
Computer Science
Principles
CHAPTER 3 – ITERATION, LISTS, AND ALGORITHM DESIGN

Announcements
Read Chapter 3 in the Conery textbook (Explorations in Computing)

Acknowledgement: These slides are revised versions of slides prepared by Prof. Arthur
Lee, Tony Mione, and Pravin Pawar for earlier CSE 101 classes. Some slides are based on
Prof. Kevin McDonald at SBU CSE 101 lecture notes and the textbook by John Conery.

2

Overview
This lecture will focus on:

i. iteration (code that repeats a list of steps)
ii. lists
iii. the thought process for designing algorithms

As an example, we will look at the ancient algorithm for finding prime numbers: the
Sieve of Eratosthenes

3

Prime Numbers
A prime is a natural number greater than 1 that has no divisors other than 1 and itself

Non-prime numbers are called composite numbers

Example primes: 2, 3, 5, 11, 73, 9967, . . .

Example composites: 4 (2x2), 10 (2x5), 99 (3x3x11)

Prime numbers play an important role in encrypting data and Internet traffic

4

The Sieve of Eratosthenes
The basic idea of the algorithm is simple. Below, it is briefly described in pseudocode:

make a list of numbers, starting with 2
repeat the following steps until done:

the first unmarked number in the list is prime
cross off multiples of the most recent prime

So, first cross off multiples of 2.

Then, cross off multiples of 3 that were not crossed off in the first round
◦ e.g., 6 is a multiple of 2 and 3, so it was crossed off in the first round

Next, cross off multiples of 5 that were not crossed off in the first two rounds
◦ Note that because 4 is a multiple of 2, all multiples of 4 were crossed off in the first round

5

The Sieve of Eratosthenes
The algorithm con/nues in this fashion un/l there are no more numbers to cross off

We will discuss more later exactly when it stops running

6

Devising an algorithm
The method depicted in the previous slide works well for short lists

But what if prime numbers between 2 and 100 are needed? …or 1000?
◦ It’s a tedious process to write out a list of 100 numbers
◦ Chances are a few arithmetic mistakes will be made (this is a boring job!)

Can this method be turned into a computation?

Yes, but we need to add more detail to the steps

7

Devising an algorithm
A detailed specification of the starting condition is there in the pseudocode (e.g., “make
a list”)

However, some things are not clearly defined:
◦ “Cross off” and “next number” need to be clearly defined if this will be coded in Python
◦ The stopping condition is also not clear

◦ When does the process stop? Perhaps when all the numbers are crossed off?

First, let us explore a few new ideas in Python

8

Collec&ons
In everyday life, collections of objects are often encountered
◦ Course catalog: a collection of course descriptions
◦ Parking lot: a collection of vehicles

Mathematicians also work with collections
◦ Matrix (a table of numbers)
◦ Sequence (e.g., 1, 1, 2, 3, 5, 8, ...)

In computer science collections are made by defining a data structure that includes
references to objects
The term object means a piece of data
◦ Objects include numbers, strings, dates, and more

9

Lists
An object that contains other objects is called a container
The simplest kind of container in Python is called a list
One way to make a list is to enclose a set of objects in square brackets:

ages = [61, 32, 19, 37, 42, 39]

The above statement is an assignment statement
◦ Python creates an object to represent the list and associates the name ages with the new

object

The len function tells us how many elements are in a list:
◦ len(ages) # returns the value 6

10

Lists of strings
Any kind of object can be stored in a list

This statement defines a list with three strings:
breakfast = ['green eggs', 'ham', 'toast']

Note what happens when we ask Python how many objects are in this list:
len(breakfast) # returns the value 3

◦ The list contains three string objects, so the return value of the call to len is 3
◦ Python did not count the individual letters with a list

However, len('apple') returns 5 … with a string, it counts the individual letters

11

Empty lists
A list can also be made with no objects:
◦ cars = []

An empty list is still a list, even though it contains no objects
◦ A bag with nothing in it is still a bag, even though it contains nothing

The length of an empty list is 0
◦ len(cars) # returns the value 0

It may seem strange to create a list with nothing in it, but usually it is done because the
list is needed but it will be filled later

12

Iteration
After building a container, most applications need to do something with each item in it

The idea is to “step through” the container to do something to each object

This type of operation is called iteration

For example, to find the largest item in an (unsorted) list, an algorithm would need to
check the value of every item during its search
◦ This algorithm will be examined a little later

