
Computer Science
Principles
CHAPTER 4 – SEARCHING AND SORTING ALGORITHMS. SCALABILITY

Announcements
Reading: Read Chapter 4 of Conery

Acknowledgement: These slides are revised versions of slides prepared by
Prof. Arthur Lee, Tony Mione, and Pravin Pawar for earlier CSE 101 classes.
Some slides are based on Prof. Kevin McDonald at SBU CSE 101 lecture
notes and the textbook by John Conery.

2

Example: the Luhn Algorithm
The Luhn algorithm checks if an account number (such as a credit card number)
is valid

How it works:

1. Process each digit in turn, from right to left. The rightmost digit is treated as
being in position #1.
◦ Odd-positioned digits are added as-is to a running total.
◦ Even-positioned digits are doubled. If that doubled value is less than 10, add it to the

running total. Otherwise, add the two digits individually to the running total.

2. If the sum is a multiple of 10, the account number is valid. Otherwise it isn’t.

3

Example: the Luhn Algorithm
• Here’s an example of this computation for account number 79927398713
• Odd-positioned values: 3, 7, 9, 7, 9, 7 (remember: indexes start from 1 for this

algorithm)
• Add them: 3+7+9+7+9+7=42
• Even-positioned values: 1, 8, 3, 2, 9
• Even-positioned values doubled: 2, 16, 6, 4, 18

• 16 and 18 are both >= 10, so we will add 7 (1 + 6) and 9 (1 + 8) to the total
• Add: 42+2+7+6+4+9=70
• 70 is divisible by 10, so the account number is valid

4

Example: the Luhn Algorithm
We know how to tell if a number is divisible by 10, right?

The remainder operator (%):
if num % 10 == 0: # we would say "num mod 10"

code for when num is divisible by 10
else:

code for when num is not divisible by 10

We also know how to tell if a number is even or odd, right?

5

Example: the Luhn Algorithm
Sometimes it is useful (or necessary) to put one if statement inside of
another if statement
◦ These are known as nested if statements

We will find nested if statements useful in implementing the Luhn
algorithm
Python source code for the algorithm is given in a few slides, but see the
file luhn.py itself for fully-commented code that explains every line of the
source code

6

Example: the Luhn Algorithm
Some additional Python functionality that will be useful in implementing the

Luhn algorithm:

• We can write *= and //= to multiply or divide (respectively) one number by another

• Example: salary *= 3 would triple the value stored in variable salary

To extract digits one-by-one from an integer, we can use repeated division by 10:

• num % 10 would give us the rightmost digit of 10

• num //= 10 would then remove that digit from num

• Suppose num is 942. num % 10 would give us 2

• Then num //= 10 would change num from 942 to 94

7

Example: luhn.py
def luhn(number):

total = 0
position = 1
while number > 0:

digit = number % 10
if position % 2 == 1:

total += digit
else:

digit *= 2
if digit >= 10:

total += 1 + (digit % 10)
else:

total += digit
number //= 10
position += 1

return total % 10 == 0

8

Searching
Searching is a common operation in many different situations:

◦ Finding a file on your computer (e.g., Spotlight on MacOS, Search box in
Windows Explorer)

◦ Online dictionaries and catalogs
◦ The “find” command in a word processor or text editor
◦ Looking for a book, either on a bookshelf at home or in a library
◦ Finding a name in a phone book or a word in a dictionary
◦ Searching a file drawer to find customer information or student records

9

Searching
What these searching problems have in common:
◦ We have a potentially large collection of items
◦ We need to search the collection to find a single item that matches a certain

condition (e.g., name of book/name of a person)

10

Sorting
Sorting involves reorganizing information so it’s in a particular order
◦ Sorting could help for faster searching

There are many algorithms available for both searching and sorting of
data
◦ Recall in the first week we used "Selection Sort" and "Insertion Sort"

11

Iterative algorithms
We will explore two algorithms in this unit. Both algorithms are iterative
and rely heavily on loops
◦ Searching algorithm: linear search
◦ Sorting algorithm: insertion sort

We will use the IterationLab module to help us explore these two
algorithms

12

Linear search
Linear search is the simplest, most straightforward search strategy
The idea is to start at the beginning of a collection and compare items one after
another until it finds the desired item
◦ Also called sequential search because the elements of the collection are examined

sequentially
Recall the index method for lists, which tells us the position of an element in a
list
Example:

notes = ['do', 're', 'me', 'fa', 'sol', 'la', 'ti']
notes.index('sol') # will return the value 4

The index method is performing a search

13

Linear search
Also recall the in operator, which tells us if an element is present in a list
This operator is necessary because the index method will cause our
program to crash if the element we want is missing

if 'sol' in notes:
print('Present in list...')

else:
print('Not present in list...')

