Computer Science
Principles

CHAPTER 3 — ITERATION, LISTS, AND ALGORITHM DESIGN

Announcements

Read Chapter 3 in the Conery textbook (Explorations in Computing)

Acknowledgement: These slides are revised versions of slides prepared by Prof. Arthur
Lee, Tony Mione, and Pravin Pawar for earlier CSE 101 classes. Some slides are based on
Prof. Kevin McDonald at SBU CSE 101 lecture notes and the textbook by John Conery.

Overview

This lecture will focus on:
i. iteration (code that repeats a list of steps)

ii. lists
iii. the thought process for designing algorithms

As an example, we will look at the ancient algorithm for finding prime numbers: the
Sieve of Eratosthenes

Prime Numbers

A prime is a natural number greater than 1 that has no divisors other than 1 and itself

Non-prime numbers are called composite numbers

Example primes: 2, 3,5, 11, 73, 9967, . ..
Example composites: 4 (2x2), 10 (2x5), 99 (3x3x11)

Prime numbers play an important role in encrypting data and Internet traffic

The Sieve of Eratosthenes

The basic idea of the algorithm is simple. Below, it is briefly described in pseudocode:
make a list of numbers, starting with 2

repeat the following steps until done:
the first unmarked number in the list is prime
cross off multiples of the most recent prime

So, first cross off multiples of 2.

Then, cross off multiples of 3 that were not crossed off in the first round
° e.g., 6is a multiple of 2 and 3, so it was crossed off in the first round

Next, cross off multiples of 5 that were not crossed off in the first two rounds
> Note that because 4 is a multiple of 2, all multiples of 4 were crossed off in the first round

The Sieve of Eratosthenes

The algorithm continues in this fashion until there are no more numbers to cross off

23456789101112131415161718192021\

We will discuss more later exactly when it stops running

Devising an algorithm

The method depicted in the previous slide works well for short lists

But what if prime numbers between 2 and 100 are needed? ...or 10007?
° |t’s a tedious process to write out a list of 100 numbers
> Chances are a few arithmetic mistakes will be made (this is a boring job!)

Can this method be turned into a computation?

Yes, but we need to add more detail to the steps

Devising an algorithm

A detailed specification of the starting condition is there in the pseudocode (e.g., “make
a list”)

However, some things are not clearly defined:

o “Cross off” and “next number” need to be clearly defined if this will be coded in Python
> The stopping condition is also not clear
> When does the process stop? Perhaps when all the numbers are crossed off?

First, let us explore a few new ideas in Python

Collections

In everyday life, collections of objects are often encountered
o Course catalog: a collection of course descriptions

o Parking lot: a collection of vehicles

Mathematicians also work with collections
o Matrix (a table of numbers)

> Sequence (e.g., 1,1, 2, 3,5,8, ...)

In computer science collections are made by defining a data structure that includes
references to objects

The term object means a piece of data
> Objects include numbers, strings, dates, and more

Lists

An object that contains other objects is called a container

The simplest kind of container in Python is called a list

One way to make a list is to enclose a set of objects in square brackets:
ages = [61, 32, 19, 37, 42, 39]

The above statement is an assignment statement

o Python creates an object to represent the list and associates the name ages with the new
object

The len function tells us how many elements are in a list:
> len(ages) # returns the value 6

Lists of strings

Any kind of object can be stored in a list

This statement defines a list with three strings:
breakfast = ['green eggs', 'ham’', 'toast']

Note what happens when we ask Python how many objects are in this list:
len(breakfast) # returns the value 3

> The list contains three string objects, so the return value of the call to lenis 3
o Python did not count the individual letters with a list

However, len('apple’) returns5 ... with a string, it counts the individual letters

Empty lists

A list can also be made with no objects:
ccars = []

An empty list is still a list, even though it contains no objects
> A bag with nothing in it is still a bag, even though it contains nothing

The length of an empty list is O
o len(cars) # returns the value 0

It may seem strange to create a list with nothing in it, but usually it is done because the
list is needed but it will be filled later

lteration

After building a container, most applications need to do something with each item in it

The idea is to “step through” the container to do something to each object

This type of operation is called iteration

For example, to find the largest item in an (unsorted) list, an algorithm would need to
check the value of every item during its search

> This algorithm will be examined a little later

For loops

The simplest way to “visit” every item in a list is to use a for loop

This example prints every item in the list cars :
for car in cars: # "for each car in a list of cars”
print (car)

Note that the statements inside a for loop — the body of the loop — must be indented
> Python assigns car to be the first item in the list and then executes the indented statement(s)
> Then it gets the next item, assigns it to car, and executes the indented statement(s) again
° |t repeats until all the items in list have been processed

For loops

Suppose we had this code:

cars = ['Kia', 'Honda', 'Toyota', 'Ford']
for car in cars:
print(car + ' ' + str(len(car)))

The for loop would output this:
Kia 3
Honda 5
Toyota 6
Ford 4

Note that 1en (car) gives the length of each car string in the list as that car is “visited”
* len(cars) would give what?

Example: sum()

Consider a function that computes the sum of the numbers in a list

> Note this function exists in Python, named sum(), but by thinking how to write it we can
better understand for loops.