13

For loops
The simplest way to “visit” every item in a list is to use a for loop

This example prints every item in the list cars :
for car in cars: # "for each car in a list of cars"

print(car)

Note that the statements inside a for loop – the body of the loop – must be indented
◦ Python assigns car to be the first item in the list and then executes the indented statement(s)
◦ Then it gets the next item, assigns it to car, and executes the indented statement(s) again
◦ It repeats unEl all the items in list have been processed

14

For loops
Suppose we had this code:
cars = ['Kia', 'Honda', 'Toyota', 'Ford']
for car in cars:

print(car + ' ' + str(len(car)))

The for loop would output this:
Kia 3
Honda 5
Toyota 6
Ford 4

Note that len(car) gives the length of each car string in the list as that car is “visited”
• len(cars) would give what?

15

Example: sum()
Consider a function that computes the sum of the numbers in a list
◦ Note this function exists in Python, named sum(), but by thinking how to write it we can

better understand for loops.

First, initialize a variable total to zero

Then, use a for loop to add each number in the list to total
After all items have been added, the loop will terminate, and the function returns the
final value of total

16

Example: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

See sum_tests.py

17

Example: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

18

Example: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

19

Example: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

20

Example: sum()
Now we will trace the execution of this code to understand it better

A blue arrow will indicate the current line of code being executed

A table of values will show how the variables change value over time

21

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

22

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

23

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

24

Trace execu)on: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

25

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

26

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

27

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

28

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

29

Trace execution in Visual Studio Code
Visual Studio Code features a powerful tool called a debugger which can help trace the
execu6on of a program
◦ Usually a debugger is used to help find bugs

First, set a breakpoint by clicking the mouse to the leA of the line where the computer
should pause execu6on

In sum_tests.py, put a breakpoint on line 8

30

Trace execution in Visual Studio Code

• When the computer is commanded to debug the program, it will stop at that line with
the breakpoint and not execute that line until it is told to

31

Trace execution in PyCharm
• To use the debugger, click the “Run” menu item and then “Start Debugging”. Select

“Python File” for the Debug Configuration.
• Then the program will run and stop at line 8.

• Can investigate the variables and run your program line by line
• Will show a short demo

32

List indexes
• Often an item in the middle of a list is needed
• If a list has n item, the locations in the list are numbered from 0 to n-1

(not 1 through n)
• The notation a[i] stands for “the item at location i in list a”

• In programming, use the word index to refer to the numerical position of an element
in a list
• Example: scores = [89, 78, 92, 63, 92]

scores[0] is 89
scores[2] is 92
scores[5] gives an “index out of range” error (why?)

33

List indexes
The indexmethod will indicate the position of an element in a list

If the requested element is not in the list, the Python interpreter will generate an error

Example:

scores = [89, 78, 92, 63, 92]

◦ scores.index(92) is 2, the index of the first occurrence of 92 in the scores list
◦ scores.index(99) generates this error: “ValueError: 99 is not in list”

34

List indexes
• If the program needs the index of a value, and it is not guaranteed the value is in the

list, use an if statement in conjunction with the in operator to first make sure the item
is actually in the list.
• Example:

vowels = ['a', 'e', 'i', 'o', 'u']
letter = 'e'
if letter in vowels:

print('That letter is at index ‘ + str(vowels.index(letter)) + '.')
else:

print('That letter is not in the list.')

• Output: That letter is at index 1.

35

Iteration using list indexes
• A common programming “idiom” uses a for loop based on a list index:

for i in range(n):
do something with i

• range(n) means “the sequence of integers starting from zero and ranging up to, but
not including, n”

• Python executes the body of the loop n times
• i is set to every value between 0 and n-1 (n is NOT included)

36

Iteration using list indexes
This function computes and returns the sum of the first k values in a list (see partial_total.py)

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

37

This function computes and returns the sum of the first k values in a list

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

Itera&on using list indexes

38

This function computes and returns the sum of the first k values in a list

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

Iteration using list indexes

39

This function computes and returns the sum of the first k values in a list

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

Iteration using list indexes

40

Itera&on using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

41

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

42

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

43

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

44

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

45

Iteration using list indexes
•Trace the execu+on of this func+on for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

