
Lab 10 – CSE 101 (Spring 2021)
Objectives

The primary objective of this lab assignment is to get you practice with object-oriented programming in
Python

1. Object-Oriented Programming Tutorial (1 point)

Download student.py and use_student.py into your project folder and do the following in the given
order.

1. Add the following method to Student class in student

 def __init__(self, name, id, major, gpa):

 self.name = name

 self.id = id

 self.major = major

 self.gpa = gpa

Note that there is no underscore in front of an instance variable. This is a convention that some

people use, but it is not that common.

2. Add the following two lines to main in use_student.py and run it.

 s1 = student.Student('Amy', 1, 'CS', 3.21)

 print('s1:', s1)

Make sure you understand what the __init__ method is doing in this context. That is, the

constructor Student(...) call invokes the __init__ method. Also note what the output

looks like. It means that s1 is an object that is found in a memory location and provides the

location (which varies each type you run the program), for example 0x1053d95d0. That

number is a hexadecimal, or base 16, number (so it uses 0-9 and a-f to represent the values). In

other words, that is the string representation of the object s1. This number may not be that

meaningful, so the next step shows a better way to represent the Student when you print it.

3. Add the following method to Student class in student.py and then run the use_student.py
program.

 def __repr__(self):

 return '(' + self.name + ', ' + self.major + ')'

Do you see a better string representation of s1 printed now? The print function requires a

string form to display. When a string representation of an object such as s1 is needed, the

Python system calls the special method __repr__ automatically and use the return value of

the method.

http://www3.cs.stonybrook.edu/~alexkuhn/cse101-spring2021/labs/lab10/student.py
http://www3.cs.stonybrook.edu/~alexkuhn/cse101-spring2021/labs/lab10/use_student.py

4. Add the following two lines to main in use_student.py and run it.

 s2 = student.Student('Ken', 2, 'TSM', 3.42)

 print('s2:', s2)

5. Add the following method to Student class in student.py.

 def __eq__(self, other):

 return self.id == other.id

6. Add the following two lines to main in use_student.py and run it.

 print('s1 == s1:', s1 == s1)

 print('s1 == s2:', s1 == s2)

The == operator automatically triggers a call to the __eq__ method.

7. Add the following method to Student class in student.py.

 def __lt__(self, other):

 return self.gpa < other.gpa

8. Add the following two lines to main in use_student.py and run it.

 print('s1 < s1:', s1 < s1)

 print('s1 < s2:', s1 < s2)

The < operator automatically triggers a call to the __lt__ method.

9. Similarly add code that uses the 'greater than' ('>') operator.
10. The methods that we have added to Student so far are called special methods. There are more

special methods that you can explore if interested. However, now we will add some regular kind
of methods. Add the following method to Student class in student.py.

 def change_major(self, new_major):

 self.major = new_major

11. And, add the following two lines to main in use_student.py and run it.

 s1.change_major('TSM')

 print('s1:', s1)

and verify that s1's major is now changed to TSM.

12. Let's add one more regular method. Add the following method to Student class

in student.py.

 def change_gpa(self, new_gpa):

 self.gpa = new_gpa

13. And, add the following two lines to main in use_student.py and run it.

 s1.change_gpa(s1.gpa + 0.3)

 print('s1.gpa:', s1.gpa)

and verify that s1's GPA is now changed to a new value. Note how an instance variable is

accessed in the main function using a dot notation.

14. We can even create a list of Student objects and do something with it. Add the following in
the main function in use_student.py and run it.

 tsm_majors = [s1, s2]

 gpa_sum = 0.0

 for s in tsm_majors:

 gpa_sum = gpa_sum + s.gpa

 print('Average GPA = ' + str(gpa_sum/len(tsm_majors)))

This was a quick tutorial on how to create a class, how to create some objects using the class, and how
to use the class in actual code, for example in the main function in use_student.py. Now, that you
are familiar with this process, let's use it to solve some real problems.

2. Create a Point Class (2 points)

Create a file named point.py and follow the instructions below.

