
Computer Science
Principles
CHAPTER 6 – MACHINE LEARNING AND STRING MANIPULATION

Announcements
Read Chapter 6 in the Conery textbook (Explorations in Computing)

Acknowledgement: These slides are revised versions of slides prepared by Prof. Arthur Lee, Tony
Mione, and Pravin Pawar for earlier CSE 101 classes. Some slides are based on Prof. Kevin
McDonald at SBU CSE 101 lecture notes and the textbook by John Conery.

2

Machine Learning
Machine learning is a branch of computer science consisting of algorithms and techniques for
“teaching” computers to recognize patterns, make predictions, detect trends, and the like.

◦ You can do lots of interesting things with machine learning and artificial intelligence
◦ See https://experiments.withgoogle.com/collection/ai for some examples you can play with online

One well-known application of machine learning is spam filtering
◦ As a user flags emails as spam, over time the software learns how to identify spam itself, flagging spam

emails automatically

We will develop a spam filter that uses word frequencies

3

https://experiments.withgoogle.com/collection/ai

Machine Learning
For example, if the word “diet” appears in 63 of 500 emails flagged by the user as spam, the
probability of a spam email containing “diet” is 63/500 = 0.126 or 12.6%

Such frequencies will help the software learn how to detect spam and calculate a probability
that a particular email is spam

First we will cover some concepts that we will need to build the spam filter

4

Strings Revisited
Unlike lists, strings are immutable objects, which means you cannot change them

For example, if you try to execute the code given below:
fruit = 'apple'
fruit[0] = 'A'

Then you get the following error:
TypeError: 'str' object does not support item assignment

In other words, you can't assign a new value to an existing string by changing the contents of the
string
• We can only replace an entire string

5

Strings Revisited
We need to use methods to create a new string based on an existing string

Some handy string methods include:
◦ upper: changes all the characters to uppercase
◦ lower: changes all the characters to lowercase
◦ capitalize: capitalizes the word

For each of these methods, the method makes a copy of the string, leaving the original
unchanged

name = 'suny korea'
new_name = name.upper()

name will still be 'suny korea', but new_name will be 'SUNY KOREA'

6

Strings Revisited
Another example:

name = 'SUNY Korea'
new_name = name.lower()

new_name will be 'suny korea'. The name variable remains unchanged.

One last example:
name = 'suny korea'
new_name = name.capitalize()

new_name will be 'Suny korea'. The name variable remains unchanged.

7

Splitting Strings
• A very useful string method in Python is split()
• The method splits a string into smaller substrings, using the space character to separate

“words” (but the words could actually have any characters in them)
• The substrings are placed inside of a list, which the split method returns

Example:
school = 'Stony Brook Univ'
parts = school.split()

parts will be the list ['Stony', 'Brook', 'Univ']

8

Splitting Strings
• In fact, the split method will use any whitespace characters to split a string into parts
• Whitespace characters include spaces, tabs and newlines
• In Python, a newline is denoted \n and a tab is \t
• These are examples of escape sequences, which use a backslash to denote special characters

Example:
line = 'To be or not to be,\nthat is\tthe question.'
words = line.split()

words will be ['To', 'be', 'or', 'not', 'to', 'be,', 'that', 'is', 'the', 'question.']

9

Text Files
Files come in two general formats: plain text files and binary files
• A (plain) text file is a simple file whose contents can be read by a basic text editor
• .py and .txt files are examples of text files
• Everything not a text file (images, videos, MP3s, compiled programs, etc.) is called a binary file because

the file has a specific structure

In this course we will only look at how to work with text files

10

Text Files
Files give us a convenient way to provide input to a program so that we don't have to type the
input over and over

Programs that work with files need to perform three basic tasks:
1. Open the file
2. Read data from and/or write data to the file
3. Close the file so that other programs can access it

Let's see how these tasks are handled in Python

11

Reading Files in Python
To open a file in Python we need to give its location on the disk
• For example, suppose we have a file named “words.txt” in a folder named CSE101 and that CSE101 is in

a folder named Classes
• Let's further assume that our program (the .py file) is saved in the folder named Classes
• Our program would refer to the file's name as filename = "CSE101/words.txt"

The slash is called a separator and forms part of the path to the file on the disk
• For example, assuming Classes is a folder within another folder (…), the following would be part of the

path:
• "…/Classes/CSE101/words.txt"

12

Reading Files in Python
Once we have a file's path, we can open the file for reading using:

f = open(filename)
The function returns a file object and you can set this to whatever variable you like instead of f

To read a single line of text at a time, we can repeatedly call the readline() function:
line = f.readline() # reads first line
line = f.readline() # reads second line
and so on...