46

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

47

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

48

String indexes
Strings and lists have much in common, including indexing:

name[i] would give us the character at index i of the string name

nums[i] gives us the element at index i of the list nums

Examples:
title = 'Lord of the Rings'
print(title[0]) # prints L
print(title[2]) # prints r
j = 6
print(title[j]) # prints f

49

PythonLabs
PythonLabs is a set of Python modules developed for the course textbook
◦ We will be using PythonLabs for the next part of this chapter
◦ Install it via the links below

PythonLabs homepage: http://ix.cs.uoregon.edu/~conery/eic/python/

Installation instructions: http://ix.cs.uoregon.edu/~conery/eic/python/installation.html

50

http://ix.cs.uoregon.edu/~conery/eic/python/
http://ix.cs.uoregon.edu/~conery/eic/python/installation.html

Making lists of numbers
• The range function can be used to make a list of integers
• This example makes a list of the numbers from 0 to 9:

nums = list(range(10))

• Note that list is the name of a class in Python
• A class describes what kinds of data an object can store

• In general, if a class name is used as a function, Python will create an object of that
class
• For example, list() or str(50)
• These functions are called constructors because they construct new objects
• More on this topic later in the course

51

Back to the Sieve algorithm
We now know how to make a list of prime numbers

Use a Python list object to represent a “worksheet” of numbers that will be
progressively crossed off

The list will initially have all the integers from 2 to n (the upper limit)

Will use for loops to iterate over the list to cross off composite numbers
◦ Can pass two values to range – e.g. range(2, 100)

◦ The first value is the lower limit (2 in the example)
◦ The other as the upper limit, minus 1 (99 in the example)
◦ So to make a list of numbers between 2 and 99, type list(range(2, 100))

52

Back to the Sieve algorithm
• The steps of the algorithm are easier to understand if two “placeholder” values are

added at the front of the list to represent 0 and 1 (neither of which is a prime number)

• Python has a special value called None that stands for “no object”
• Since the expression a + b means “concatenate a and b” where a and b are lists, the

statement below creates the initial worksheet:
worksheet = [None, None] + list(range(2,100))

• With the two placeholders at the front, any number i will be at worksheet[i]
• For example, the number 5 will be at worksheet[5] instead of worksheet[3]

53

PythonLabs – SieveLab
The module for the Sieve algorithm is named SieveLab

SieveLab has:
◦ A complete implementa;on of a sieve func;on for finding prime numbers
◦ Func;ons that use algorithm anima;on to generate graphical displays to show how the

algorithm works

54

SieveLab
Below you can see an example of how to use the SieveLab module

import PythonLabs.SieveLab
worksheet = [None, None] + list(range(2, 400))
PythonLabs.SieveLab.view_sieve(worksheet)

Call a SieveLab function named mark_multiples to see how the algorithm removes
multiples of a specified value
◦ The two arguments to mark_multiples are a number k and the worksheet list
◦ The screen will be updated to show that k is prime (indicated by a blue square)
◦ Gray boxes will be drawn over all the multiples of k

55

SieveLab
PythonLabs.SieveLab.mark_multiples(2, worksheet)

56

SieveLab
Call SieveLab’s erase_multiples function to erase the marked numbers
• Erase the multiples of 2 using this function

57

SieveLab
PythonLabs.SieveLab.erase_multiples(2, worksheet)

58

SieveLab
After erasing multiples of 2, the lowest unmarked number is 3, so on the next round,
remove multiples of 3

Repeat the “marking” and “erasing” steps until only prime numbers are left

Following is the process for marking and erasing multiples of 3, 5 and 7

59

SieveLab
PythonLabs.SieveLab.mark_multiples(3, worksheet)

60

SieveLab
PythonLabs.SieveLab.erase_multiples(3, worksheet)

61

SieveLab
PythonLabs.SieveLab.mark_multiples(5, worksheet)

62

SieveLab
PythonLabs.SieveLab.erase_multiples(5, worksheet)

63

SieveLab
PythonLabs.SieveLab.mark_multiples(7, worksheet)

64

SieveLab
PythonLabs.SieveLab.erase_multiples(7, worksheet)

65

Sieve algorithm: a helper function
• An important step toward implementing the Sieve algorithm is to write a function that

solves a small part of the problem

• The function sift will make a single pass through the worksheet
• Pass it a number k, and sift will find and remove multiples of k
• For example, to sift out multiples of 5 from the list called worksheet we could write:

sift(5, worksheet)

