Coding: Example #1
Let’s try the function with the vowel frequencies:

vowel_tree = build_tree('hvfreq.txt')
print(vowel_tree)
# hvfreq.txt is available with the chapter 's programs

Output:
( 1.000 ( A: 0.449 ) ( 0.551 ( 0.225
( U: 0.101 ) ( E: 0.124 ) ) ( 0.326 ( I: 0.144 )
( O: 0.182 ) ) ) )

Although it may not seem like it, this is actually our tree
• Let’s reformat it a little (see next slide)
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Huffman Coding: Example #1
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Huffman Coding: Example #1
Finally, the recursive function assign_codes() from BitLab assembled the Huffman codes from 
the Huffman tree:

from PythonLabs.BitLab import assign_codes
codes = assign_codes(vowel_tree)
print(codes)

Output:

{'A': 0, 'E': 101, 'I': 110, 'O': 111, 'U': 100}
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Huffman Coding: Example #2
The file hafreq.txt contains the frequencies for all letters in the Hawaiian alphabet

Let’s build the Huffman tree from the frequencies:
alphabet_tree = build_tree('hafreq.txt')

Then assign the codes:
codes = assign_codes(alphabet_tree)

Result: {
"'": 0111, 'A': 10, 'E': 1101,'H': 0001, 'I': 1111, 
'K': 001, 'L': 0000, 'M': 11000, 'N': 1110, 'O': 010, 
'P': 110011, 'U': 0110, 'W': 110010 }
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Huffman Coding: Example #2
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Huffman Coding: Example #2
What we find is that the most-frequently appearing letters have short codes, while the less-
frequently appearing letters have longer code

Also note: no code is the prefix of another code

For example, the code for A is 10. No other code begins with 10.
• This fact is important when we want to decode a message
• Let’s see now how we decode a message (next slide)
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Huffman Coding: Example #2
Suppose we have the message 110001001101111

We scan the digits from left to right
• The first five digits, 11000, form the code for “M”
• The next two digits, 10, form the code for “A”
• The next four digits, 0110, form the code for “U”
• Finally, the last four digits, 1111, form the code for “I”

So, the original encoded word was “MAUI”

There is no other way to decode that string of bits to generate a different word
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Encoding: 
"'": 0111, 'A': 10, 'E': 1101,
'H': 0001, 'I': 1111, 'K': 001, 
'L': 0000, 'M': 11000, 'N': 1110, 
'O': 010, 'P': 110011, 'U': 0110, 
'W': 110010 



Huffman Coding: Example #3
Given the following letter frequencies, let’s compute the Huffman 
coding for the letters

We begin by inserting the letters into a priority queue:

Now merge the first two elements in the queue until the tree is 
assembled (see few next slides)
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Huffman Coding: Example #3
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Huffman Coding: Example #3
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Huffman Coding: Example #3

64



Huffman Coding: Example #3
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Huffman Coding: Example #3
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Huffman Coding: Example #3
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encode()
With the dictionary for a Huffman coding assembled, it becomes very easy to encode strings:

huffman_codes = {
"'": '0111', 'A': '10', 'E': '1101', 'H': '0001', 'I': '1111', 
'K': '001', 'L': '0000', 'M': '11000', 'N': '1110', 'O': '010', 
'P': '110011', 'U': '0110', 'W': '110010' }

def encode(word, encodings):
result = ''
for letter in word:

result += encodings[letter]
return result

encode('MAUI', huffman_codes) # sample call

68



decode()
Decoding strings is a little trickier because the dictionary’s key/value pairs are reversed from 
what we need
• The dictionary maps letters to codes, which is suitable for encoding
• For decoding we need to map codes to letters

Similar to list comprehensions, a dictionary comprehension lets you create a new dictionary 
from an existing one

Here’s the code we need. It maps a value from the huffman_codes dictionary back to its key:
reversed_codes = { huffman_codes[key]: key for key in huffman_codes.keys() }

Would this work if values are not unique in huffman_codes?
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decode()
We can now write the decode() function, where a “reversed” dictionary is given as decodings:

def decode(encoded, decodings):
result = ''
while len(encoded) > 0:

for i in range(1, len(encoded) + 1):
if encoded[:i] in decodings.keys():

result += decodings[encoded[:i]]
encoded = encoded[i:]
break

return result

decode('110001001101111', reversed_codes)     # sample call

See huffman.py for this code and examples
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Questions?
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