First, initialize a variable total to zero
Then, use a for loop to add each number in the list to total

After all items have been added, the loop will terminate, and the function returns the
final value of total

Example: sum()

def sum(nums): Initialize a variable

total = 0 <« to store the running
for num in nums: total

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

See sum_tests.py

Example: sum()

def sum(nums):

total =0
for num in nums:

total += num
return total

Visit each number in
the list of numbers

Example

t = sum([3, 5, 1]) # t will equal 9

Example: sum()

def sum(nums):
total =0
for num in nums:
total += num e

return total

Add each number to
the running total

Example

t = sum([3, 5, 1]) # t will equal 9

Example: sum()

def sum(nums):

total =0
for num in nums:

total += num
return total <——— Return the final total

Example

t = sum([3, 5, 1]) # t will equal 9

Example: sum()

Now we will trace the execution of this code to understand it better

A blue arrow will indicate the current line of code being executed

A table of values will show how the variables change value over time

Trace execution: sum()

def sum(nums):

== total = 0

for num in nums:

total += num total 0
return total

Variable |Value

Example

t=sum([3,5,1]) #twillequal9

Trace execution: sum()

def sum(nums):
total=0
==y for num in nums:

total += num total 0
return total

Variable | Value

num 3

Example

t=sum([3,5,1]) #twillequal9

Trace execution: sum()

def sum(nums):
total=0
for num in nums:

map total += num total 3

return total

Variable | Value

num 3

Example

t=sum([3,5,1]) #twillequal9

Trace execution: sum()

def sum(nums):
total=0
==y for num in nums:

total += num total 3
return total

Variable | Value

num 5

Example

t=sum([3,5,1]) #twillequal9

Trace execution: sum()

def sum(nums):

total = 0 Variable | Value
for num in nums:
malp total += num total

return total
num 5

Example

t=sum([3,5,1]) #twillequal9

Trace execution: sum()

def sum(nums):
total=0
==y for num in nums:

total += num total
return total

Variable | Value

num 1

Example

t=sum([3,5,1]) #twillequal9

Trace execution: sum()

def sum(nums):
total=0
for num in nums:

=) total += num total o)

return total

Variable | Value

num 1

Example

t=sum([3,5,1]) #twillequal9

Trace execution: sum()

def sum(nums):
total=0
for num in nums:

total += num total o)
== return total

Variable | Value

num 1

Example

t=sum([3,5,1]) #twillequal9

Trace execution in Visual Studio Code

Visual Studio Code features a powerful tool called a debugger which can help trace the
execution of a program

o Usually a debugger is used to help find bugs

First, set a breakpoint by clicking the mouse to the left of the line where the computer
should pause execution

In sum_tests.py, put a breakpoint on line 8

Trace execution in Visual Studio Code

sum_tests.py X

S521-Chapter3 sum_tests.py main
sum{nums) :
total = @
ror num 1in nums:
total += num
eturn total

main():
scores = [3, 5, 1]
print('Sum of scores[]: ' + str(sum(scores)))

main()

* When the computer is commanded to debug the program, it will stop at that line with
the breakpoint and not execute that line until it is told to

Trace execution in PyCharm

* To use the debugger, click the “Run” menu item and then “Start Debugging”. Select
“Python File” for the Debug Configuration.

* Then the program will run and stop at line 8.

* Can investigate the variables and run your program line by line
* Will show a short demo

List indexes

* Often an item in the middle of a list is needed

* If a list has n item, the locations in the list are numbered from 0 to n-1
(not 1 through n)

* The notation a[i] stands for “the item at location i in list a”

* In programming, use the word index to refer to the numerical position of an element
in a list

* Example: scores = [89, 18, 92, 63, 92]
scores[0] is 89
scores|[2] is 92
scores[5] gives an “index out of range” error (why?)

List indexes

The index method will indicate the position of an element in a list

If the requested element is not in the list, the Python interpreter will generate an error

Example:

scores = [89, 78, 92, 63, 92]

°c scores.index (92) is 2, theindex of the first occurrence of 92 in the scores list
°c scores.index (99) generates this error: “ValueError: 99 is not in list”

List indexes

* |If the program needs the index of a value, and it is not guaranteed the value is in the

list, use an if statement in conjunction with the in operator to first make sure the item
is actually in the list.

* Example:
vowels = ['a', 'e', 'i', '0', 'u']
lettexr = 'e'

if letter in vowels:

print('That letter is at index ¢ + str(vowels.index(letter)) +'.")
else:
print('That letter is not in the list.')

* Qutput: That letter is at index 1.

lteration using list indexes

* A common programming “idiom” uses a for loop based on a list index:
for i in range(n):

do something with i

* range(n) means “the sequence of integers starting from zero and ranging up to, but
not including, n”

* Python executes the body of the loop n times
* jis set to every value between 0 and n-1 (nis NOT included)

lteration using list indexes

This function computes and returns the sum of the first k values in a list (see partial_total.py)

def partial_total(nums, Kk): Initialize
total = 0 = the variable
for i in range(k): to store the
total += nums][i] running

return total total

Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

lteration using list indexes

This function computes and returns the sum of the first k values in a list

def partial total(nums, k):

total = 0 Generate
for i in range(Kk): e iNdexes 0
total += numsJ[i] through k-1

return total

Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

lteration using list indexes

This function computes and returns the sum of the first k values in a list

def partial total(nums, k):

total = 0
for i in range(Kk):
total += nums[i] < Add each
return total number to
the running
Example: total

a=[4,2,8,3,1]

partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

lteration using list indexes

This function computes and returns the sum of the first k values in a list

def partial total(nums, k):
total =0
for i in range(k):
total += numsli]

return total Return the
final total

Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

lteration using list indexes

*Trace the execution of this function for one example

def partial total(nums, k):