14

Linear search
The linear search function in IterationLab, isearch, is like Python’s index
method
• Pass it a list and an item to search for
• If the item is in the list, the function returns the location where it was found
• If the item is not in the list, the function returns None

Examples:
from PythonLabs.IterationLab import isearch
notes = ['do', 're', 'me', 'fa', 'sol', 'la', 'ti']
print(isearch(notes, 'ti')) # returns 6
print(isearch(notes, 'ba')) # returns None

15

PythonLabs: RandomList
For our experiments on searching and sorting algorithms we’re going to
need some data to test our programs

The lab module defines a special type of list called a RandomList
◦ We can make lists of integers or strings
◦ The list will not contain any duplicates
◦ When we do a searching experiment, we can use items we know are in the list

(so the search succeeds) or not in the list (so the search fails)

16

RandomList examples
List of 10 random integers:

from PythonLabs.Tools import RandomList
rand_nums = RandomList(10)
print(rand_nums)

Sample output:
[84, 62, 76, 24, 80, 42, 17, 54, 7, 14]

List of 5 random fish:
fish = RandomList(5, 'fish')
print(fish)

Sample output:
['black bass', 'halibut', 'herring', 'flounder', 'mackerel']

17

RandomList examples
After we make a RandomList object, we can ask it to give us a randomly
chosen item from the list
First let’s search for a fish that is in the list:

This returns a random fish that is in the list of fish
success_fish = fish.random('success')

Will return the index of the chosen fish (varies since random)
isearch(fish, success_fish)

18

RandomList examples
Now let’s request the name of a fish that is not in the list:

This generates a fish that is NOT present in the fish List
fail_fish = fish.random('fail')

isearch(fish, fail_fish) # returns None

See isearch_tests.py

19

Visualizing isearch()
IterationLab supports visualization of isearch
Visualizing the action will help us design and implement the algorithm.
Steps:
1. Make a list of random integers
2. Print the list in the terminal window
3. Pick a random number to search for
4. Display the list on the canvas (only works for integers)
5. Call the isearch function on the list and display the result

The Python code for this algorithm is given on the next slide and in
isearch_visualization.py

20

Visualizing isearch()
from PythonLabs.IterationLab import view_list, isearch
from PythonLabs.Tools import RandomList

nums = RandomList(20)
print('nums: ' + str(nums))
target = nums.random('success')
print('target: ' + str(target))
view_list(nums)
result = isearch(nums, target)
print('result: ' + str(result))

21

Implementing linear search
One way to write our own version of isearch is to use a for loop with a
range expression

def isearch(a, x):
for i in range(len(a)):

if a[i] == x:
return i

return None

Note the i variable acts as an index into a
We do this so that we can return the position (index) of the target
element, x, in the list

22

Implementing linear search
def isearch(a, x):

for i in range(len(a)):
if a[i] == x:

return i
return None

If the item is found, the first return statement tells Python to exit the loop
and return before the iteration is done
If the item is not in the list, the loop terminates and the other return
statement is executed returning None

23

While loops
Another way to write the function is shown below:

def isearch(a, x):
i = 0
while i < len(a):

if a[i] == x:
return i

i = i + 1
return None

The while statement is another kind of loop available in Python that is just
as important as the for statement

24

While loops
Python evaluates the Boolean expression next to
the keyword while
If the expression is true, the statements in the body
of the loop are executed
Python then goes back to the top of the loop to
evaluate the Boolean expression again

25

def isearch(a, x):
i = 0
while i < len(a):

if a[i] == x:
return i

i = i + 1
return None

While loops
The loop terminates when the Boolean expression
becomes false
Note that the index variable i must be initialized
before the while statement
The i variable is updated inside of the loop
◦ If i never changes, the program will be caught in an

infinite loop

26

def isearch(a, x):
i = 0
while i < len(a):

if a[i] == x:
return i

i = i + 1
return None

While loops vs. for loops
Why does Python give us two ways to write loops?

