
Computer Science
Principles
CHAPTER 7 – RANDOM NUMBERS AND OBJECT-ORIENTED
PROGRAMMING

Announcements
Read Chapter 7 in the Conery textbook (Explorations in Computing)

Acknowledgement: These slides are revised versions of slides prepared by Prof. Arthur Lee, Tony
Mione, and Pravin Pawar for earlier CSE 101 classes. Some slides are based on Prof. Kevin
McDonald at SBU CSE 101 lecture notes and the textbook by John Conery.

2

Games Involving Chance
Many games involve chance of some kind:

◦ Card games with drawing cards from a shuffled deck
◦ Rolling dice to determine how many places we move a piece on a game board
◦ Spinning a wheel to randomly determine an outcome

Video games use chance and randomization all the time
◦ Determining random events or damage
◦ Choosing among potential moves the computer will make

We expect these outcomes to be random or unbiased – in other words, unpredictable
◦ Computers can be programmed to generate apparently “random” sequences of numbers and other

quantities for such games and other applications

3

Lecture Overview
In this lecture we will explore algorithms for generating values that are apparently random and
unpredictable

◦ We say “apparently” because we need to use mathematical formulas to generate sequences of numbers
that at the very least appear to be random

Since we will use an algorithm to generate “random” values, we really can't say the sequence of
values is truly random

We say instead that a computer generates pseudorandom numbers

4

Pseudorandom Numbers
Randomness is a difficult property to quantify
• Is the list [3, 7, 1, 4] more or less random than [4, 1, 7, 3]?

The algorithm that generates pseudorandom numbers is called pseudorandom number
generator, or PRNG

◦ The goal is for the algorithm to generate numbers without any kind of apparent predictability
◦ Python has a built-in capability to generate random values through its random module

To generate a random integer in the range 1-100:
import random
num = random.randint(1,100) # up to 100, not 101!

5

Modular Arithmetic
The modulo operator, % in Python, will be a key part of generating pseudorandom numbers

Suppose we want to generate a seemingly random sequence of numbers, all in the range 0
through 11

Let's start with the number 0 and store it in a new list named t:
t = [0]

One basic formula for generating numbers involves:
(1) Adding a value to the previously-generated number and then
(2) Performing a modulo operation

6

Modular Arithmetic
For our particular example, we could generate a new number by adding 7 to the prior value then
mod by 12

◦ Conveniently, the Python language lets us write t[-1] to mean “retrieve the last element of list t”

So in general we can write t.append((t[-1]+7)%12) to generate and store the “next”
pseudorandom number

If we put this code inside a loop, we can generate a series of random values and store them in
the list

7

Modular Arithmetic
t = [0]
for i in range(15):

t.append((t[-1] + 7) % 12)

The above code will generate the list:
[0,7,2,9,4,11,6,1,8,3,10,5,0,7,2,9]

How “random” are these numbers?
• They look pretty random, but we notice that eventually they start to repeat

Can we improve things?
• Part of the issue is the divisor of 12, but the formula itself is a little too simplistic

8

Modular Arithmetic
A more general formula for generating pseudorandom numbers is:

xi+1=(a*xi+c) mod m

• xi+1 is the “next” random number
• xi is the most recently generated random number
• i is the position of the number in the list
• a, c and m are constants called the multiplier, increment, and modulus, respectively

If the values a, c and m are chosen carefully, then every value from 0 through m-1 will appear in the
list exactly once before the sequence repeats

The number of items in the repetitive part of the list is called the period of the list
◦ We want the period to be as long as possible to make the numbers as unpredictable as possible

We will implement the above formula, but first we need to explore some new programming concepts

9

Numbers on Demand
One possibility for working with random numbers is to generate as many as we need and store
them in a list

◦ Often we don't know exactly how many random numbers we will ultimately need
◦ Also, in practice we might not want to generate a very long list of random numbers and store them

Typically, we need only one or just a few random numbers at a time, so generating thousands or
even millions of them at once is a waste of time and memory