==l total = 0 Variable | Value
for i in range(Kk):

total += nums|[i] total 0
ota

return total

* Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14

lteration using list indexes

*Trace the execution of this function for one example
def partial total(nums, k):
total = 0
m=p- for i in range(k):
total += nums|[i]

Variable | Value

total

return total
3

* Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14

lteration using list indexes

*Trace the execution of this function for one example
def partial total(nums, k):
total = 0
for i in range(k):
== total += nums]i]

Variable | Value

total

return total
i 0
nums [i] 4

* Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14

lteration using list indexes

*Trace the execution of this function for one example
def partial total(nums, k):
total = 0
m=p- for i in range(k):
total += nums|[i]

Variable | Value

total 4
return total

i 1

nums [i] 4

* Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14

lteration using list indexes

*Trace the execution of this function for one example
def partial total(nums, k):
total =0
for i in range(k):
== total += nums]i]
return total

Variable | Value

total

i

nums [1] 2

* Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14

lteration using list indexes

*Trace the execution of this function for one example
def partial total(nums, k):
total=0
m=p- for i in range(k):
total += nums|[i]

Variable | Value

total 6
return total

i 2

nums[1i] 2

* Example:
a=1[4,2,8,3,1]
partial total(a, 3) # returns the value 14

lteration using list indexes

*Trace the execution of this function for one example
def partial total(nums, k):
total =0
for i in range(k):
== total += nums]i]
return total

Variable | Value

total 14

i

nums[1i] 8

* Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14

lteration using list indexes

*Trace the execution of this function for one example
def partial total(nums, k):
total = 0
for i in range(k):

Variable | Value

total += nums|[i]

total 14
== return total

i

nums[1i] 8

* Example:
a=1[4,2,8,3,1]
partial_total(a, 3) # returns the value 14

String indexes

Strings and lists have much in common, including indexing:

name[i] would give us the character at index i of the string name

nums|i] gives us the element at index i of the list nums

Examples:
title = 'Lord of the Rings'
print(title[0]) # prints L
print(title[2]) # prints r
j=6
print(title[j]) # prints f

PythonLabs

PythonLabs is a set of Python modules developed for the course textbook
> We will be using PythonLabs for the next part of this chapter

o Install it via the links below

PythonLabs homepage: http://ix.cs.uoregon.edu/~conery/eic/python/

Installation instructions: http://ix.cs.uoregson.edu/~conery/eic/python/installation.htm]

http://ix.cs.uoregon.edu/~conery/eic/python/
http://ix.cs.uoregon.edu/~conery/eic/python/installation.html

Making lists of numbers

* The range function can be used to make a list of integers
* This example makes a list of the numbers from 0 to 9:
nums = list(range(10))

* Note that list is the name of a class in Python
* A class describes what kinds of data an object can store

* In general, if a class name is used as a function, Python will create an object of that
class

* For example, list() or str(50)
* These functions are called constructors because they construct new objects
* More on this topic later in the course

Back to the Sieve algorithm

We now know how to make a list of prime numbers

Use a Python list object to represent a “worksheet” of numbers that will be
progressively crossed off

The list will initially have all the integers from 2 to n (the upper limit)

Will use for loops to iterate over the list to cross off composite numbers
o Can pass two values to range — e.g. range(2, 100)
o The first value is the lower limit (2 in the example)
o The other as the upper limit, minus 1 (99 in the example)
> So to make a list of numbers between 2 and 99, type list(range(2, 100))

Back to the Sieve algorithm

* The steps of the algorithm are easier to understand if two “placeholder” values are
added at the front of the list to represent 0 and 1 (neither of which is a prime number)

* Python has a special value called None that stands for “no object”

* Since the expression a + b means “concatenate a and b” where a and b are lists, the
statement below creates the initial worksheet:

worksheet = [None, None] + list(range(2,100))

* With the two placeholders at the front, any number i will be at woxksheet[i]
* For example, the number 5 will be at worksheet[5] instead of worksheet[3]

PythonLabs — Sievelab

The module for the Sieve algorithm is named Sievelab

Sievelab has:
> A complete implementation of a sieve function for finding prime numbers

> Functions that use algorithm animation to generate graphical displays to show how the
algorithm works

Sievelab

Below you can see an example of how to use the SievelLab module
import PythonLabs.SieveLab
worksheet = [None, None] + list(range(2, 400))
PythonLabs.SieveLab.view_sieve(worksheet)

Call a Sievelab function named mark_multiples to see how the algorithm removes
multiples of a specified value

> The two arguments to mark_multiples are a number k and the worksheet list
> The screen will be updated to show that k is prime (indicated by a blue square)
> Gray boxes will be drawn over all the multiples of k

Sievelab

PythonLabs.SieveLab.mark multiples(2, worksheet)

20 21
40 41
60 61
80 81
100 101
120 121
140 141
160 161
180 181
200 201
220 221
240 241
260 261
280 281
300 301
320 321
340 341
360 361
380 381

11
31
51
"
91
111
131
151

8 9
28 29
48 49

4 10

24

5 6 7
25 26 27
45 46 47
65 66 67 68 69
85 86 87 88 89
105 106 107 108 109 110
125 126 127 128 129 130
145 146 147 148 149 150
162 163 165 166 167 168 169 170 171
182 183 185 186 187 188 189 190 191
202 203 204 205 206 207 208 209 210 211
222 223 224 225 226 227 228 229 230 231
242 243 244 245 246 247 248 249 250 251
262 263 264 265 266 267 268 269 270 271
282 283 284 285 286 287 288 289 290 291
302 303 304 305 306 307 308 309 310 311
322 323 324 325 326 327 328 329 330 331
342 343 344 345 346 347 348 349 350 351
362 363 364 365 366 367 368 369 370 371
382 383 384 385 386 387 388 389 390 391