• sift has a very specific purpose, and it is unlikely to be used except as part of an
implementation of the Sieve algorithm
• Programmers call special-purpose functions like this helper functions

66

Stepping through the worksheet
• Each call to sift is used to find multiples of k
• The first one is 2*k
• Notice that the remaining multiples (3*k, 4*k, etc) are all k steps apart:

• Use a for-loop with a range expression to walk through the list:
for i in range (2*k, len(a), k):

• Note this range expression has three arguments:
1. the starting point
2. the ending point
3. the step size (k)

67

Stepping through the worksheet
To remove a number from the worksheet, we could use the Python del statement,
which deletes an item from a list
◦ But this would shorten the list and make it harder to walk through on future iterations

A better solution: replace the items with placeholders (None objects)

The complete implementation of the sift function:
def sift(k, a):

for i in range(2*k, len(a), k):
a[i] = None

68

Stepping through the worksheet
def sift(k, a):

for i in range(2*k, len(a), k):
a[i] = None

• An example of sift in action:
worksheet = [None, None] + list(range(2, 16))

• worksheet is now:
[None, None, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

• Now call sift(2, worksheet)
• worksheet becomes this:

[None, None, 2, 3, None, 5, None, 7, None, 9, None, 11, None, 13, None, 15]

69

The sieve() function
• Now that there is a helper func2on to do the hard work, we want to write the sieve to

solve the complete problem

• Much easier to write now that we have the helper func2on wri:en

• When a program has helpers, a func2on like sieve (which is called to solve the
complete problem) is known as a top-level func/on

70

The sieve() function
• Goal: Write a loop that starts by sifting multiples of 2 and keep calling sift until all

composite numbers are removed

• This loop can stop when the next number to send to sift is greater than the square
root of n (why?)
• Thus, the for loop that controls the loop should set k to every value from 2 up to the

square root of n:
for k in range(2, sqrt(n)):

71

The sieve() function
for k in range(2, sqrt(n)):

There is a problem with this code: Can not pass a floating-point value to range
We can “round up” the square root (e.g. 17.2 -> 18)
◦ That provides what is needed: an integer greater than the highest possible prime factor of n

A function named ceil in Python’s math library does this operation
◦ ceil is short for “ceiling”

A corresponding function named floor rounds a floating-point value down to the
nearest integer

72

sieve()’s main loop
• One important detail: before sifting out multiples of a number, make sure it hasn’t

already been removed
• For example, don’t need to sift multiples of 4 because 4 was already removed when

sifting multiples of 2
• sift would still work, but the program would be less efficient
• The main loop looks like this:

for k in range(2, ceil(sqrt(n))):
if worksheet[k] is not None:

sift(k, worksheet)

• Note that the expression x is not None is the preferred way of testing to see if x is a
reference to the None object

73

Sieve: remove the placeholders
• One last step: to make the final list, remove the None objects from the worksheet

• We can make a new helper function called non_nulls returns a copy of the
worksheet, but without any None objects
• It makes an initial empty list named res (for “result”)
• Then it uses a for loop to look at every item in the input list
• If an item is not None, the item is appended to res using the appendmethod for

lists
• When the iteration is complete, res is returned as the result of the function call

74

Sieve: remove the placeholders
def non_nulls(a):

res = []
for x in a:

if x is not None:
res.append(x)

return res

•Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,

None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheet is now: [2, 3, 5, 7, 11, 13]

75

Sieve: remove the placeholders
def non_nulls(a):

res = []
for x in a:

if x is not None:
res.append(x)

return res

•Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,

None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheet is now: [2, 3, 5, 7, 11, 13]

76

Sieve: remove the placeholders
def non_nulls(a):

res = []
for x in a:

if x is not None:
res.append(x)

return res

•Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,

None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheet is now: [2, 3, 5, 7, 11, 13]

77

Sieve: remove the placeholders
def non_nulls(a):

res = []
for x in a:

if x is not None:
res.append(x)

return res

•Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,

None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheet is now: [2, 3, 5, 7, 11, 13]

78

Aside: appending to a List
+= can be used to concatenate one string to the end of another
◦ This syntax can also be used to append one list to another