Rather than building such a list, we can instead generate the numbers one at a time, on demand

10

Numbers on Demand
We will define a function rand() and a global variable x to store the most recently generated
random number
• A global variable is a variable defined outside functions and is available for use by any function in a .py

file

The value of a global variable is preserved between function calls, unlike local variables, which
disappear when a function returns

If we want a function to change the value of a global variable, we need to indicate this by using
the global keyword in the function

◦ If we are only reading the global variable, we do not need to use the global keyword

11

The rand() Function (v1)
Let's consider a function for generating random numbers that uses the formula we saw earlier:

x = 0 # global variable
def rand(a, c, m):

global x
x = (a * x + c) % m
return x

Call the function several times with a=1, c=7, m=12:
rand(1, 7, 12) # returns 7 and updates x to 7
rand(1, 7, 12) # returns 2 and updates x to 2
rand(1, 7, 12) # returns 9 and updates x to 9

Let's see why x is updated in this way

12

The rand() Function (v1)
The key line of code is x = (a * x + c) % m

Initially, x = 0
1. rand(1,7,12): x = (1 * 0 + 7) % 12 = 7

So, x becomes 7
2. rand(1,7,12): x = (1 * 7 + 7) % 12 = 2

So, x becomes 2
3. rand(1,7,12): x = (1 * 2 + 7) % 12 = 9

So, x becomes 9

The only reason this series of computations works correctly is because the value of x is
preserved between function calls

13

Modules and Encapsulation
Suppose we wanted to use our new rand() function in several files. We have two options:
• Copy and paste the function into each file (bad idea)
• Place the function in a Python program file to create a module that can be imported using an import

statement (the right way)

We should place our function in a separate file (module) along with the global variable x

This global variable will be “hidden” inside the module so that there is no danger of a “name
clash”, meaning that other modules could have their own global variables named x if they want
to

14

Modules and Encapsulation
This idea of gathering functions and their related data values (variables) into a single package is
called encapsulation

◦ It's an extension of the concept called abstraction we studied earlier in the course

We know that the math module has some useful functions and constants, like sqrt() and pi

A module like math is an example of a namespace, a collection of names that could be names of
functions, objects or anything else in Python that has a name
• A module/namespace is one way of implementing the concept of encapsulation in Python

15

Modules and Encapsulation
To create a new module, all we need to do is save the functions and variables of the module in a
file ending in .py
• For example, if we were to save the rand() function in the file prng.py, we could then import the

rand() function in a new Python program by typing import prng at the top of the new program

Next slide shows a revised version of our rand() function that encapsulates the function in a
module and stores the values of x, a, c and m as global variables
• This means the user no longer needs to pass a, c, or m as arguments anymore
• We will also add a new function reset() to reset the PRNG to its starting state

16

The rand() Function (v2)

17

x = 0
a = 81
c = 337
m = 1000

def reset(mult, inc, mod):
global x, a, c, m
x = 0
a = mult
c = inc
m = mod

def rand():
global x
x = (a * x + c) % m
return x

The rand() Function (v2)
x = 0
a = 81
c = 337
m = 1000

Examples:
1. rand(): (81 * 0 + 337) % 1000 = 337
2. rand(): (81 * 337 + 337) % 1000 = 634
3. rand(): (81 * 634 + 337) % 1000 = 691

18

The rand() Function (v2)
We can change the values of a, c, and m by calling the reset() function.

◦ For example: reset(19, 4, 999), which also sets x = 0.

Now we will generate a different sequence of random numbers:
1. rand(): (19 * 0 + 4) % 999 = 4
2. rand(): (19 * 4 + 4) % 999 = 80
3. rand(): (19 * 80 + 4) % 999 = 525

19

Games with Random Numbers
Suppose we wanted to simulate the rolling of a six-sided die in a board game

◦ We would want to generate integers in the range 1 through 6, inclusive
◦ However, our function rand() generates values outside this range

We can solve this problem using an expression like rand() % 6 + 1
• The expression rand() % 6 gives us a value in the range 0 through 5, which we can then “shift up” by

adding 1

Why not do rand() % 7 instead?