For loops are appropriate when you know or can calculate the number of
times the loop’s body must be executed
Use a while loop when we can’t determine ahead of time the number of
repetitions

27

While loops vs. for loops
Advice: unless there is a good reason to use a while loop, use a for loop
◦ Programs will be shorter, simpler and less likely to contain errors

The single line of code for i in range(len(a)) would require three lines
if written as a while loop:

i = 0
while i < len(a):

...
i = i + 1

28

Linear search: performance
The linear search algorithm looks for an item in a list
◦ Start at the beginning (a[0], or “the left”)
◦ Compare each item, moving systematically to the right (i = i + 1)

How many comparisons will the linear search algorithm make as it
searches through a list with n items?
◦ Another way to phrase it: how many iterations will our Python function make

in its while loop?
◦ It depends on whether the search is successful or not

29

Linear search: performance
For an unsuccessful search:
◦ Visit every item before returning None
◦ i.e., make n comparisons (n = total number of items)

For a successful search, anywhere from 1 and n iterations are required
◦ Search may be lucky and find the item in the first location
◦ At the other extreme, the item might be in the last location
◦ Expect, on average, n/2 comparisons

30

Sorting
The linear search algorithm is an example of an iterative algorithm
◦ Start at the beginning of a collection
◦ Systematically progress through the collection, all the way to the end, if

necessary

A similar strategy can be used to sort the items in a list

31

Sorting
We will now look at a simple, iterative sorting algorithm known as
insertion sort
The basic idea is:
◦ Pick up an item, find the place it belongs, insert it back into the list
◦ Move to the next item and repeat

32

Reviewing Insertion Sort
Want to sort these cards from Ace to 8

33

Insertion sort
Begin by leaving the first card (#5) where it is

34

Insertion sort
•The second card (#3) is smaller than the first card
•Insert it in front of the first card

35

Insertion sort
•The second card (#3) is smaller than the first card
•Insert it in front of the first card

36

Insertion sort
•The third card (#6) is larger than the first two cards
•So, it does not need to move

37

Insertion sort
•The fourth card (#1) is smaller than the first three cards
•Insert it in front of the first card, shifting the others

38

Insertion sort
•The fourth card (#1) is smaller than the first three cards
•Insert it in front of the first card, shifting the others

39

Insertion sort
•The fifth card (#7) is larger than the first four cards
•So, it does not need to move

40

Insertion sort
•The sixth card (#4) should be inserted in between the second (#3) and
third (#5) cards

41

Insertion sort
•The sixth card (#4) should be inserted in between the second (#3) and
third (#5) cards

42

Insertion sort
•The seventh card (#8) is larger than the first six cards
•So, we don’t need to move it

43

Insertion sort
•The eighth card (#2) should be inserted in between the first (#1) and
second (#3) cards

44

Insertion sort
•The eighth card (#2) should be inserted in between the first (#1) and
second (#3) cards

45

Insertion sort
•The eighth card (#2) should be inserted in between the first (#1) and
second (#3) cards

46

Insertion sort
The important property of the insertion sort algorithm: at any point in this
algorithm, part of the list is already sorted
More specifically, the left-hand part of the list is the sorted part and the right-
hand part is still unsorted

1. The initial item to work on is at index 1
2. Pick up the current item
3. Scan the left-hand part backwards from that index until we find an item lower than

the current item or we arrive at the front of the list, whichever comes first
4. Insert the current item back into the list at this location
5. The next item to work on is to the right of the original location of the item
6. Go back to step 2

47

Insertion sort example
The example here illustrates the general idea
The underlined letters constitute the sorted part of the
array
Initially, the leftmost item is considered to be in a sorted
sub-list by itself, and all the other items are in an
adjoining unsorted sub-list
The leftmost item in the unsorted sub-list is selected and
inserted into its correct position in the sorted sub-list