3
2 23
2 43
62 63
82 83
102 103
122 123
142 143

30
50
70
90

17
37
57

19
39
59
77 79
97 99
117 118 119
137 138 139
157 158 159

15
35
55

12
32
52
72 73 75
92 93 95
112 113 114 115 116
132 133 134 135 136
152 153 154 155 156
172 173 174 175 176 177 178 179
192 193 194 195 196 197 198 199
212 213 214 215 216 217 218 219
232 233 234 235 236 237 238 239
252 253 254 255 256 257 258 259
272 273 274 275 276 277 278 279
292 2903 294 295 296 297 298 299
312 313 314 315 316 317 318 319
332 333 334 335 336 337 338 339
352 353 354 355 356 357 358 359
372 373 374 375 316 377 378 379
392 393 394 395 396 397 398 399

13 14 16 18
33 34 36 38
53 54 56 58
74 76 78
94 96 98

Sievelab

Call Sievelab’s erase_multiples function to erase the marked numbers
* Erase the multiples of 2 using this function

Sievelab

PythonLabs.SieveLab.erase_multiples(2, worksheet)

3) 7 9 1" 13 15 17 19
21 23 25 27 29 31 33 35 37 39
41 43 45 47 49 51 53 55 57 59
61 63 65 67 89 " 73 75 77 79
81 83 85 87 89 91 93 95 97 99

101 103 105 107 109 111 113 115 17 119
121 123 125 127 129 131 133 135 137 139
141 143 145 147 149 151 153 185 157 159
161 163 165 167 169 171 173 175 177 179
181 183 185 187 189 191 193 195 197 199
201 203 205 207 209 211 213 215 217 219
221 223 225 227 229 231 233 235 237 239
241 243 245 247 249 251 253 255 257 259
261 263 265 267 269 271 273 275 277 279
281 283 285 287 289 291 293 295 297 299
301 303 305 307 308 311 313 315 317 319
321 323 326 327 329 331 333 335 337 339
341 343 345 347 349 351 353 355 357 359
361 363 365 367 369 371 373 375 377 379
381 383 385 387 389 391 393 395 397 399

Sievelab

After erasing multiples of 2, the lowest unmarked number is 3, so on the next round,
remove multiples of 3

Repeat the “marking” and “erasing” steps until only prime numbers are left

Following is the process for marking and erasing multiples of 3, 5 and 7

Sievelab

PythonLabs.SieveLab.mark multiples(3, worksheet)
5 7 9 11 13 15 17 19
23

21 25 27 29 31 33 35 37 39
41 43 45 47 49 51 53 55 57 59
61 63 65 67 69 71 73 75 77 79
81 83 85 87 89 91 93 95 97 99

101 103 105 107 109 111 113 115 117 119
121 123 125 127 129 131 133 135 137 139
141 143 145 147 149 191 153 155 157 159
161 163 165 167 169 171 173 175 177 179
181 183 185 187 189 191 193 195 197 199
201 203 205 207 209 211 213 215 217 219
221 223 225 227 229 231 233 235 237 239
241 243 245 247 249 251 253 255 257 259
261 263 265 267 269 271 273 275 277 279
281 283 285 287 289 291 293 295 297 299
301 303 305 307 309 31 313 315 317 319
321 323 325 327 329 331 333 335 337 339
341 343 345 347 349 351 353 355 357 359
361 363 365 367 369 371 373 375 377 379
381 383 385 387 389 391 393 395 397 399

Sievelab

PythonLabs.SieveLab.erase_multiples(3, worksheet)

[2][3] 5 7 11 13 17 19
23 25 29 31 35 37

41 43 47 49 53 55 59

61 65 67 71 73 77 79
83 85 89 91 95 97

101 103 107 109 113 115 119

121 125 127 131 133 137 139
143 145 149 151 155 157

161 163 167 169 173 175 179

181 185 187 191 193 197 199
203 205 209 211 215 217

221 223 227 229 233 235 239

241 245 247 251 253 257 259
263 265 269 271 2715 217

281 283 287 289 203 295 299

301 305 307 311 313 317 319
323 325 329 331 335 337

341 343 347 349 353 355 359

361 365 367 371 373 377 379

383 385 389 391 395 397

Sievelab

PythonLabs.SieveLab.mark_multiples(5, worksheet)

[2][3] [5] 7 1 13 17 19
23 25 29 31 35 37

41 43 47 49 53 55 59

61 65 67 71 73 77 79
83 85 89 91 95 97

101 103 107 109 113 115 119

121 125 127 131 133 137 139
143 145 149 151 155 157

161 163 167 169 173 175 179

181 185 187 191 193 197 199
203 205 209 211 215 217

221 223 227 229 233 235 239

241 245 247 251 253 257 259
263 265 269 271 275 277

281 283 287 289 293 295 299

301 305 307 311 313 317 319
323 325 329 331 335 337

341 343 347 349 353 355 359

361 365 367 371 373 377 379

383 385 389 391 395 397

Sievelab

PythonLabs.SieveLab.erase_multiples(5, worksheet)