Example:
fruits = ['apple', 'orange']

fruits += ['banana', 'mango', 'pear']
fruits is now: ['apple', 'orange', 'banana', 'mango', 'pear']

fruits += ['pineapple']
fruits is now: ['apple', 'orange', 'banana', 'mango', 'pear', 'pineapple']

79

The Sieve algorithm: completed!
Now, put all the pieces together
Import the math library to get access to sqrt and ceil
In the body of the sieve function:
• Create the worksheet with two initial None objects and all integers from 2 to n
• Add the for-loop that calls sift
• Call non_nulls to remove the None objects from the worksheet

See sieve.py and the next slide for the code
See PythonLabs/SieveLab.py: lines 12–28 for the textbook’s implementation of the
sieve function

80

Completed sieve() func3on
from math import *
def sift(k, a):

... # see earlier slides

def non_nulls(a):
... # see earlier slides

def sieve(n):
worksheet = [None, None] + list(range(2, n))
for k in range(2, ceil(sqrt(n))):

if worksheet[k] is not None:
sift(k, worksheet)

return non_nulls(worksheet)

primes = sieve(100)
print(primes)

81

See sieve.py

Abstraction
Now we have a function for making lists of prime numbers, which can be saved and
used later

It can be used to answer questions about primes, such as:
◦ How many primes are less than n?
◦ What is the largest gap between successive primes?
◦ What are some twin primes (two prime numbers that differ only by 2, like 17 and 19)?

This is a good example of abstraction: There is a nice, neat package that can be saved
and reused
In the future, there is no need to worry about the implementation details of sieve: just
use it!
◦ Just need to know that sieve(n) makes a list of prime numbers from 2 to n

82

Additional examples
Next is a look at some addi.onal examples of how to use for loops and lists to solve
problems in Python

83

Example: find the maximum
Try writing an algorithm to find the maximum value in a list
◦ Note that a function already exists in Python (called max), but it is good practice

The basic idea is to iterate over the list and keep track of the largest value seen to that
point

Begin by taking the value at index 0 as the maximum

Continue with the remainder of the list, comparing the next value with the current
maximum and updating the maximum if and when a larger value than the current
maximum is found

84

Example: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

85

Trace execu)on: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

86

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

87

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

88

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # False
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

89

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

90

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

91

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # True
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

92

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

93

Trace execu)on: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

94

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

95

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # True
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

96

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

97

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

98

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

99

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # False
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

100

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

101

Trace execu)on: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

102

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # False
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

103

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

104

Example: count the vowels
A for loop can be used to iterate over the characters of a string

To see how this works, consider a function called count_vowels that counts the number
of vowels (lowercase or uppercase) in a word
◦ To make this problem a little easier to solve, we can call the lower() method for strings, which

makes a copy of a given string and changes all the uppercase letters to lowercase
◦ upper() makes all letters uppercase

Strings are immutable (unchangeable) objects

To convert a string into lowercase we must make a lowercase copy of it and replace the
original string with the new one

105

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou'
num_vowels = 0
for letter in word.lower(): # search through a

if letter in vowels: # lowercase copy of
num_vowels += 1 # the original word

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

106

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

107

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

108

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

109

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

110

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # False
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

111

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

112

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

113

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # True
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

114

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

115

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

116

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

117

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # False
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

118

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

119

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

120

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # True
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

121

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

122

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

123

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

124

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # False
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

125

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

126

A list of lists
In Python, a list can contain objects of any type

A list is an object. Therefore, a list can contain other lists!

Imagine there is a group of 4 students, and for each student there are 3 exam scores:
scores = [[89, 85, 90], [78, 85, 72],

[99, 86, 92], [82, 84, 79]]

To access a particular score, two indices are needed:
◦ First, which students grade is needed (0 through 3)
◦ Second, which score of that student is desired (0 through 2)

Example: scores[3][1] is fourth student's score on the second exam (which is 84)

127

Example: compute averages (v1)
We want to write code that will compute the average score that students earned on
each exam

Will write more than one version of the program è But start simple

In the first version we will "hard-code" several values (the number of students and the
number of scores) in the program

Then, generalize things a bit and use variables for these values

128

Example: averages_v1.py
scores represents 4 students who each took 3 exams
scores = [[89, 85, 90], [78, 85, 72],

[99, 86, 92], [82, 84, 79]]

averages = [0, 0, 0]

for student in scores:
averages[0] += student[0]
averages[1] += student[1]
averages[2] += student[2]

for i in range(3):
averages[i] /= 4

print(averages)

129

Example: compute averages (v2)
The first version of the code has a major negative: the algorithm will work only for a
class of four students who took three exams

Suppose the class is larger or smaller? Or suppose the students took more or fewer
exams?