48

Insertion sort in Python (almost)
def isort(a):

i = 1
while i < len(a):

x = a[i]
remove x from a
j = location for x
insert x at a[j+1]

• We have a couple of gaps in this pseudocode, but we’re on our way to
writing a Python function that implements insertion sort

49

Insertion sort in Python (almost)
The figure on the next slide shows the core part of the algorithm:
◦ Select the next item (step (a))
◦ Remove the item from the list (step (b))
◦ Determine at which index the item should go (step (b) also)
◦ Insert the item at that index (step (c))

When we’re working on the item at index 3, the values to the left (indexes
0 through 2) have been sorted

The statements in the body of the while loop find the new location for this
item and insert it back into the list

50

Insertion sort in Python (almost)

51

Visualizing inserting sort
Before delving any deeper yet into the code, it might be helpful to watch a
visualization of insertion sort in action
See isort_visualization.py
Also see http://visualgo.net/en/sorting

from PythonLabs.IterationLab \
import view_list, isort

from PythonLabs.Tools import RandomList
nums = RandomList(20)
print('nums before sorting: ' + str(nums))
view_list(nums)
isort(nums)
print('nums after sorting: ' + str(nums))

52

http://visualgo.net/en/sorting

Moving items in a list
In order to implement the steps in the body of the main loop we need to
know:
◦ How to remove an item from the middle of a list
◦ How to insert an item into a list

Both operations are performed by methods of the list class
Call a.pop(i) to delete the item at location i in list a
◦ The method returns the item that was deleted

Call a.insert(i, x) to insert item x into the list a at location i
Some examples of these methods are on the next slide

53

Moving items in a list
Suppose we had a random list of seven chemical elements (e.g., oxygen, hydrogen,
etc.):

a = RandomList(7, 'elements')
a: ['Co', 'Tm', 'U', 'Hs', 'F', 'Rn', 'Y']

Now let's remove the item at index 4 and save it in x:
x = a.pop(4) # x will contain 'F'

The list a will become:
['Co', 'Tm', 'U', 'Hs', 'Rn', 'Y']

Let’s insert the element at index 2:
a.insert(2, x)

The list a will become:
['Co', 'Tm', 'F', 'U', 'Hs', 'Rn', 'Y']

54

Finding where an item belongs
During the insertion sort algorithm, after we pull an item out of the list,
we have to find the location to re-insert it
We’ll use an index variable j to specify which locations we are checking
Subtracting 1 from j will tell Python to move “left” during its search
We can use a while loop that keeps subtracting 1 from j until it finds the
place where item x belongs

while a[j-1] > x: # preliminary version
j = j – 1 # of loop

55

Finding where an item belongs
• There is a potential problem with this strategy: what if x is smaller than

everything to its left?
• The loop will reach a point where j = 0 and there is nothing remaining to

compare
• It will try to compare x to a[-1] – this compares to the last element in the list.
• This causes unexpected program behavior and eventually an index out of range error

• The solution is to keep iterating only if j > 0 and the item to the left is greater
than x
while j > 0 and a[j-1] > x: # final version

j = j – 1 # of loop

56

moveLeft()
•We can now write a helper function named moveLeft that inserts an item

where it needs to go
• A call to moveLeft(a, j) will remove the item at a[j] and insert it back into a

where it belongs

def moveLeft(a, j):
x = a.pop(j)
while j > 0 and a[j-1] > x:

j -= 1
a.insert(j, x)

• Example: let a = [1, 3, 4, 6, 2, 7, 5]
• After moveLeft(a, 4), a is [1, 2, 3, 4, 6, 7, 5] # Notice the 2 moved

57

Completed isort() function
•With a helper function to move items, writing isort is easy
• isort is the top-level function called to solve the entire problem of sorting a list of

numbers

• Use a for loop where an index variable i marks the start of the unsorted region
• Initially i will be 1 (the single item at a[0] is a sorted region of size 1)
• In the body of the loop, just call moveLeft to move the item at location i to its

proper position

def isort(a):
for i in range(1, len(a)):

moveLeft(a, i)

58

Completed isort() function
def isort(a):

for i in range(1, len(a)):
moveLeft(a, i)

• An example of how to use the isort function:
nums = RandomList(10)
isort(nums) # nums is now sorted