[2][3] [5] 7 1" 13 17 19
23 29 31 37

41 43 47 49 53 59

61 67 Al 73 77 79
83 89 91 97

101 103 107 109 113 119

121 127 131 133 137 139
143 149 151 157

161 163 167 169 173 179

181 187 191 193 197 199
203 209 21 217

221 223 227 229 233 239

241 247 251 253 257 258
263 269 271 277

281 283 287 289 293 298

301 307 311 313 317 319
323 329 331 337

341 343 347 349 353 359

361 367 371 373 377 379

383 389 391 397

Sievelab

PythonLabs.SieveLab.mark multiples(Z, worksheet)

(2] 3] [5] [7] 1 13 17 19
23 29 31 37

41 43 47 49 53 59

61 67 71 73 77 79
83 89 91 97

101 103 107 109 113 119

121 127 131 133 137 139
143 149 151 157

161 163 167 169 173 179

181 187 191 103 197 199
203 209 211 217

221 223 227 229 233 239

241 247 251 253 257 259
263 269 271 277

281 283 287 289 293 299

301 307 31 313 317 319
323 329 331 337

341 343 347 349 353 359

361 367 371 373 377 379

383 389 391 397

Sievelab

PythonLabs.SieveLab.erase_multiples(Z, worksheet)

[2]3] [5] [7] 11 13 17 19
23 29 31 37
41 43 47 53 59
61 67 71 73 79
83 89 97
101 103 107 109 113
121 127 131 137 139
143 149 151 157
163 167 169 173 179
181 187 191 193 197 199
209 211
221 223 227 229 233 239
241 247 251 253 257
263 269 271 277
281 283 289 293 299
307 3 313 317 319
323 331 337
341 347 349 353 359
361 367 373 377 379

383 389 391 397

Sieve algorithm: a helper function

* An important step toward implementing the Sieve algorithm is to write a function that
solves a small part of the problem

* The function sift will make a single pass through the worksheet
* Pass it a number k, and sift will find and remove multiples of k

* For example, to sift out multiples of 5 from the list called worksheet we could write:
sift(5, worksheet)

* sift has a very specific purpose, and it is unlikely to be used except as part of an
implementation of the Sieve algorithm

* Programmers call special-purpose functions like this helper functions

Stepping through the worksheet

* Each call to sift is used to find multiples of k
* The first one is 2*k
* Notice that the remaining multiples (3*k, 4*k, etc) are all k steps apart:

N TN N

|+ (2|34 | 5|6 |7 (8|9 (10|11 12|13 |14

* Use a for-loop with a ¥range expression to walk through the list:
for i in range (2*k, len(a), k):
* Note this range expression has three arguments:
1. the starting point
2. the ending point
3. the step size (k)

Stepping through the worksheet

To remove a number from the worksheet, we could use the Python del statement,
which deletes an item from a list
o But this would shorten the list and make it harder to walk through on future iterations

A better solution: replace the items with placeholders (None objects)

The complete implementation of the sift function:
def sift(k, a):
for i in range(2*k, len(a), k):
a[i] = None

Stepping through the worksheet

def sift(k, a):
for i in range(2*k, len(a), k):

a[i] = None

* An example of sift in action:

worksheet = [None, None] + list(range(2, 16))
* worksheet is now:

[None, None, 2,3,4,5,6,17,8,9,10,11, 12, 13, 14, 15]
* Now call sift(2, worksheet)
* worksheet becomes this:

[None, None, 2, 3, None, 5, None, 7, None, 9, None, 11, None, 13, None, 15]

The sieve() function

* Now that there is a helper function to do the hard work, we want to write the sieve to
solve the complete problem

* Much easier to write now that we have the helper function written

* When a program has helpers, a function like sieve (which is called to solve the
complete problem) is known as a top-level function

The sieve() function

* Goal: Write a loop that starts by sifting multiples of 2 and keep calling sift until all
composite numbers are removed

* This loop can stop when the next number to send to sift is greater than the square
root of n (why?)

* Thus, the for loop that controls the loop should set k to every value from 2 up to the
square root of n:

for k in range(2, sqrt(n)):

The sieve() function

for k in range(2, sqrt(n)):

There is a problem with this code: Can not pass a floating-point value to range

We can “round up” the square root (e.g. 17.2 -> 18)
o That provides what is needed: an integer greater than the highest possible prime factor of n

A function named ceil in Python’s math library does this operation
o ceil is short for “ceiling”

A corresponding function named floor rounds a floating-point value down to the
nearest integer

sieve()’s main loop

* One important detail: before sifting out multiples of a number, make sure it hasn’t
already been removed

* For example, don’t need to sift multiples of 4 because 4 was already removed when
sifting multiples of 2

* sift would still work, but the program would be less efficient

* The main loop looks like this:
for k in range(2, ceil(sqrt(n))):
if worksheet[Kk] is not None:
sift(k, worksheet)

* Note that the expression x is not None is the preferred way of testing to see if X is a
reference to the None object

Sieve: remove the placeholders

* One last step: to make the final list, remove the None objects from the worksheet

* We can make a new helper function called non_nulls returns a copy of the
worksheet, but without any None objects

* [t makes an initial empty list named rxes (for “result”)
* Then it uses a for loop to look at every item in the input list

* If an item is not None, the item is appended to res using the append method for
lists

* When the iteration is complete, res is returned as the result of the function call

Sieve: remove the placeholders

def non_nulls(a):

res =[] < Initialize
for x in a: res[] to be
the empty

if x is not None:
res.append(x)
Yeturn res

list

*Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,
None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheetisnow:[2,3,5,7,11, 13]

