
Computer Science
Principles
CHAPTER 2 – COMPUTER PROGRAMMING FUNDAMENTALS

Announcements
Reading: Read Chapter 2 in the Conery textbook (Explorations in Computing)

Python programs from slides posted

Acknowledgement: These slides are revised versions of slides prepared by Prof. Arthur Lee, Tony
Mione, and Pravin Pawar for earlier CSE 101 classes. Some slides are based on Prof. Kevin
McDonald at SBU CSE 101 lecture notes and the textbook by John Conery.

2

Expressions
An Expression represents something like a number, string or value

"Hello, world!" is an expression
• It has a value
• In this case, it’s a string (a sequence of characters)

Numbers are also expressions
• 5 is an integer expression
• Recall that an integer is zero, or a positive or negative whole number with no fractional part

• 12.36 is a floating-point expression
• Floating-point is a format that computers use to represent real numbers
• Recall that a real number is zero, or a positive or negative number that might have a fractional part

3

Expressions
An expression may also look like 2 + 9

◦ This represents an addition
◦ Some of the simplest expressions in Python involve these arithmetic expressions

Each number is called an operand – these are the inputs to the function

The plus (+) is an operator – this is telling what to do with the input (in this case, add)

The expression may consist of many different operators and operands.

4

Arithmetic in Python
The symbols used for operators are commonly used in other languages and applications (e.g.,
spreadsheets)

◦ add: +
◦ subtract: -
◦ multiplication: *
◦ division: /
◦ integer division: // (divides and rounds down to the nearest whole number)
◦ remainder: % (gives the remainder of an integer division, also called "modulo")
◦ exponentiation: **

5

Examples of arithmetic in Python
11 + 5 è 16

11 – 5 è 6

11 * 5 è 55

11 / 5 è 2.2

11 // 5 è 2
◦ This example shows integer division. Any remainder is discarded.

11 % 5 è 1
◦ The computer divides 11 by 5 and returns the remainder (which is 1), not the quotient (which is 2).

◦ The % is performing the "modulo operation"

6

Examples of arithmetic in Python
What happens when you have:

2 * (3 + 2) – 4 / 2

è 8

Arithmetic in Python follows the PEMDAS rule:

1. First, evaluate all expressions in parentheses (P)

2. Then, perform exponentiations (E)

3. Next, perform multiplications (M) and divisions (D) in left-to-right order

4. Finally, perform additions (A) and subtractions (S) in left-to-right order

7

Arithmetic in Python
The ** operator does exponentiation or raises a number to a power

For example: 2 ** 5 è 32 because 25 = 32

Recall raising a number to the power of ½ is the same as taking a square root
◦ So 16 ** 0.5 would be the same as √16 which is 4

8

Expressions
Python also has Boolean expressions, which are expressions that can be True or False

So there are at least three kinds of data in Python programming:
◦ Strings
◦ Numbers
◦ true/false (Boolean) values

In computer programming, there are a wide variety of types of data because there are a wide
variety of problems that computers can help solve

9

Variables
A variable in computer programming is similar to the concept of a variable in mathematics

◦ A name for some value or quantity of interest in a given problem

billTotal = 10.50

The variable named billTotal is assigned the value 10.50

Now if we later refer to the billTotal, it will be 10.50

In a program, variables can store a person’s age, GPA, name, or almost any other kind of information
◦ The value is temporarily stored in the main memory of the computer while the program is running
◦ A variable is a kind of identifier because it identifies (names) something in source code

10

Assignment statements
When we give a value to a variable, we are writing an assignment statement

An assignment statement consists of a variable name, the equals sign, and a value or expression

Examples:
◦ length = 3.5
◦ total = 2 + 5 (total becomes 7)
◦ firstName = "Susan"

These examples show three different data types: a real number, an integer, and a string

11

Assignment statements
After assigning a value to a variable, you can change the value of the variable with another
assignment statement:

total = 5
… other code here …
total = 17 + 6
… more code …

Variables can also appear on the right-hand side (RHS) of an assignment statement:
next_year = this_year + 1
total_earnings = income - taxes

12

Variables
It is important to choose variable names that are informative and helpful