• See also isort_visualization.py if you installed PythonLabs

59

Aside: Boolean operators
• In the process of implementing the moveLeft function we used a new

Python keyword: and
• and, or and not are three of the Boolean operators that Python

provides for writing Boolean conditions in if statements and while loops

• p and q: True only when Boolean variables p and q are both True
• p or q: True if either p or q (or both of them) is True
• Note how this differs from the “or” used in everyday English
•not p: True if p is False; and False if p is True

60

Aside: Boolean operators
• Complex expressions can also have parentheses to form groups, as in p

and not (q or r)
• Python performs a kind of “lazy evaluation”, meaning it evaluates a

Boolean expression according to the rules of precedence and stops as
soon as it can determine if the entire expression will be True or False

• E.g. Python will evaluate the j > 0 part of while j > 0 and a[j-1] > x
before the a[j-1] > x part
• If it determines that j > 0 is False, there is no need to evaluate a[j-1] > x

because False and "anything" is always False

61

Example: Is it a leap year?
• Let’s look at an example of Boolean expressions
• A year is a leap year if:
• It is greater than 1582, and
• It is divisible by 4, except centenary years not divisible by 400 (e.g., 1700, 1800, 1900,

2100, etc.)
• Here is one way of expressing this definition in code:
• if the year is divisible by 4 and not 100, then it is a leap year
• else, if the year is divisible by 400, then it is a leap year
• otherwise, the year is not a leap year
• This logic is implemented in the code on the next slide, color-coded to map the

algorithm to Python code

62

Example: leapyear.py
year = int(input('Enter a year: '))
if year < 1582:

print('You must enter a year >= 1582.')
else:

if ((year % 4 == 0) and (year % 100 != 0)) or
(year % 400 == 0):
print('That is a leap year.')

else:
print('That is NOT a leap year.')

• Example leap years: 2012, 2000, 2400
• Not leap years: 2003, 1900

63

Example: Crazy grading scheme
Let’s look at another example of Boolean expressions
Students in Prof. Smith’s math class take two regular exams and a final exam.
The course grade is usually calculated as:

(25% * exam #1 score) + (25% * exam #2 score) + (50% * final exam score)

However some additional grading rules:
Rule #1: if a student scores less than a 60 on exam #1 or exam #2 (or both), they
fail the course with a grade of 50, regardless of the other grades
Rule #2: if a student scores 90 or higher on both exam #1 and exam #2, the
course grade is the average of these two scores, provided that their normally
weighted course grade is less than the average of those two scores

64

Example: Crazy grading scheme
Here are some examples of how the rules apply.
Exam #1: 48, exam #2: 92, final exam: 89
◦ Rule #1 applies: the grade is 50

Exam #1: 92, exam #2: 91, final exam: 60
◦ Rule #2 applies because the average of 92 and 91 is greater than the normal

weighted grade

Exam #1: 92, exam #2: 91, final exam: 100
◦ Don’t apply Rule #2 because the normal weighted grade is higher than the average of

92 and 91

Exam #1: 62, exam #2: 90, final exam: 75
◦ Neither one of the special rules applies, so we just take the normal weighted grade

65

Example: grades.py
def compute_grade(exam1_score, exam2_score, final_exam_score):

normal_grade = 0.25 * exam1_score + 0.25 * exam2_score + 0.5 * final_exam_score

if exam1_score < 60 or exam2_score < 60:
grade = 50

elif exam1_score >= 90 and \
exam2_score >= 90 and \
(exam1_score + exam2_score) / 2 > normal_grade:

grade = (exam1_score + exam2_score) / 2
else:

grade = normal_grade

return grade

66

isort: Algorithm performance
We saw earlier that for a list with n items we can expect, on average, to do
n/2 comparisons during a linear search
◦ Can we come up with a similar equation for insertion sort?