When we are done with the file, we type f.close() to close it

13

Reading Files in Python
Usually in programming we need to process an entire file, not just part of it

For this reason Python has a simpler syntax we can use when we need to process an entire file

To read a file's entire contents line-by-line, we can write this for loop:
for line in open(filename):
. . .

The advantage of this syntax is that we don't even need to make a separate variable (like f, from
an earlier example) to point to the file and we don't need to manually close it

14

Example: Getting File Size
The function below takes the name of a file as an argument and returns the number of
characters in the file

def filesize(filename):
nchars = 0
for line in open(filename):

nchars += len(line)
return nchars

Example usage:
size = filesize('../PythonLabs/data/email/good.txt')

See filesize.py

15

Counting Words in a File
The Unix/Linux family of operating systems has a command called wc, which gives a count of
how many words are in a file

Consider a wc function in Python that performs the same task

Our wc function will return three values (in this order):
◦ The number of lines in the file
◦ The number of words in the file
◦ The number of characters in the file

This means we need to count three quantities
◦ Therefore, three counters (variables) will be needed, each initialized to zero

16

Counting Words in a File
Python provides a convenient means for initializing multiple variables to the same value via a
multiple target assignment.
◦ Instead of writing three separate assignment statements, we can collapse them into one
◦ Example: nlines = nwords = nchars = 0

To return three values from our function we will return a tuple

A tuple is like a list in that it contains several values
◦ Unlike a list, a tuple is immutable (i.e., its contents cannot be changed, just as a string is

immutable)

17

Example: wc() Function
def wc(filename):

nlines = nwords = nchars = 0
for line in open(filename):

nlines += 1
nwords += len(line.split())
nchars += len(line)

return nlines, nwords, nchars

We can perform a tuple assignment to save the multiple values returned by the wc function:
lines, words, chars = wc('../PythonLabs/data/email/good.txt')

See wc.py

18

Dictionaries (next)
In Python, a dictionary is a type of collection where we can index (access) an element in the
collection using a name instead of an integer index (as in a list)

We create a dictionary using curly braces, { }, but we access the values using square brackets []

To create an empty dictionary, we type this:
dictionary_name = {}

To insert or update a value stored in a dictionary, we give the key for the value and the value
itself

19

Dictionaries
Suppose we want a distances dictionary to represent the number of feet in a single yard,
fathom, furlong, or mile

We might initialize these values as follows:
distances['yard'] = 3
distances['fathom'] = 6
distances['furlong'] = 660
distances['mile'] = 5280

distances is now: {'fathom': 6, 'furlong': 660, 'mile': 5280, 'yard': 3}
• The strings, 'fathom', 'furlong', 'mile' and 'yard' are the keys of the dictionary.
• 6, 660, 5280 and 3 are the values of the dictionary.

20

Dictionaries
distances is: {'fathom': 6, 'furlong': 660, 'mile': 5280, 'yard': 3}

We look up a value in the dictionary by giving its key:
• distances['fathom'] has the value 6

Suppose we wanted to know how many feet are in 10 furlongs
• The code 10 * distances['furlong'] would give us the answer (6,600)

Now how many miles is 10 furlongs?
• (10 * distances['furlong']) / distances['mile']

21

Dictionaries
In programming, a dictionary is considered an unordered collection
• This means that the concept of sorting really doesn't apply naturally to dictionaries

(unlike a real dictionary, which is definitely sorted!)