20

Games with Random Numbers
If we always initialize x, a, c, and m to the same values, then every program that uses the rand()
function will get the same exactly sequence of pseudorandom values

We want these numbers to be different. Some options:
◦ We could allow someone using our code to set the starting value of x, which we call the seed of the

pseudorandom number generator
◦ Another option is to have the computer pick the seed by using the system clock

The time module has a function called time() which returns the number of seconds since
January 1, 1970

◦ Fractions of a second are also included in the returned value

21

Games with Random Numbers
Our revised module shown below uses time.time() to pick a random seed

See random_numbers.py

22

import time

a = 81

c = 337
m = 1000

x = int(time.time()) % m
def rand():

global x

x = (a * x + c) % m
return x

Random Numbers in a Range
In general, how can we generate random integers from an arbitrary range?
The formula for this is:

rand() % (high – low + 1) + low

For example, suppose we wanted to generate a value in the range -5 through 10, inclusive

The formula indicates we should use this code:
rand() % (10 - (-5) + 1) + (-5)

Simplifying gives us:
rand() % 16 – 5

See random_numbers.py

23

List Comprehensions
Python features a very compact syntax for generating a list called a list comprehension
• Write a pair of square brackets and inside the brackets put an expression that describes each list item

For example, to make a list of numbers from 1 to 10 write
[i for i in range(1,11)]

To make a list of the first 10 perfect squares we can write
[i**2 for i in range(1,11)]

In general, we write an expression that describes each new item in the new list and a loop that
describes a set of existing values to work from

A list of 10 random numbers:
[rand() for i in range(10)]

24

List Comprehensions
Suppose we wanted to take a list of words and capitalize them all:

names = ['bob', 'DANE', 'mikey', 'ToMmY']
names = [s.capitalize() for s in names]

names would become ['Bob', 'Dane', 'Mikey', 'Tommy']

Or perhaps we wanted to extract the first initial of each person and capitalize it:
initials = [s[0].upper() for s in names]

initials would be ['B', 'D', 'M', 'T']

25

Random Shuffles
Suppose we needed the ability to randomly permute (shuffle) a list of items, such as a deck of 52
playing cards
• Let's explore how we might write a function that does exactly this

The RandomLabmodule defines a class called Card

A class defines a type of object in an object-oriented programming language like Python
◦ Remember that int, float, and str (string) are all classes

26

Random Shuffles –
We use a special function called the constructor to create (construct) new objects of the class

from PythonLabs.RandomLab import Card
card = Card()

We have been using constructors for a while, for example:
some_float = 5.3
now_a_string = str(some_float) # this constructs a string with the value '5.3'

27

The Card Class
A Card object has a separate rank and suit, which we can query using the rank() and suit()
methods, respectively

◦ The 2 through Ace are ranked 0 through 12

The suits are mapped to integers as follows:
• Clubs: 0

• Diamonds: 1

• Hearts: 2

• Spades: 3

For example, for a Card object representing the 9 of Spades:
◦ rank() would return 7

◦ suit() would return 3

28

The Card Class
The ranks and suits are numbered so that we can uniquely identify each card of a standard 52-
card deck
• When calling the constructor to create a Card object, we provide a number in the range 0 through 51

to identify which card we want

Examples:
• Card(0) and Card(1) are the 2 and 3 of Clubs, respectively
• Card(50) and Card(51) are the King and Ace of Spades, respectively
• Card(46) is 9 of Spades

print(Card(51)) would output A (yes, including that Spade symbol!)