Sieve: remove the placeholders

def non_nulls(a):

res = [] Visit each
forxina: < element in
if x is not None: the list a[]
res.append(x)
return res
*Example:

worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,
None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheetisnow:[2,3,5,7,11, 13]

Sieve: remove the placeholders

def non_nulls(a):

res =[]
for x in a:
f 2§ t None: See if x is
11 X 1S NO one.: aCtua“y 3
res.append(x) number
return res
*Example:

worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,
None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheetisnow:[2,3,5,7,11, 13]

Sieve: remove the placeholders

def non_nulls(a):

res =[]
for x in a:
if x is not None:

res.append(x) <+— Ifxisa
number, append

It tO res[]

return res

*Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,

None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheetis now:[2,3,5,7, 11, 13]

Aside: appending to a List

+= can be used to concatenate one string to the end of another
> This syntax can also be used to append one list to another

Example:

fruits = ['apple’, 'orange’]

fruits +=['banana’, 'mango’, 'pear’]

fruits is now: ['apple’, 'orange’, 'banana’, 'mango’, 'pear’]

fruits += ['pineapple’]

fruits is now: ['apple’, 'orange’, 'banana’, 'mango’, 'pear’, 'pineapple’]

The Sieve algorithm: completed!

Now, put all the pieces together
Import the math library to get access to sqrt and ceil
In the body of the siewve function:

* Create the worksheet with two initial None objects and all integers from 2ton
* Add the for-loop that calls sift

* Call non_nulls to remove the None objects from the worksheet

See sieve.py and the next slide for the code

See PythonLabs/Sievelab.py: lines 12—28 for the textbook’s implementation of the
sieve function

Completed sieve() function

from math import *
def sift(k, a):
... # see earlier slides

See sieve.py

def non_nulls(a):
... i see earlier slides

def sieve(n):
worksheet = [None, None] + list(range(2, n))
for k in range(2, ceil(sqrt(n))):
if worksheet[Kk] is not None:
sift(k, worksheet)
return non_nulls(worksheet)

primes = sieve(100)
print(primes)

Abstraction

Now we have a function for making lists of prime numbers, which can be saved and
used later

It can be used to answer questions about primes, such as:
> How many primes are less than n?

o What is the largest gap between successive primes?
> What are some twin primes (two prime numbers that differ only by 2, like 17 and 19)?

This is a good example of abstraction: There is a nice, neat package that can be saved
and reused

In the future, there is no need to worry about the implementation details of sieve: just
use it!

° Just need to know that sieve(n) makes a list of prime numbers from 2 to n

Additional examples

Next is a look at some additional examples of how to use for loops and lists to solve
problems in Python

Example: find the maximum

Try writing an algorithm to find the maximum value in a list
> Note that a function already exists in Python (called max), but it is good practice

The basic idea is to iterate over the list and keep track of the largest value seen to that
point

Begin by taking the value at index 0 as the maximum

Continue with the remainder of the list, comparing the next value with the current

maximum and updating the maximum if and when a larger value than the current
maximum is found

Example: find max.py

def find max(nums):

maximum = nums|[0]
foriin range(l, len(nums)):
if nums[i] > maximum:
maximum = nums|[i]
return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find _max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
== maximum = nums[0]
foriin range(l, len(nums)):

maximum 20

if nums[i] > maximum:

maximum = nums|[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

== foriin range(l, len(nums)):

maximum 20
i 1

if nums[i] > maximum:

maximum = nums|[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

foriin range(l, len(nums)):

maximum 20

— if nums[i] > maximum: i 1
maximum = nums|i

[1] nums [1] 16

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

foriin range(l, len(nums)):

maximum 20

— if nums[i] > maximum: # False i 1
maximum = nums/i

i [1] nums [1] 16

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

== foriin range(l, len(nums)):

maximum 20

if nums[i] > maximum: i o
maximum = nums/i]

[1] nums [1] 22

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

foriin range(l, len(nums)):

maximum 20

— if nums[i] > maximum: 5 5
maximum = nums/i

[1] nums [1] 22

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

foriin range(l, len(nums)):

maximum 20

— if nums[i] > maximum: # True i o
i = numsl|i

maximum = numsJi] nums [1] 2o

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

foriin range(l, len(nums)):

maximum 22
if nums[i] > maximum: i o
— maximum = nums|[i] nums [1] 0

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

== foriin range(l, len(nums)):

maximum 22

if nums[i] > maximum: N 3
maximum = nums/i]

[1] nums [1] 30

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

foriin range(l, len(nums)):

maximum 22

E— if nun:rs [i] > maximum: N 3
maximum = numsl/i

xmu umsl[i] nums [4] 30

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

foriin range(l, len(nums)):

maximum 22
E— if nums[i] > maximum: # True N 3
maximum = numsJi] nums [4] 30

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

foriin range(l, len(nums)):

maximum 30
if nums[i] > maximum: i 3

= maximum = nums/i
[1] nums [1] 30

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

== foriin range(l, len(nums)):

maximum 30

if nums[i] > maximum: i 4
maximum = numsJi] :

nums [1] 17

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]

foriin range(l, len(nums)):

maximum 30

E— if nums[i] > maximum: i 4
maximum = numsJi] :

nums [1] 17

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]
foriin range(l, len(nums)): maximum 30
E— if nums[i] > maximum: # False i 4
maximum = numsJi]]
nums [1] 17

return maximum

ages = [20, 16, 22, 30, 17, 24]