Do you have any idea what these variables represent?
tb = st + tx + tp

Do these names help?
total_bill = subtotal + tax + tip

Note how the underscore is used to separate words that define the identifier
◦ Spaces are not allowed in variable names

13

Variables
A Python variable name may contain lowercase letters, uppercase letters, digits and underscores

◦ First character must be a letter or underscore

Lowercase and uppercase letters are treated as completely different characters
◦ Because of this we say that Python is a case-sensitive language
◦ First_Name, first_name and FIRST_NAME would all be treated as different identifiers

There are a number of keywords built into the Python language that have pre-defined meanings
◦ Predefined keywords may not be used as variables
◦ Examples of predefined keywords are:

if
for
and

14

Example: Area calculation
Want to compute the area of a square countertop with one corner cut off, as shown here

15

Example: Area calculation
Assume that the triangular cut-out begins halfway along each edge

If it is 100 cm long on each side, we can write a statement like this:
◦ area = 100**2 - 50*50/2

Note that this code has a few issues:
◦ It’s just a formula with no explanation of what the numbers mean
◦ The code works only for countertops exactly 100 cm long. What if we had countertops of other sizes?

16

Example: Area calculation
Addressing the first issue: giving an explanation of what the code does

area = area of square - area of triangle
area of triangle is 1/2 base*height
area = 100**2 - 50*50/2

The lines beginning with the # symbol are called comments
• Comments are notes that the programmer writes to explain what the program does
• Comments do not affect the input or output of the program or anything about how it runs

17

Example: Area calculation
Now let’s address the other issue: make it to generalizable and work with other countertop sizes

side = 100
square = side**2
triangle = (side / 2)**2 / 2
area = square – triangle

To compute the area for a countertop of a different size (e.g. 200), simply change the first line:
side = 200

This code is also more readable; comments aren’t needed
• This is an example of self-documenting code

The spacing in between variables, numbers, and operator is optional, but is included here to
make the formulas easier to read

18

Aside: input statements
To improve the code further, we can make it interactive so that the user can provide the value
for the side

Do this by writing an input statement – An input statement reads a string from the keyboard
◦ As part of an input statement, the programmer must give a prompt message that tells the

user what they should enter. For example:

name = input("What is your name? ")

The person’s name will be assigned to the name variable
◦ You could also say that we are saving the person’s name in the name variable

19

Example: Area calculation
In the case of the area calculation, the user should enter a number, not a string

To collect a floating-point number, use:
side = float(input("Enter side length: "))

If we wanted to only allow integer numbers as input, we would use:
side = int(input("Enter side length: "))

The type chosen – int vs. float – depends on the application
◦ For our program, read in a float so the user could enter a fraction of a centimeter if desired

The last step is how to display the final result on the computer screen

20

Aside: print statements
print is a Python command

◦ It tells Python to display some text on the screen

The syntax to print a basic message is just this:
◦ print("Hello, world!")

Any text printed with additional print commands will appear on a new line

For Python to print the next output on the same line, do this instead:
◦ print("Hello, world!", end="")
◦ This means print this message, but do not automatically go to the next line

21

Aside: print statements
To print a number, it must first be converted into a string, like so:

◦ print("The area is " + str(area))
◦ The assumption here is that area is a variable that contains the value we want to print

When used in this fashion, the + symbol performs string concatenation
◦ This simply means Python will join the two strings together into one

22

Example: countertop.py
This program prints the area of a
countertop formed by cutting the
corner off a square piece of material

side = float(input("Enter side length: "))
square = side**2
triangle = (side/2)**2 / 2
area = square - triangle
print("The area is " + str(area))

23

Example: coins.py
Here is an example that uses the modulo (remainder) operator with integer division:

Given a total number of cents, the computer should print how many dimes, nickels, and pennies
are needed to make that change while minimizing the number of coins
◦ Note: 1 dime = 10 cents, 1 nickel = 5 cents, 1 penny = 1 cent.

Note:
The code will use several variables
It will also need the str command to print variables containing numbers to the screen

◦ Recall that str converts a number to a string so that it can be concatenated with other strings

24

Example: coins.py
cents = int(input("Enter the number of cents: "))

dimes = cents // 10
cents = cents % 10
nickels = cents // 5
cents = cents % 5
pennies = cents

print("That number of cents is equal to " +
str(dimes) + " dimes, " + str(nickels) +
" nickels and " + str(pennies) + " pennies.")