Another important fact is that only immutable types can be used as the keys
• So you can use integers, strings and floating-point numbers for keys
• This makes dictionaries a little more flexible than lists in that regard
• Note that lists can only use integers as an index (key)

22

Dictionaries
Here is another example of a dictionary where we map Arabic numerals to Roman numerals:

roman = { 1: 'I', 5: 'V', 10: 'X', 50: 'L', 100: 'C'}
• Note that 1, 5, 10, etc. are not indexes as with a list, but are rather keys

If we try to use a key that is not in the dictionary, the program will crash

So, first we should use the in operator to check if the value is in the dictionary
• An example is given on the next slide

23

Dictionaries
number = 10
if number in roman:

print(roman[number])
else:

print('Numeral not recognized.')

Another option is to use the get method for dictionaries
• If we don't know if a key is in the dictionary, we can use the get method instead of [] to retrieve a value
• We must provide an argument that says what should be used as the value if the key is not found. An

example:
res = roman.get(number, 'Numeral not recognized')
print(res)

24

Word Frequencies for Spam Filtering
Getting back to our original problem, we want to build a program that will do basic spam
filtering
• Part of the solution will include counting how many times each word appears in the input email

message

We can define a dictionary called count to serve this purpose:
count = {}

To increment the count for a word, we can use the += 1 notation
• Suppose the variable word has the string we want to increment the count of
• We can write this: count[word] += 1

25

Word Frequencies for Spam Filtering
But what if we aren't sure the string stored in word is already in the dictionary?
• Code like count[word] += 1 will cause the program to crash if there is no value associated with word

that we can add 1 to

We should first check using either the if-based approach we saw earlier, or use the setdefault
method, which avoids the need to use an if statement

Both of these techniques are most easily understood by example

26

Word Frequencies for Spam Filtering
Option 1: Use an if statement:

if word not in count:
count[word] = 1

else:
count[word] += 1

Option 2: Use the setdefault method:
• The setdefault method can take the place of the if statement
• We will set count[word] to 0 only if the string inside word is not a key in the dictionary yet

count.setdefault(word, 0)
count[word] += 1

27

Word Frequencies for Spam Filtering
Now we need to get the individual words from the input file so that we can use our count dictionary
to count how many times each word appears in the file

We can use split method:
for line in open('../PythonLabs/data/text/quote1.txt'):

words = line.split()

quote1.txt contains this text:
If you have no confidence in self,

you are twice defeated in the race of life.
With confidence, you have won even before you have
started.
-- Marcus Tullius Cicero (106 BC -- 43 BC)

28

Word Frequencies for Spam Filtering
quote1.txt contains this text:

If you have no confidence in self,
you are twice defeated in the race of life.

With confidence, you have won even before you have started.
-- Marcus Tullius Cicero (106 BC -- 43 BC)

Calling split on each line of the text yields these lists:
['If', 'you', 'have', 'no', 'confidence', 'in', 'self,']
['you', 'are', 'twice', 'defeated', 'in', 'the', 'race', 'of', 'life.']
['With', 'confidence,', 'you', 'have', 'won', 'even', 'before', 'you', 'have', 'started.']
['--', 'Marcus', 'Tullius', 'Cicero', '(106', 'BC', '--', '43', 'BC)']

29

Word Frequencies for Spam Filtering
So far this is looking pretty good. Let's insert each word into a dictionary now and keep track of
the counts:

count = {}
for line in open('../PythonLabs/data/text/quote1.txt'):

words = line.split()
for word in words:

count.setdefault(word, 0)
count[word] += 1

The count dictionary will now contain a count of every word in the file
◦ The full dictionary is shown on the following slide

30

Word Frequencies for Spam Filtering
{'If': 1, 'you': 4, 'have': 3, 'no': 1, 'confidence': 1,
'in': 2, 'self,': 1, 'are': 1, 'twice': 1, 'defeated': 1,
'the': 1, 'race': 1, 'of': 1, 'life.': 1, 'With': 1, 'confidence,': 1,
'won': 1, 'even': 1, 'before': 1, 'started.': 1, '--': 2,
'Marcus': 1, 'Tullius': 1, 'Cicero': 1,
'(106': 1, 'BC': 1, '43': 1, 'BC)': 1}

Do you see any problems with this?