max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]
madp foriin range(l, len(nums)): maximum 30
if nums[i] > maximum: i 5
maximum = numsJi] .
nums [1] 24

return maximum

ages = [20, 16, 22, 30, 17, 24]

max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]
foriin range(l, len(nums)): maximum 30
E— if nums[i] > maximum: i 5
maximum = numsJi] nums [1] 24

return maximum

ages = [20, 16, 22, 30, 17, 24]

max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]
foriin range(l, len(nums)): maximum 30
E— if nums[i] > maximum: # False i 5
maximum = numsJi] .
nums [1] 24

return maximum

ages = [20, 16, 22, 30, 17, 24]

max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Trace execution: find max.py

def find_max(nums): Variable | Value
maximum = nums|[0]
foriin range(l, len(nums)): maximum 30
if nums[i] > maximum: i 5
maximum = numsJi] .
== return maximum aums (1] =

ages = [20, 16, 22, 30, 17, 24]

max_age = find max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

Example: count the vowels

A for loop can be used to iterate over the characters of a string

To see how this works, consider a function called count_vowels that counts the number
of vowels (lowercase or uppercase) in a word

> To make this problem a little easier to solve, we can call the lower() method for strings, which
makes a copy of a given string and changes all the uppercase letters to lowercase

o upper() makes all letters uppercase

Strings are immutable (unchangeable) objects

To convert a string into lowercase we must make a lowercase copy of it and replace the
original string with the new one

Example: vowels.py

def count_vowels(word):
vowels = 'aeiou'’
num_vowels =0
for letter in word.lowex(): # search through a
if letter in vowels: # lowercase copy of
num_vowels +=1 # the original word
return num_vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):
== vowels = 'aeiou’
num _vowels =0
for letter in word.lower():
if letter in vowels:
num_vowels +=1
return num_vowels

word = 'Cider’

Variable

Value

print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):
vowels = 'aeiou’
== num_vowels =0
for letter in word.lower():
if letter in vowels:
num_vowels +=1
return num_vowels

word = 'Cider'

Variable

Value

num vowels

print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’
num_vowels =0 num vowels 0
==y for letter in word.lower(): letter c

if letter in vowels:
num_vowels +=1
return num_ vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’
num_vowels =0 num vowels 0
for letter in word.lowex(): 1et;er c

— if letter in vowels:
num_vowels +=1
return num_ vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’
num_vowels =0 num vowels 0
for letter in word.lowex(): 1et;er c

o if letter in vowels: # False
num_vowels +=1
return num_ vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’

num _ vowels =0

==y for letter in word.lowex():
if letter in vowels:

num;vowels
letter i

num_vowels +=1
return num_ vowels

word = 'Cider'

print('The number of vowels in ' + word + 'is ' +
str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’

num _ vowels =0 num vowels

letter i

for letter in word.lower():
== if letter in vowels:
num_vowels +=1

return num_ vowels

word = 'Cider'

print('The number of vowels in ' + word + 'is ' +
str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’

num _ vowels =0 num vowels

letter i

for letter in word.lower():
o if letter in vowels: # True
num_vowels +=1

return num_ vowels

word = 'Cider'

print('The number of vowels in ' + word + 'is ' +
str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’
num_vowels = 0 num vowels 1
for letter in word.lower(): letter 1

if letter in vowels:
—— num_vowels +=1
return num vowels

word = 'Cider’

print('The number of vowels in ' + word + 'is ' +
str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’

num _ vowels =0
==y for letter in word.lowex():
if letter in vowels:

=

num_vowels
letter d

num_vowels +=1
return num_ vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’

num _ vowels =0

=

num_vowels
letter d

for letter in word.lower():
== if letter in vowels:
num_vowels +=1

return num_ vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’

num _ vowels =0

=

num_vowels
letter d

for letter in word.lower():
o if letter in vowels: # False
num_vowels +=1

return num_ vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):
vowels = 'aeiou’
num vowels =0
== for letter in word.lower():
if letter in vowels:
num_vowels +=1
return num_vowels

word = 'Cider'

Variable Value
num_vowels 1
letter =)

print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):
vowels = 'aeiou’
num vowels =0
for letter in word.lower():
— if letter in vowels:
num_vowels +=1
return num_vowels

word = 'Cider'

Variable Value
num_vowels 1
letter =)

print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):
vowels = 'aeiou’
num vowels =0
for letter in word.lower():
— if letter in vowels: # True
num_vowels +=1
return num_vowels

word = 'Cider'

Variable Value
num_vowels 1
letter =)

print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’
num vowels =0 num vowels 2
for letter in word.lowex(): 1et;er e
if letter in vowels:
—— num_vowels +=1

return num_ vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’
num vowels =0 num vowels 2
==y for letter in word.lower(): letter r

if letter in vowels:
num_vowels +=1
return num vowels

word = 'Cider’

print('The number of vowels in ' + word + 'is ' +
str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’
num _ vowels =0 num vowels 2
for letter in word.lowex(): 1etzer r

— if letter in vowels:
num_vowels +=1
return num_ vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’
num _ vowels =0 num vowels 2
for letter in word.lowex(): 1etzer r

o if letter in vowels: # False
num_vowels +=1
return num_ vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

Example: vowels.py

def count_vowels(word):

Variable Value
vowels = 'aeiou’
num _ vowels =0 num vowels 2
for letter in word.lowex(): 1etzer r

if letter in vowels:
num_vowels +=1
=l return num vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +

str(count_vowels(word))) # will print 2

A list of lists

In Python, a list can contain objects of any type

A list is an object. Therefore, a list can contain other lists!