25

Escape sequences
Escape sequences in programming languages like Python allow printing characters (symbols) on
the screen that perform special functions

In Python, some of the escape sequences are:
◦ \t shifts the text to the right by one tab stop
◦ \n prints a newline
◦ \" prints a double quotation mark
◦ \' prints a single quotation mark

A lone backslash character \ is called the line-continuation character (it’s not really an escape
sequence, though)

◦ This symbol is a signal to Python that the current statement spans two or more lines of a file

26

Example: limerick.py
Source code:
print('There was an old man with a beard\n\
Who said, \"It\'s just how I feared!\"\n\
\tTwo owls and a hen\n\
\tFour larks and a wren\n\
Have all built their nests in my beard.')

Output:
There was an old man with a beard
Who said, "It's just how I feared!"

Two owls and a hen
Four larks and a wren

Have all built their nests in my beard.

27

Additional Arithmetic in Python
The constant π is built into Python

First the programmer must make it available by importing the math module:
◦ import math

Then math.pi can be used in expressions
◦ math.pi * 2

A Python module is a file consisting of Python source code that are all related somehow

28

Functions
Python's math module contains code related to mathematical functions

◦ The library has numbers (e, π , etc.)
◦ Also has a variety of useful mathematical functions (e.g. calculate the cosine of a variable)

In programming, a function is a name given to a set of statements that perform a well-defined
task

For example, the input function performs a task (getting user input) and also returns the value
entered by the user

name = input("What is your name? ")
print, int, float, and str are also functions

The next example introduces a new function, format, that lets the programmer format
numerical output

29

Example: BMI calculator
Once numbers are stored in variables, they can be used in calculations

The Body Mass Index (BMI) is a metric used to gauge a person's general health

Given a person's weight in pounds and total height in inches, a person's BMI is calculated as:
◦ BMI = (weight * 703) / height2

A BMI in the range of 18.5-24.9 is considered “healthy”

We want to create a program that calculates and prints a person's BMI based on entered values.

However, we want to ensure the BMI is printed with 3 digit decimal precision (e.g. 19.421)
◦ By default it will print 15 decimal digit, e.g. 19.421004314691235

30

Example: BMI calculator
To print a number to a designed number of digits, use the format function

Suppose there is a variable total to be printed with two decimal places. Here is how to do it:

print("Total: " + "{:.2f}".format(total))

If we wanted four digits, we would write {:.4f} instead

Note that when using the format method, do not also use str to print a number

31

Example: bmi_v1.py
weight = float(input('Enter weight in pounds: '))
feet = float(input('Enter feet portion of height: '))
inches = float(input('Enter inches portion of height: '))

total_inches = feet * 12 + inches

bmi = (weight * 703) / total_inches ** 2

print('Your BMI is ' + str(bmi))
print('Your BMI is ' + '{:.3f}'.format(bmi))

The first print statement gives the BMI with full accuracy. The second print statement rounds to 3 decimal places.

The blank lines are present to make the code more readable. They do not affect program execution in any way.

More about format function: https://www.python-course.eu/python3_formatted_output.php

32

https://www.python-course.eu/python3_formatted_output.php

Other functions in Python
Some examples:

Try these on a Python Console or as part of a program

33

type(45)

int(34.56)

float(45)

str(3421)

len('apple')

round(2.32)

abs(-45)

pow(2, 3)

help(pow)

. . .

import math

math

math.log(10)

math.log10(10)

math.log10(1e6)

radians = 0.7

math.sin(radians)

math.sqrt(3)

...

import random

random.random()

random.randint(0,100)

Function composition
Can compose functions as is done in mathematics, e.g., f(g(x,y))

import math
radians = 0.7
print(math.degrees(radians))

math.radians(math.degrees(radians))

radians = 0.3
math.acos(math.cos(radians))

pow(abs(-3), round(5.6))

34

Defining new functions
Functions in program have many benefits, including:
• They make code easier to read and understand
• è don't need to know the details of how or why a function works
• They allow code to be used more than once (code re-use)

To define a new function in Python we use a def statement
• Consider writing a function that computes a person's Body Mass Index
• Can then call this function as many times as desired

The alternative would be to copy and paste the code multiple times
• First rule of programming: don't repeat yourself!