31

Word Frequencies for Spam Filtering
{'If': 1, 'you': 4, 'have': 3, 'no': 1, 'confidence': 1,
'in': 2, 'self,': 1, 'are': 1, 'twice': 1, 'defeated': 1,
'the': 1, 'race': 1, 'of': 1, 'life.': 1, 'With': 1, 'confidence,': 1,
'won': 1, 'even': 1, 'before': 1, 'started.': 1, '--': 2,
'Marcus': 1, 'Tullius': 1, 'Cicero': 1,
'(106': 1, 'BC': 1, '43': 1, 'BC)': 1}

Do you see any problems with this?
◦ How can we improve how we count words?

32

Word Frequencies for Spam Filtering
We have a few problems:
• Punctuation is causing issues: "confidence" and "confidence," (with a comma) are seen as separate

words
• This means they are treated as different keys in the dictionary
• We might have the same word appearing in the text with different capitalization (not shown in this

example)

To solve these two problems we will convert all words to lowercase, which is easy, and we will
strip out all punctuation marks

33

Stripping Strings
The strip method in Python will let us delete from the beginning and end of a string any
characters from the string that we don't want
For example, s1.strip('0123456789') removes all numerals at the start or end of string s1

Here's a concrete example:
s1 = '2/13/2193. Astronauts living on Mars base: 4,920'
s2 = s1.strip('0123456789')

s2 will contain '/13/2193. Astronauts living on Mars base: 4,'
s1 will remain unchanged

34

Stripping Strings
Because stripping punctuation is a common operation in text processing, Python has it built-in
through the string module:

import string

s1 = 'Good morning!'
s2 = s1.strip(string.punctuation)

s2 will contain 'Good morning'

35

Word Frequencies for Spam Filtering
With these programming capabilities at hand, we can write a function wf that will create a
dictionary of word frequencies for us
◦ It will rely on a helper function tokenize that will split a string into a list of lowercase words

with punctuation marks stripped from each lowercase string

In programming, the word tokenize means to process an input string, splitting or dividing it into
its constituent parts (or substrings)
• These substrings are the tokens

Let's take a look at the tokenize function

36

Word Frequencies for Spam Filtering
import string

def tokenize(s):
tokens = []
for x in s.split():

tokens.append(x.strip(string.punctuation).lower())
return tokens

Let's break down this code:
• s is a string – this could be a line from the file
• x is a word taken from the string (via split)
• x is stripped of its punctuation, converted to lowercase, and then appended to the tokens list

37

Word Frequencies for Spam Filtering
Let's see an example of tokenize:

res = tokenize('With confidence, you have won even before you have started.')

res will contain the list:
['with', 'confidence', 'you', 'have', 'won', 'even', 'before', 'you', 'have', 'started']

Now we can look at the completed wf function, on the next slide

This function will not be explicitly used in implementing our spam filter, but looking at it will give
us a sense of how to work with dictionaries in an effective manner

38

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

Let's break down this code on the next few slides

39

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

40

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

41

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

42

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

43

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

44

Word Frequencies for Spam Filtering
Let's see an example of wf for the quote1.txt file

res = wf('./quote1.txt')

res will contain:
{'if': 1, 'you': 4, 'have': 3, 'no': 1, 'confidence': 2,
'in': 2, 'self': 1, 'are': 1, 'twice': 1, 'defeated': 1,
'the': 1, 'race': 1, 'of': 1, 'life': 1, 'with': 1, 'won': 1,
'even': 1, 'before': 1, 'started': 1, '': 2, 'marcus': 1,
'tullius': 1, 'cicero': 1, '106': 1, 'bc': 2, '43': 1}

Note that the problems we encountered before have been fixed (e.g., “confidence”)

45

Spamicity (aka Spaminess)
Now that we have a way of counting the number of occurrences of each word in a file, we can
use it to help us calculate the probability that an email is spam

Suppose we know that the word “secret” appears in 252 out of 1000 spam messages
◦ We might define the spam probability of “secret” as 252/1000 = 0.252
◦ In other words, the probability of seeing the word “secret” in a piece of spam is 0.252

This idea of a probability of some event being based on some known fact is called conditional
probability

46

Spamicity
The probability of seeing a particular word w in an email we know is spam will be denoted:

P(w|spam)

Read this as “the probability of seeing word w, given a spam email”

From the Internet we can download training data that gives us these probabilities for a large
number of words.

◦ This will allow us to "train" our algorithm to be able to detect spam
◦ The data is made available by people who design spam filtering algorithm.