Imagine there is a group of 4 students, and for each student there are 3 exam scores:
scores = [[89, 85, 90], [18, 85, 12],
[99, 86, 92], [82,84) 79]]
To access a particular score, two indices are needed:

o First, which students grade is needed (0 through 3)
> Second, which score of that student is desired (0 through 2)

Example: scores[3][1] is fourth student's score on the second exam (which is 84)

Example: compute averages (v1)

We want to write code that will compute the average score that students earned on
each exam

Will write more than one version of the program =2 But start simple

In the first version we will "hard-code" several values (the number of students and the
number of scores) in the program

Then, generalize things a bit and use variables for these values

Example: averages v1.py

scores represents 4 students who each took 3 exams
scores = [[89, 85, 90], [18, 85, 12],
[99, 86, 92], [82, 84, 19]]

averages = [0, 0, 0]

for student in scores:
averages[0] += student[0]
averages[l] += student[1]
averages[2] += student[2]

for i in range(3):
averages[i] /=4

print(averages)

Example: compute averages (v2)

The first version of the code has a major negative: the algorithm will work only for a
class of four students who took three exams

Suppose the class is larger or smaller? Or suppose the students took more or fewer
exams?

Example: compute averages (v2)

Next development attempt is a better (but more complicated) version of the algorithm
that can adapt to larger/smaller class sizes and more/fewer exams

The approach will rely on nested loops, which means there will be one loop inside of
another

Nested loops will become increasingly important as the course progresses

Example: averages v2.py

One other thing before looking at the program

Recall that syntax like 'Hi'*3 will create a new string by repeating a given string a desired
number of times

> For instance, 'Hi'*3 equals 'HiHiHi'

° In a similar manner, [0]*3 would create a list containing 3 zeroes, namely, [0, 0, 0]

Thus, the * notation with strings and lists is essentially a form of concatenation

Example: averages v2.py

scores = [[89, 85, 90], [Z8, 85, 72], [99, 86, 92], [82, 84, 79]]

num_students = len(scores)
num_exams = len(scores[0]) # each student took the
averages = [0] * num_exams # same number of exams

for student in scores:
for i in range(0, num_exams): # nested loops
averages[i] += student[i]

foriin range(0, num_exams):
averages[i] /= num_students

print(averages)

Example: compute averages (v3)

In a third and final version of the exam average calculator, the computations will be
encapsulated (enclosed or wrapped) inside of a function

compute_averages(students)

The function takes the list of scores as its argument

After computing the exam averages, the function returns a list of the average scores

This illustrates that Python functions can return many values at once (via a list), not just
a single number or string

Example: averages v3.py

scores = [[89, 85, 90], [Z8, 85, 72], [99, 86, 92], [82, 84, 19]]

def compute_averages(students):
num_students = len(students)
num_exams = len(students[0])
avgs = [0] * num_exams

for student in students:
for iin range(0, num_exams):

avgs[i] += student[i]

for i in range(0, num_exams):
avgs[i] /= num_students

return avgs

averages = compute_averages(scores)
print(averages)

Example: bottles of beer/milk

The final example is on a lighter note looking at a program that prints the lyrics of the
song “99 Bottles of Beer on the Wall”

° |n this song, the singer needs to count from 99 down to 0

The range command can be used to count up, but it also can count down if given a
negative number for the step size

For example, range(10,-1,-1) will count down from 10 to O by 1s
So list(range(10,-1,-1)) would generate the list [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, O]

The code on the next slide asks the user for the starting number so that the program
can start from a value other than 99

Example: bottles.py

age = int(input('"How old are you? '))

if age < 21:
drink_type = 'milk'
else:
drink_type = 'beer’;

num_bottles = int(input('"How many bottles of ' + drink_type + ' do you have?'))

for bottle in range(num_bottles, -1, -1):

if bottle > 1:

print(stx(bottle) + ' bottles of ' + drink_type +

' on the wall!')

elif bottle == 1:

print('l bottle of ' + drink_type + ' on the wall!’)
else:

print('No bottles of ' + drink_type + ' on the wall!')

Example: vowels.py

def count_vowels(word):
vowels = 'aeiou'’
num_vowels =0
for letter in word.lowex(): # search through a
if letter in vowels: # lowercase copy of
num_vowels +=1 # the original word
return num_vowels

word = 'Cider’
print('The number of vowels in ' + word + 'is ' +
str(count_vowels(word))) # will print 2

Modify this program to:
1. Also count and return
the number of non-vowel
letters

— Hint: use a list to return
both numbers

2. Print out the number of
vowels and non-vowels

- Hint: need to access the
index of the returned list

Example: bottles.py

age = int(input('How old are you? '))

Modify this program to:

if age < 21: . 1. Write milk only for
drink_type = 'milk’
else: people younger than the
drink_type = ‘beer’; legal drinking age in your
num_bottles = int(input('"How many bottles of ' cou ntry
+ drink_type + ' do you have?'))
for bottle in range(num_bottles, -1, -1): 2 Make it count up from 1
if bottle > 1: . to the user input number,
print(stx(bottle) + ' bottles of ' + drink_type +] .
' on the wall!") incrementing by 2
elif bottle == 1: (e.g. 1 3 5)
print('l bottle of ' + drink type + ' on the wall!') T
else:

print('No bottles of ' + drink_type + ' on the wall!')

Questions?