At first glance, it might seem that insertion sort is a “linear” algorithm like
linear search
◦ It has a for loop that progresses through the list from left to right

But remember that moveLeft also contains a loop
◦ The step that finds the proper location for the current item is also a loop
◦ It scans left from location i, going all the way back to 0 if necessary

67

isort: Algorithm performance
If we write isort without the moveLeft helper function, we can
see that one loop is inside another loop

def isort(a):
for i in range(1, len(a)): # Loop 1

j = i
x = a.pop(j)
while j > 0 and a[j-1] > x: # Loop 2

j = j - 1
a.insert(j, x)

68

isort: Algorithm performance
The outer loop has the same structure as the iteration
in linear search
◦ A for loop checking the index i from 1 up to n-1

Note that the items to the left of i are always sorted
The inner loop moves a[i] to its proper location in the
sorted region
◦ Thus the size of the sorted region grows on each iteration

An algorithm like isort that has one loop inside
another is said to have nested loops
◦ Need to understand the loops better to analyze the code

69

def isort(a):
for i in range(1, len(a)):

j = i
x = a.pop(j)
while j > 0 and a[j-1] > x:

j = j - 1
a.insert(j, x)

Nested loops
In the figure, a dot in a square indicates a potential
comparison when sort a list of 5 items
◦ The row number is i from the code on the previous slide

For any value of i, the inner loop might have to
compare values from a[i-1] all the way down to a[0]

70

The column number
refers to j in the code

Nested loops
def isort(a):

for i in range(1, len(a)):
j = i
x = a.pop(j)

while j > 0 and a[j-1] > x:
j = j - 1

a.insert(j, x)

So, as i increases, the potential number of comparisons also increases

Note the label next to a row is the value of i passed to the moveLeft function

71

The row number is i

The column number is j

Nested loops
The diagram is for a call to isort with a list of n=5 items
There are 4+3+2+1 = 10 dots total
◦ This shows there we be at most 10 comparisons

For a list of n=6 items, it could have 5 additional comparisons
◦ Then at most 15 comparisons = (5+4+3+2+1)

In general, for a list with n items, the potential number of
comparisons is n(n-1)/2 ≈ n2/2
We say that in the worst case, the sorting algorithm will make
approximately n2 / 2 comparisons

72

A question about isort
• How many comparisons will be made when isort is passed a list that is already

sorted, such as this list of 10 items?
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

• Consider the while loop’s condition:
while j > 0 and a[j-1] > x:

• The part a[j-1] > x will never be true! Do you see why?
• This means that the while loop’s body will never execute
• Therefore, the algorithm will compare a[j-1] > x exactly 9 times because the outer

loop will repeat exactly 9 times for this particular list:
for i in range(1, len(a)):

len(a) == 10 here

73

A question about isort
In general, for a list of n items that is already sorted, how many
comparisons will the program make?
◦ The outer loop will repeat exactly n-1 times, and, for each of those iterations,

perform the comparison a[j-1] > x exactly once
◦ Therefore, the code will perform exactly n-1 of those a[j-1] > x comparisons

This is the kind of algorithm analysis that computer scientists frequently
do, so let’s look at this topic in a little more detail

74

Estimating the # of comparisons
The formula for the worst case number of comparisons in isort is:
◦ n(n-1)/2 ≈ (n2 – n)/2

For small lists, we can compute the exact answer (e.g. n = 5):
◦ (52-5)/2 = 20/2 = 10

For larger lists, the –n term doesn’t affect the result much because n2 will
be much larger than –n

We say that the n2 term dominates the expression

Therefore, we can get a good estimate by computing only n2 / 2

75

isort: Comparisons depending on list size
This graph gives a sense of how much “work” the insertion sort algorithm
does on average, based on the length of the input list

76

Big O notation
Computer scientists use the notation O(n2) to mean:
◦ For large n, the number of comparisons will be roughly n2

O(n2) is read aloud as “oh of n-squared”
◦ Or sometimes “big oh of n-squared”
◦ Or sometimes “order n-squared”

There is a precise definition of what it means for an algorithm to be O(n2),
but for this course we’ll just use the notation informally
For isort, the notation means “on the order of n2 comparisons”
◦ Thus, insertion sort is a O(n2) algorithm

77

Big O notation
What about linear search? How efficient is that algorithm?
◦ Like insertion sort, linear search performs many comparisons

In the worst case, the linear search algorithm won’t find the desired item
because the item is not in the list
◦ In that case, the algorithm will need to inspect every one of the n items in the list