130

Example: compute averages (v2)
Next development a.empt is a be.er (but more complicated) version of the algorithm
that can adapt to larger/smaller class sizes and more/fewer exams

The approach will rely on nested loops, which means there will be one loop inside of
another

Nested loops will become increasingly important as the course progresses

131

Example: averages_v2.py
One other thing before looking at the program

Recall that syntax like 'Hi'*3 will create a new string by repeating a given string a desired
number of times
◦ For instance, 'Hi'*3 equals 'HiHiHi'
◦ In a similar manner, [0]*3 would create a list containing 3 zeroes, namely, [0, 0, 0]

Thus, the * notation with strings and lists is essentially a form of concatenation

132

Example: averages_v2.py
scores = [[89, 85, 90], [78, 85, 72], [99, 86, 92], [82, 84, 79]]

num_students = len(scores)
num_exams = len(scores[0]) # each student took the
averages = [0] * num_exams # same number of exams

for student in scores:
for i in range(0, num_exams): # nested loops

averages[i] += student[i]

for i in range(0, num_exams):
averages[i] /= num_students

print(averages)

133

Example: compute averages (v3)
In a third and final version of the exam average calculator, the computations will be
encapsulated (enclosed or wrapped) inside of a function

compute_averages(students)

The function takes the list of scores as its argument

After computing the exam averages, the function returns a list of the average scores

This illustrates that Python functions can return many values at once (via a list), not just
a single number or string

134

Example: averages_v3.py
scores = [[89, 85, 90], [78, 85, 72], [99, 86, 92], [82, 84, 79]]

def compute_averages(students):
num_students = len(students)
num_exams = len(students[0])
avgs = [0] * num_exams

for student in students:
for i in range(0, num_exams):

avgs[i] += student[i]

for i in range(0, num_exams):
avgs[i] /= num_students

return avgs

averages = compute_averages(scores)
print(averages)

135

Example: bottles of beer/milk
The final example is on a lighter note looking at a program that prints the lyrics of the
song “99 Bottles of Beer on the Wall”
◦ In this song, the singer needs to count from 99 down to 0

The range command can be used to count up, but it also can count down if given a
negative number for the step size
For example, range(10,-1,-1) will count down from 10 to 0 by 1s
So list(range(10,-1,-1)) would generate the list [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

The code on the next slide asks the user for the starting number so that the program
can start from a value other than 99

136

Example: bottles.py
age = int(input('How old are you? '))

if age < 21:
drink_type = 'milk'

else:
drink_type = 'beer';

num_bottles = int(input('How many bottles of ' + drink_type + ' do you have? '))

for bottle in range(num_bottles, -1, -1):
if bottle > 1:

print(str(bottle) + ' bottles of ' + drink_type +
' on the wall!')

elif bottle == 1:
print('1 bottle of ' + drink_type + ' on the wall!')

else:
print('No bottles of ' + drink_type + ' on the wall!')

137

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou'
num_vowels = 0
for letter in word.lower(): # search through a

if letter in vowels: # lowercase copy of
num_vowels += 1 # the original word

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

138

Modify this program to:
1. Also count and return
the number of non-vowel
letters
– Hint: use a list to return
both numbers

2. Print out the number of
vowels and non-vowels
- Hint: need to access the
index of the returned list

Example: bo,les.py
age = int(input('How old are you? '))

if age < 21:
drink_type = 'milk'

else:
drink_type = 'beer';

num_bottles = int(input('How many bottles of '
+ drink_type + ' do you have? '))

for bottle in range(num_bottles, -1, -1):
if bottle > 1:

print(str(bottle) + ' bottles of ' + drink_type +
' on the wall!')

elif bottle == 1:
print('1 bottle of ' + drink_type + ' on the wall!')

else:
print('No bottles of ' + drink_type + ' on the wall!')

139

Modify this program to:
1. Write milk only for
people younger than the
legal drinking age in your
country

2 Make it count up from 1
to the user input number,
incrementing by 2
(e.g. 1, 3, 5…)

Questions?

140