Ultimately, we want to compute the “spamicity” of w, which is P(spam|w)
◦ This is the probability that an email is spam, given that w appears in the email

47

Spamicity
The textbook's SpamLab contains training data we can load using this code:

from PythonLabs.SpamLab import load_probabilities
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')

pbad is a dictionary that tells us the probability of a word appearing in a spam message

Likewise, pgood is a dictionary that tells us the probability of a word appearing in a non-spam
message

48

Spamicity
For example, pbad['money'] is 0.127 and pgood['money'] is 0.0164

We see that the probability of “money” appearing in a spam message is 0.127, and its
probability of appearing in a non-spam message is 0.0164

What if we encounter a word that is not in either dictionary?
• Then, we really don't know anything about the word and can't use it to help us identify spam messages

49

Spamicity
With pbad and pgood we can now define the “spamicity” of a word (between 0 and 1)
• The spamicity will be closer to 1 than to 0 when an word appears in more spam messages than good

messages
• The spamicity is 0.5 if the word appears in as many spam messages as good messages.
• The spamicity will be closer to 0 when a word is found in more good messages than in spam messages

Define spamicity of a word w using this formula:
spamicity(w) = P(spam|w)

= P(w|spam) / (P(w|spam) + P(w|good))

This formula is based on a concept called Bayesian inference, which is explained a little in the
textbook if you want to check it out

50

The spamicity() Function
• The two conditional probabilities in the formula will come directly from the pbad and pgood

dictionaries
• We can now write a function to compute spamicity:

def spamicity(w, pbad, pgood):
if w in pbad and w in pgood:

return pbad[w] / (pbad[w] + pgood[w])
else:

return None

• For example, spamicity("money") is 0.89, meaning that we predict 89% of incoming messages
containing the word “money” are spam
• Note if the word w is not in both dictionaries, the value None is returned

51

Identifying Junk Mail
Now we will use our spamicity function to help us classify entire emails as good or spam
• Somehow we need to combine the spamicity values of the words in a message

The approach we will take is to consider “interesting” words – those words with high or low
spamicity

Let's define the “interestingness quotient” (IQ) of a word w as:
IQ(w)=|0.5-s|, where s is the spamicity of word w

• The IQ of a word will range from 0.0 to 0.5, with 0.5 meaning a very interesting word
• So a word with a high spamicity will have an IQ near 0.5, but so will a low-spamicity word

52

Identifying Junk Mail
So the IQ(w)=|0.5-s|, where s is the spamicity of word w

Let's consider some examples:
• If s = 0.90, then |0.5 - 0.90| = 0.4
• If s = 0.05, then |0.5 - 0.05| = 0.45

A “boring” word would have s near 0.5.
◦ If s = 0.47, then it's IQ is |0.5-0.47| = 0.03, which is quite low

53

Identifying Junk Mail
We will use a data structure called a priority queue,
◦ A priority queue is a special type of list that is always sorted
◦ This will lets us add and remove items from a collection, always putting the highest priority

item at the front

The SpamLab contains a version of a priority queue we can use to keep track of the most
interesting words in an email
◦ It can take in a word along with it's spamicity value
◦ And will sort words by their “interestingness quotient” (IQ)

54

Identifying Junk Mail
As we add or remove words, the most interesting word will always be at the front

Here's a short example of how we might use the queue
from PythonLabs.SpamLab import WordQueue

queue = WordQueue(10) # creates a queue to hold 10 words
s = spamicity('there', pbad, pgood)
queue.insert('there', s) # the insert method translates the spamicity to IQ
s = spamicity('book', pbad, pgood)
queue.insert('book', s)

55

Identifying Junk Mail
Now we can define the top-level function pspam, which will give us a probability that a
particular message is spam

The input will come from a file

The function will depend on another function called combined_probability that uses some
formulas from probability theory to combine all the word spamicity values into a single number

See junk_mail.py

56

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

57

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

58

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

59

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

60

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

61

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

62

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

63

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

64

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt')
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

65

pspam() Example #1
pspam('../PythonLabs/data/email/msg1.txt')
• Result: 0.929304 (high probability of spam)

File contents: (correctly identified as spam)
Hurting for funds right now?