Therefore, we say that linear search is an O(n) algorithm
◦ “oh of n”
◦ “big oh of n”
◦ “order of n”
◦ All equivalent ways of expressing the efficiency

78

Scalability
The fact that the number of comparisons grows with the square of the list
size may not seem important
◦ For small-to-moderate-sized lists it’s not a big deal
◦ But execution time will start to be a factor for larger lists

The ability of an algorithm to solve increasingly larger problems is an
attribute known as scalability
◦ We say that an efficient algorithm scales well for larger inputs

We’ll revisit this idea after looking at more sophisticated algorithms a
future lecture

79

Selection sort
The selection sort algorithm is another O(n2) iteration-based algorithm for
sorting a list of values:
1. Find the smallest value. Swap it (exchange it) with the first value in the list.
2. Find the second-smallest value. Swap it with the second value in the list.
3. Find the third-smallest value. Swap it with the third value in the list.
4. Repeat finding the next-smallest value and swapping it into the correct

position until the list is sorted.

Let’s see some examples of how this algorithm works

Be sure to check out visualgo.net/en/sorting

80

http://visualgo.net/en/sorting

Selection sort: example #1

Eventually, only the largest value will remain
• But, it will be in the rightmost position, so we don’t need to do anything with

it

81

Selection sort: example #2

Note that sometimes the algorithm does no useful work, like “swapping” 5
with itself

82

Selection sort
Perhaps you noticed that during execution of the algorithm, the list is
divided into two parts:
◦ the sorted part (green)
◦ the yet-to-be-sorted part (black)

Also you may have noticed that the largest element winds up in the
rightmost spot without any additional work
Think about that for a moment. Suppose we have 10 elements in our list.
◦ Once we have moved the 9 smallest elements into their final positions, the

10th (largest) value must be in the rightmost position
◦ This has a small implication in the implementation

83

Selection sort
Python makes it very easy to swap (exchange) the values stored in two
variables
◦ To exchange the contents of two variables x and y, all we need to type is this:

x, y = y, x

This swapping notation also works with elements of a list
◦ Suppose i and j are valid indices of list a
◦ We can type this to swap the contents of a[i] and a[j]:

a[i], a[j] = a[j], a[i]

With the pseudocode from earlier and this syntax for swapping list
elements, we can implement selection sort

84

Example: selection_sort.py
def selection_sort(a):

for i in range(len(a)-1):
least_i = i
for k in range(i+1, len(a)):

if a[k] < a[least_i]:
least_i = k

a[least_i], a[i] = a[i], a[least_i]

• See selection_sort.py for fully commented code and additional
explanation

85

Example: Lucky numbers
We will define a lucky number as a positive integer whose decimal (base
10) representation contains only the lucky digits 4 and 7
◦ For example: numbers 47, 744, 4 are lucky, whereas 5, 73 and -4 are not

Consider a function is_lucky_number(num) that returns True if num
is a lucky number and False, otherwise
We need to extract each digit one at a time and inspect it
◦ If the digit is neither 4 nor 7, the number is not lucky
◦ Otherwise, it is 4 or 7, so discard it and move to the next digit, stopping when

we run out of digits

86

Example: lucky.py
def is_lucky_number(num):

if num <= 0:
return False

while num > 0:
if num % 10 == 4 or num % 10 == 7:

num //= 10 # discard the digit
else:

return False
return True

See lucky.py for fully commented code and additional explanation

87

Adding almost-lucky numbers
Define an almost-lucky number as a positive integer that is divisible by a
lucky number
◦ For example, 611 is almost-lucky because it is divisible by the lucky number 47

Consider a function almost_lucky_divisor(num) that returns the
largest lucky number that divides evenly into num if num is an almost-
lucky number
◦ The function returns None if num is not an almost-lucky number

Note that every lucky number is an almost-lucky number because every
lucky number is divisible by itself

88

Example: almost_lucky_divisor.py
def almost_lucky_divisor(num):

for divisor in range(num, 0, -1):
if num % divisor == 0 and is_lucky_number(divisor):

return divisor
return None

Note this code needs to be added with the prior lucky.py code to run.

See almost_lucky_divisor.py for all the code together.

89

Questions?

90