29

The Card Class
We can use a list comprehension to generate all 52 cards and store them in a list:

deck = [Card(i) for i in range(0,52)]

With slicing we can take a look at the first 5 cards by appending [:5] to the name of the variable
◦ Remember this notation means “slice out all the elements of the list up to (but not including) the

element at index 5”

print(deck[:5])

Output: [2 , 3 , 4 , 5 , 6]

30

Shuffling Card Objects
The order of the cards generated by the list comprehension (i.e., sequential order) is only one
particular ordering or permutation of the cards

We want to define a function that will let us permute a list to generate a more random ordering
of the items in the list

A simple algorithm for permuting the items in a list is to iterate over the list and exchange each
element with a random element to its right

◦ This is most easily seen by example, as on the next slide

31

Shuffling Card Objects
Iterate over the entire list deck (with i as
the loop variable and index), swapping a
random item to the right of i with deck[i]

32

Shuffling Card Objects
This shuffling algorithm is easy to implement with the help of a function that will choose a
random item to the right of deck[i]

The function randint(low, high) from the random module generates a random integer in
the range low through high (inclusive of both low and high)

The permute function will shuffle any list of items:
import random
def permute(a):

for i in range(0, len(a)-1):
r = random.randint(i, len(a)-1)
a[i], a[r] = a[r], a[i] # swap items

33

Shuffling Card Objects
import random
def permute(a):

for i in range(0, len(a)-1):
r = random.randint(i, len(a)-1)
a[i], a[r] = a[r], a[i] # swap items

r = random.randint(i, len(a)-1) picks the random index, r, that is to the right of i (or might
choose i itself, meaning that a[i] doesn't move)

a[i], a[r] = a[r], a[i] swaps a[i] with the randomly chosen item to its right

We would call this function with permute(deck) to shuffle our list of Card objects

34

Defining New Objects
The Card class we have been working with defines a new kind of object we can use in programs

In object-oriented programming, a class determines the data and operations associated with an
object

For example, for a playing card object we need some way to store the rank and suit of a card
◦ These are the card's data attributes

Operations for a playing card might include code that lets us print a playing card on the screen or
retrieve the card's rank and suit

35

Defining New Objects
The data values associated with a particular object are called instance variables

We say that an object is an instance of a class
• For example, each of the 52 Card objects is an independent instance of the Card class
• As such, each Card object has its own copies of the instance variable that store the object's rank and

suit

The operations associated with an object are called methods

So, a class defines the data properties and methods that an object of the class has

36

Defining New Objects
Let's see an example where we create three distinct Card objects in a program:

37

Defining New Objects

• Three Card objects were constructed. They are referenced using the variables c1, c2 and c3 in
main as shown on the left

• The objects as they might exist in the computer memory are shown in the middle of the diagram
• Rather than storing the rank and suit separately, they are combined into a single integer called _id

38

Defining New Objects

•Prepending an underscore to a variable indicates that _id is an instance variable; this is a naming
convention, not a strict rule
•To retrieve the rank or suit, we need to call the methods rank() or suit(), as depicted on the right
• Example call: c1.rank() since rank() is a method, not a function

39

Defining New Objects
To define a new class we usually include the following aspects:
• One or more instance variables
• One or more methods that perform some operation or execute some algorithm
• A __init__ method, which initializes (gives starting values to) the instance variables
• A __repr__ method, which defines a string representation of an object that is suitable for printing on

the screen

Let's step through building the Card class from the ground up

40

Building the Card Class
The code we will build up will all eventually be saved in a file named Card.py

We begin by writing a class statement:
class Card:

Next we write the __init__ method. This method is to "initialize" or construct new objects of
the class when Card() is called.

def __init__(self, n):
self._id = n # _id is an instance variable to represent the suit and rank

The self keyword refers to the object itself.

41

Building the Card Class
Now let's write a simple __repr__ method, which stands for "representation"

◦ This define what happens if we try to print a Card object

def __repr__(self):
return 'Card #' + str(self._id)

Suppose we create card #43 and print it:
c1 = Card(43)
print(c1) # Prints out 'Card #43"

That's not very informative, but we we will improve this later

42

Building the Card Class
Now we can write the rank() and suit() methods

They translate the _id number into the rank and suit of a card
def suit(self):

return self._id // 13
def rank(self):

return self._id % 13

This encoding ensures that all 13 cards of a single suit are placed together in consecutive order

43

Building the Card Class
The Card class so far:

class Card:

def __init__(self, n):
self._id = n

def suit(self):
return self._id // 13

def rank(self):
return self._id % 13

def __repr__(self):
return 'Card #' + str(self._id)

44

Building the Card Class (next)
We can write a function new_deck() that creates a list of 52 playing-card objects.

def new_deck():
return [Card(i) for i in range(52)]

Note that this function is not part of the Card class itself, it just uses the Card class.