It doesn't have to be that way. Here is 1,500 to ease your pain:
http://bulk.hideorganic.com/171026390236329103248372180

Transfer immediately to the account of your choice:
http://bulk.hideorganic.com/171026390236438808248372180

Take your time to pay off this amazing loan. Small payment due in late September
or early October (and not all in one payment!).

66

pspam() Example #2
pspam('../PythonLabs/data/email/msg2.txt')
• Result: 4.400695e-05 (practically a zero probability)

File contents: (correctly identified as non-spam)
Hi John:

Interesting that the key might be preventing ANY crystals from being
able to nucleate - which kicks off a chain reaction and the whole thing
goes to hell. Thus the very clean pot and not allowing anything to
splash up onto the sides. Cooking really is chemistry!
Thanks for the links.

Susie
[... rest of message follows ...]

67

pspam() Example #3
pspam('../PythonLabs/data/email/msg3.txt')
• Result: 0.058101 (low probability of spam)

File contents: (incorrectly identified as non-spam)
Guess what conery@cs.uoregon.edu!
AUTO CLEARANCE ENDS TONIGHT! : Price Drop On All Vehicles
Want To Drive A Brand New Car Today For A Fraction Of What You Thought You Would Pay?
Now You Can!
Dealers Have Drastically Reduced MSRPs.
AVAILABLE ONLY UNTIL 10:00 PM TONIGHT!
http://server.beavercreekdistrict.com/3813010413df842258012632451675
Click this link to unsubscribe: http://server.beavercreekdistrict.com/3813010413df528010632451675

68

pspam() Example #4
pspam('../PythonLabs/data/email/msg4.txt')
• Result: 3.758445e-15 (practically a zero probability)

File contents: (correctly marked as non-spam)
Hi John,

I meant to ask you if you tried the revised cat command. Were you able to
do what you needed?

Regarding your lab meetings... sure, I could come and give a brief
description and answer any questions your group members might have. My
assistant, Erik, has just put up more information from Chris' slides
onto the wiki that might be helpful. It would be helpful to me if I
knew in advance more specifically what kind of questions to address before
coming - perhaps you can collect some at today's group meeting?

Cheers,
Rob

69

Example: Date Decoder
Consider the task of converting a date from one format to another
• A date of the form 8-MAR-85 includes the name of the month, which must be translated to a number
• We can use a dictionary to map month names to numbers

Let's consider a function date_decoder
• First it uses string operations to split the date into its three parts
• Then it translates the month to digits and corrects the year to include all four digits: 70-99 will be

mapped to 1970-1999, and 00-69 will be mapped to 2000-2069
• Finally, the function returns the tuple (year, month, day)

See date_decoder.py

70

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-')
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85'))
print(date_decoder('17-Apr-25'))

71

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-')
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85'))
print(date_decoder('17-Apr-25'))

72

Make the input string lowercase and
then split it into separate parts,
using '-' as the separator

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-')
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85'))
print(date_decoder('17-Apr-25'))

73

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-')
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85'))
print(date_decoder('17-Apr-25'))

74

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-')
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85'))
print(date_decoder('17-Apr-25'))

75

Extract the string containing
the year (e.g. '85'), convert it
to an integer, then add 1900

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-')
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85'))
print(date_decoder('17-Apr-25'))

76

Add 100 to the year
if the two-digit year
is less than 70

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-')
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85'))
print(date_decoder('17-Apr-25'))

77

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-')
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85'))
print(date_decoder('17-Apr-25'))

78

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-')
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85'))
print(date_decoder('17-Apr-25'))

79

Example: Student Database
A dictionary can contain any data we like – this includes lists

Imagine we wanted to maintain lists of students organized by major

We could make a dictionary where the key is major (string) and the value for each key is the list
of student names (a list of strings)

Consider a function add_student that takes three arguments:
1. A dictionary structured as described above
2. The name of a student
3. The major for that student

The function adds the student to the database

80

Example: Student Database
def add_student(majors, student_name, student_major):

majors.setdefault(student_major, [])
majors[student_major].append(student_name)

The first line initializes the list of students in a major to be the empty list
• This code is executed the first time a new major is encountered

The second line locates the list for a particular major (majors[student_major])
and then appends that student's name to the list with append(student_name)