35

Creating new functions
From mathematics: a 2 step process

1. Define a function, once
f(x, y) = x*y + 1

2. Apply/Use/Invoke/Call the function, as many times as desired
f(2,3) = 2*3 + 1 = 7

Do the same in programming: again a 2 step process
1. Define a function, once

def f(x, y):
return x * y + 1

2. Apply/Use/Invoke/Call the function, as many times as desired
f(2, 3)

36

Mechanics of defining/calling a function

37

Parameters and arguments
Function can have zero or more parameters
• Function may be defined with formal parameters

Example:

def multAdd(a, b, c):
return a * b + c

print(multAdd(1, 2, 3))

print(multAdd(2.1, 3.4, 4.3))
print(multAdd(abs(pow(2,3)), 3.2 + 2.3, 45.34))

38

• Functions can be then called with actual arguments
• How many? As many as the function needs!

Program: flow of execution

39

def message():
print(1)
message1()
print(2)

def message1():
print('a')
message2()
print('b')

def message2():
print('middle')

message()

Note: this is a program with three
functions and it starts with a call to
message.

Output:
1
a
middle
b
2

Fruitful functions
square is an example of a fruitful function
• It returns a value when it is called

What will get printed when this code runs?

40

// fruitful function
def square(n):

return n * n

print(square(3))

Void functions
announce below is an example of a void function
• It does not return any useful value when it is called; it only prints a value

What would happen if you tried to print your announce call?

41

// void function
def announce(message):

print(message)

announce('hello!')

Void functions – Part 2

Since announce does not have a return statement, it returns None

So the statement print(announce('hello!')) will print None.

42

// void function
def announce(message):

print(message)

print(announce('hello!'))

Example: bmi_v2.py
Function definition
def bmi(w, h):

return (w * 703) / (h ** 2)

main is to use the function defined above.
def main():

weight = float(input('Enter weight in pounds: '))
feet = float(input('Enter feet portion of height: '))
inches = float(input('Enter inches portion of height: '))

total_inches = feet * 12 + inches
my_bmi = bmi(weight, total_inches)
print('Your BMI is ' + '{:.3f}'.format(my_bmi))

This sets up a call to the function main.
main()

43

Note how a program
is organized.

Why functions? Abstraction
One of the most important concepts in computer science is abstraction

◦ Give a name to a group of statements and use it.
◦ E.g. bmi(…)

From the outside, the details are hidden
◦ Only care that calling this function will do a desired computation

Functions thus allow complex problems to be solved by dividing it into smaller, more
manageable sub-problems

◦ This process is called problem decomposition (also functional decomposition)

44

Example: bmi_v3.py
Here's an alternative way of implementing the bmi function

◦ It illustrates proper indentation and relies on two local variables, numerator and denominator

A local variable is a variable accessible only inside the function where it is created

45

Example: bmi_v3.py
def bmi(w, h):

numerator = w * 703
denominator = h ** 2
return numerator / denominator

def main():
weight = float(input('Enter weight in pounds: '))
feet = float(input('Enter feet portion of height: '))
inches = float(input('Enter inches portion of height: '))

total_inches = feet * 12 + inches
my_bmi = bmi(weight, total_inches)
print('Your BMI is ' + '{:.3f}'.format(my_bmi))

main()

46

Example: Distance calculator
Example: A distance traveled is provided in miles, yards, and feet (e.g. 3 miles, 68 yards, 16 feet)

◦ Need this to be converted to total inches traveled and print the result

◦ This requires some unit conversions

Recall the following equivalences:
◦ 1 foot = 12 inches

◦ 1 yard = 3 feet

◦ 1 mile = 5,280 feet

Finally, to print a comma every three digits we can use the formatting string '{:,}' when printing
an integer

47

Example: distance.py
def distance(m, y, f):

return (m * 5280 * 12) + (y * 3 * 12) + (f * 12)

def main():
miles = int(input('Enter the number of miles: '))
yards = int(input('Enter the number of yards: '))
feet = int(input('Enter the number of feet: '))

inches = distance(miles, yards, feet)

print('Distance in inches: ' + '{:,}'.format(inches))

main()