An example call to this function:
deck = new_deck()

45

Building the Card Class
Another improvement we can make is to add special methods that allow us to compare Card
objects

If we want to be able to sort Card objects, we must provide the __lt__() method, which tells us
if one object is “less than” another:

def __lt__(self, other):
return self._id < other._id

__eq__() defines what it means for two Card objects to be “equal to” each other:

def __eq__(self, other):
return self._id == other._id

46

Building the Card Class
For example, consider the following objects:

c1 = Card(1)
c2 = Card(4)

The expression c1 < c2 would be True, but c1 == c2 would be False

Now that we can compare Card objects, we can sort them using the sorted function
• sorted makes a copy of a list and then sorts the copy:

cards_sorted = sorted(cards)

47

Building the Card Class
The Card class defines an application program interface (API): a set of related methods that
other programmers can use to build other software
◦ We have been using APIs that others built all throughout this course

We have applied the concept of encapsulation by gathering all the code that defines a Card
object in one place

48

Building the Card Class
For our Card class it would be useful to print symbols representing the suits:

◦ Since every Card object would need to know the suit, we can define class variables for this
◦ Class variables are values that pertain to a particular class but are not instance variables

In Python we have access to many thousands of symbols
◦ We can access them by giving the correct numeric codes

Let's add two class variables: suit_sym and rank_sym to Card class

49

Building the Card Class
suit_sym = {0: '\u2663', 1: '\u2666',

2: '\u2665', 3: '\u2660'}

If we were to print suit_sym, we would get this output:
{0: ' ', 1: ' ', 2: ' ', 3: ' '}

The codes for various symbols can be found on the Internet by searching for “Unicode characters”

Likewise, we can define a dictionary for all the ranks:
rank_sym = {0: '2', 1: '3', 2: '4', 3: '5', 4: '6',

5: '7', 6: '8', 7: '9', 8: '10',
9: 'J', 10: 'Q', 11: 'K', 12: 'A'}

Our goal now is to be able to print a Card object in a form like '2 ' – let's do that next

50

Building the Card Class
We will change our definition of the __repr__ method to this:

def __repr__(self):
return Card.rank_sym[self.rank()] + Card.suit_sym[self.suit()]

Now, when we print a Card object, we will get output like 2 , A , 8 , J , etc.

51

Exceptions and Exception-handling
What if another programmer using our class inadvertently gives a value outside the range 0
through 51 for n when constructing a Card object?
• The __init__ method will accept the value, but it really shouldn't

We can solve this problem by adding exception handling to our code
• An exception is an unexpected event or error that has been detected
• We say that the program has raised an exception

Let's have the __init__ method raise an exception if we have an invalid value for n

52

Exceptions and Exception-handling
def __init__(self, n):

if n in range(0, 52):
self._id = n

else:
raise Exception('Card number must be in the range 0-51.')

The new version of __init__ verifies that the argument n is valid

If not, it raises the exception and includes a diagnostic message of sorts

53

Exceptions and Exception-handling
Consider a function now that a programmer might use to make new cards that catches any
exception that might be thrown by the __init__ method:

def make_card(n):
try:

return Card(n)
except Exception as e:

print('Invalid card: ' + str(e))
return None

If we call make_card(55), we get this output:
Invalid card: Card number must be in the range 0-51.

54

Exceptions and Exception-handling
This concludes our development of the Card class

See card.py for the completed Card class and use_card.py and use_card2.py for some tests

Note: To run, drag use_card.py into PyCharm and run it. Be sure that card.py is in the same
folder where use_card.py is located

55

Questions?

56