81

Example: Student Database
To see how this function works, first create an empty dictionary:

major_dict = {}

Then we can call the function to add students one by one:
add_student(major_dict, 'Adam', 'CSE')
add_student(major_dict, 'Dave', 'CSE')
add_student(major_dict, 'Chris', 'ECO')
add_student(major_dict, 'Terry', 'AMS')
add_student(major_dict, 'Erin', 'CSE')
add_student(major_dict, 'Frank', 'ECO')

major_dict = { 'CSE': ['Adam', 'Dave', 'Erin], 'ECO': ['Chris', 'Frank'], 'AMS': ['Terry'] }

82

Example: Student Database
We can answer several questions now:
• Who is majoring in Computer Science?

cse_majors = major_dict['CSE']
• How many students are majoring in Economics?

num_econ = len(major_dict['ECO'])

A dictionary does not support “reverse lookup”
Multiple keys could actually be mapped to the same value

◦ For example, if the students have multiple majors
Another example, consider a dictionary where the keys are book titles and the values are authors
• Since a single author might write several books, there is no way with a dictionary to reverse the title-to-

author mapping and uniquely map authors to book titles

83

Example: Student Database
• In the prior student example, each student has exactly one major, so we could create a new

dictionary that maps students to majors
• To do this we will need to iterate over the keys of the major_dict dictionary
• Fortunately, there is a dictionary method that will help with this process: keys()

student_dict = {} # map: student -> major

for major in major_dict.keys(): # for each major:

for s in major_dict[major]: # for each student in that major:

student_dict[s] = major # record that student's major

student_dict = {'Adam': 'CSE', 'Dave': 'CSE', ...}

84

Example: Acronym Generator (v1)
Let's explore a function that will create an acronym from the first letter of each “long” word in a
list

We will define a “long” word to be any word with more than two letters

After studying this first version, we will look at a second version that affords a little extra
flexibility in creating acronyms

85

Example: acronym1.py
def acronym(phrase):

result = ''
words = phrase.split()
for w in words:

if len(w) >= 3: # keep only long words
result += w.upper()[0]

return result

86

Example: Acronym Generator (v2)
Python allows function arguments to have default values
• If the function is called without the argument, the argument gets its default value
• Otherwise, the argument's value is given in the normal way

We have seen a few examples of functions that have optional arguments

A good example is the round() function, which takes two arguments: the value to round and an
optional argument that indicates how many digits after the decimal point we want
• If the second argument is not provided, the number of digits defaults to 0. For example:

round(4.56324) = 5
round(4.56324, 2) = 4.56

87

Example: Acronym Generator (v2)
The second version of acronym takes an optional argument, include_shorts, that tells the
function to include the first letter of all words (including short words), but short words will not
be capitalized if they are included

The first version of acronym simply discarded all short words

88

Example: acronym2.py
def acronym(phrase, include_shorts=False):

result = ''
words = phrase.split()
for w in words:

if len(w) >= 3:
result += w.upper()[0]

elif include_shorts:
result += w.lower()[0]

return result

By default, the optional argument is False, causing short words to be excluded

When the optional argument is True and w is a short word, the first letter of the word in
lowercase is concatenated to result

89

Example: acronym() (v2)
Examples:

acronym('United States of America') still returns 'USA'

acronym('United States of America', True) returns 'USoA'

90

Optional Arguments
As another example, suppose we want to make a revised version of the bmi() function from
earlier in the course:

def bmi(weight, height):
return (weight * 703) / (height ** 2)

This version of bmi() assumes weight is given in pounds and height in total inches

Suppose instead we want to give the programmer the option to use metric or standard (English)
units
• We can add a third, optional argument, units, that defaults to metric if the programmer doesn't give a

third argument

Let's see the function on the next slide

91

Example: bmi_v4.py
def bmi(height, weight, units = 'metric'):

if units == 'metric':
return weight / height**2

elif units == 'standard':
return (weight * 703) / (height ** 2)

else:
return None

Examples: Return Value:
bmi(100, 150, 'standard') 10.545
bmi(100, 150) 0.015
bmi(100, 150, 'metric') 0.015
bmi(100, 150, 'unknown') None

92

Questions?

93