48

Example: Mortgage calculator
The monthly payment on a fixed-rate mortgage can be calculated using this formula:

◦ !"#$%&' = (* ∗ ,)/ 1 − 1 + * 23

Where:
◦ P is the principal (the amount we borrowed)
◦ r is the monthly interest rate as a decimal (i.e., the annual interest rate as a decimal divided by 12)
◦ n is the number of months the loan will last

Let's also improve formatting the output:
◦ To include a comma every three digits and have 2 decimal precision, write the format string as:

'{:,.2f}'
◦ Also, a format string can be saved in a variable if it's needed to format several numbers in the

same way:
fmt = '{:,.2f}'

Now we will create a function to compute the payment

49

Example: mortgage.py
def monthly_payment(borrow_amt, monthly_rate, num_months):

return (borrow_amt * monthly_rate) / (1 - (1 + monthly_rate) ** -num_months)

def main():
principal = float(input('Enter principal: '))
annual_rate = float(input('Enter annual interest rate as a percentage:'))
years = int(input('Enter term of mortgage in years: '))

payment = monthly_payment(principal, annual_rate / 12 / 100, years * 12)
totalPaid = payment * years * 12
totalInterest = totalPaid - principal

fmt = '{:,.2f}' # formatter string
print('Principal: $' + fmt.format(principal))
print('Annual interest rate: ' + fmt.format(annual_rate) + '%')
print('Term of loan in years: ' + str(years))
print('Monthly payment: $' + fmt.format(payment))
print('Total money paid back: $' + fmt.format(totalPaid))
print('Total interest paid: $' + fmt.format(totalInterest))

main()

50

Conditional execution
Often an algorithm needs to make a decision

The steps which are executed next depend on the outcome of the decision

Example: a person's income range determines the income taxation rate
◦ If the income is above a certain minimum, use one tax rate; otherwise, use a lower rate

In Python, an if statement allows testing conditions and executing different steps depending on
the outcome

51

Example: Tuition calculator
Suppose part-time students (< 12 credits) at a fictional college pay $600 per credit and full-time
students pay $5,000 per semester.

Use an if statement to write a short program that implements this logic

52

Example: tuition.py
numCredits = int(input('Enter number of credits: '))

if numCredits < 12:
cost = numCredits*600
print('A student taking ' + str(numCredits) +

' credits is part-time and will pay $' +
str(cost) + ' in tuition.')

else:
print('A student taking ' + str(numCredits) +

' credits is full-time and will pay
$5,000 in tuition.')

53

Conditional execution
If statements can also appear in functions:

def tax_rate(income):
if income < 10000:

return 0.0
else:

return 5.0

The value returned by the function depends on value passed as an argument to the parameter
Things to note about the if statement:
• The words if and else are keywords
• There is a colon (:) at the end of the if and else clauses
• The statements to be executed are indented

54

Multi-way if-statements
When an algorithm needs to choose among more than two alternatives, it can use elif clauses
• elif is short for “else if”
This function distinguishes between three tax brackets:

def tax_rate(income):
if income < 10000:

return 0.0
elif income < 20000:

return 5.0
else:

return 7.0

Can use as many elif parts as needed

55

Boolean expressions
The expressions inside if and elif statements are special kinds of expressions
The result of these expressions is either True or False
An expression that evaluates to True or False is called a Boolean expression

Boolean expressions often involve relational operators:
• equal to / not equal to
• greater than / greater than or equal to
• less than / less than or equal to

56

Boolean expressions
The notation >= means “greater than or equal to” and is one of six relational operators
supported by Python:

57

Mathematical Operator Python Equivalent Meaning
= == is equal to
≠ != is not equal to
> > is greater than
≥ >= is greater than or equal to
< < is less than
≤ <= is less than or equal to

Example: Overtime calculator
Someone who works more than 40 hours a week is entitled to “time-and-a-half” overtime pay

How can the following be determined?
1. Whether an employee is entitled to overtime pay
2. If so, how much are they paid?

For #1 use an if statement

For #2 a different calculation is required depending on whether employee will earn overtime pay or
not

Regular pay formula:
◦ hourly wage × hours worked

The overtime formula has two parts:
◦ The pay for the first 40 hours
◦ The pay for additional overtime hours (1.5 x hourly wage)

58

Example: paycheck.py
def compute_pay(hours, wage):

if hours <= 40:
paycheck = hours * wage

else:
paycheck = 40 * wage + (hours - 40) * 1.5 * wage

return paycheck

def main():
hours_worked = float(input('Enter # of hours worked: '))
hourly_wage = float(input('Enter hourly wage: '))

pay = compute_pay(hours_worked, hourly_wage)
print('Your pay is $' + '{:.2f}'.format(pay))

main()

59

Example: Hiring decisions
A hiring manager is trying to decide which candidates to hire

Each potential hire is evaluated based on GPA, interview performance, and an aptitude exam
◦ A GPA of at least 3.3 is worth 1 point
◦ An interview score of 7 or 8 (out of 10) is worth 1 point; a score of 9 or 10 is worth 2 points
◦ An aptitude test score above 85 is worth 1 point

Hiring decisions are then based on point totals:
◦ 0, 1 or 2 total points: Not hired
◦ 3 total points: hired as a Junior Salesperson
◦ 4 points: hired as a Manager-in-Training

60

Example: Hiring decisions
Next slide will show a function that takes these three values and returns the hiring decision as a
string

The following Python capabilities will help with this task:
◦ The += operator can be used to increment a variable by some amount

amount += 5
amount = amount + 5 // Exact same as the line above

◦ -=, *= and /= also exist and perform similar operations
◦ A variable can be used to maintain a running total
◦ An if statement can contain elif clauses without a final else clause

61

Example: hiring.py
def decision(gpa, interview, test):

points = 0 # Variable to store the total points

if gpa >= 3.3:
points += 1

if interview >= 9:
points += 2

elif interview >= 7:
points += 1 # note: no else clause

if test > 85:
points = points + 1

if points <= 2:
return 'Not hired'

elif points == 3:
return 'Junior Salesperson'

else:
return 'Manager-in-Training'

62

Ranges and relational operators
The relational operators can be used to express ranges of values
Examples:
• An age in the range 1 through 25, inclusive:

1 <= age <= 25

• A length in the range 15 (inclusive) up to, but not including, 27:
15 <= length < 27

• A year in the range 1900 through 1972, exclusive of both:
1900 < year < 1972

63

More on strings
Python strings can begin and end with single quotes or double quotes
• 'Stony Brook' and "Stony Brook" are both valid ways of defining the same string

Recall that the plus symbol joins two strings into a single longer string (concatenation)

The asterisk repeats a string a specified number of times
• Example: 'Hello' * 3 will evaluate to 'HelloHelloHello'

64

String functions
Strings are very fundamental to programming
• Most languages (including Python) support many functions and other operations for strings.

The Python function named len (short for “length”) counts the number of characters in a string
• len counts every character in a string, including digits, spaces, and punctuation marks
• Example:

school = 'Stony Brook University'
n = len(school) # n will equal 22

65

String methods
Many other functions on strings are called using a different syntax

Instead of writing func(s) they are written s.func()
◦ The name of the string is written first, followed by a period, and then the function name

Functions called using this syntax are referred to as Methods

66

String methods
As an example of a string method, consider how to figure out how many words are in a sentence

If there is exactly one space between each word, just count the number of space characters and
add one

The method named count does exactly that:
sentence = 'It was a dark and stormy night.'
sentence.count(' ') + 1 # equals 7

Note the argument passed to count is a string containing exactly one character: a single space
character.

67

String methods
Two other useful methods are startswith and endswith
• These are both Boolean functions and return True or False depending on whether a string begins or

ends with a specified value

Examples:
sentence = 'It was a dark and stormy night.'
sentence.startswith('It') # True
sentence.startswith('it') # False
sentence.startswith("It's") # False
sentence.endswith('?') # False
sentence.endswith('.') # True

68

String methods
Another example:

filename = input('Enter a filename: ')
if filename.endswith('.py'):

print('The file contains a Python program.')
else:

print('The file does not contain a Python program.')

69

Questions?

70