1. Define a class named Point that will represent a point on a graph. The class will have two

instance variable variables for the x and y coordinates. Create a constructor method (recall this

is must be named __init__) that allows you to pass the x and y coordinates as arguments to

the constructor, for example:

>>> p1 = Point(1,1)

>>> p2 = Point(4,5)

Next, you will write some additional methods in your class (the examples refer to the two points p1

and p2 shown above):

2. Write a __repr__ method that displays the point in standard mathematical notation, for

example:

>>> p1

(1,1)

3. Write a distance method that compute the distance between two points, for example:

>>> p1.distance(p2)

5.0

Read more: https://www.purplemath.com/modules/distform.htm

4. Write a polar method that returns a pair of values (tuple) corresponding to the polar coordinates of the

point:

>>> p1.polar()

(1.4142135623730951, 0.7853981633974483)

The polar coordinates of a point (x, y) are a pair of numbers (r, q) where r = sqrt(x2 + y2) and q = tan-1 y/x

You can use Python’s math, which has a function named atan that computes tan-1. The formula for polar

coordinates is valid only if the x-coordinate of a point is greater than 0. The polar method should return None

if x is negative or 0.

You can read more at: http://tutorial.math.lamar.edu/Classes/CalcII/PolarCoordinates.aspx

3. Car Dealership Program (2 points)

Download dealership.py. In this file you will see the following classes that represent cars for

sale at various car dealerships: class Car, class CarAttributes, class Dealership.

You will be asked to write two methods inside the Dealership class.

For the examples below we will be using the following objects.

car1 = Car(1, 'Ford', 23000, CarAttributes('Red', 'Rain', 'Level-1'))

car2 = Car(2, 'BMW', 46000, CarAttributes('Blue', 'Regular', 'Regular'))

car3 = Car(3, 'Ferrari', 150000, CarAttributes('Violet', 'Regular', 'Level-2'))

car4 = Car(4, 'Toyota', 26000, CarAttributes('Black', 'Snow', 'Regular'))

car5 = Car(5, 'BMW', 50000, CarAttributes('Red', 'Sport', 'Level-3'))

car6 = Car(6, 'Lotus', 50000, CarAttributes('Grey', 'Sport', 'Regular'))

car7 = Car(7, 'Audi', 40000, CarAttributes('Blue', 'Regular', 'Level-2'))

car8 = Car(8, 'Audi', 45000, CarAttributes('Blue', 'Rain', 'Regular'))

car9 = Car(9, 'Ford', 30000, CarAttributes('Violet', 'Sport', 'Level-1'))

dealership1 = Dealership([car1, car2, car3], 'Seoul Auto')

dealership2 = Dealership([car4, car5, car6, car7], 'Incheon Cars')

dealership3 = Dealership([car8, car9], 'Busan Vehicles')

Note 1: Above you see that a CarAttributes object is used as a value to be set into an

instance variable in a Car object. This is an example of an object having another object as its

component. We would say that a CarAttribute object is being composed into a Car object in

this case. This is an example of the concept called object composition. It is a common idea

used to handle complex objects. A complex object is an object consisting of other objects.

https://www.purplemath.com/modules/distform.htm
http://tutorial.math.lamar.edu/Classes/CalcII/PolarCoordinates.aspx
http://www3.cs.stonybrook.edu/~alexkuhn/cse101-spring2021/labs/lab10/dealership.py

Note 2: A special method called reset_cars is given to reset the updated values to original

values of the object after certain operations have been performed. Do not call this function

from inside your own methods or functions!

Part 1. Add a Car to a Dealership

In dealership.py, complete the method add_cars for the Dealership class. The method takes

one argument, cars, which is a list of lists of car details. Each list within the cars list

represents the details (properties) for a single car. You may assume the entire list is always

valid. A details list for a particular car will always be presented in this order: [id, brand,

price, color, tires, trim-level]. The id, brand, and price will be stored inside

a Car object and the other three properties will be stored inside a CarAttributes object inside

the Car object.

Your method should create new Car objects and add them to the car_list given to you in

the Dealership class.

Examples:

Consider the following lists of lists of car details:

p1List = [

 [11, 'Mercedes', 40000, 'Grey', 'Snow', 'Regular'],

 [12, 'Ford', 20000, 'Red', 'Rain', 'Level-1'],

]

p2List = []

p3List = [

 [13, 'Mercedes', 40000, 'Grey', 'Snow', 'Regular'],

 [14, 'Mercedes', 40000, 'Blue', 'Snow', 'Regular'],

 [15, 'Mercedes', 40000, 'Orange', 'Snow', 'Regular'],

]

Function Call 1 --------------------:

 dealership1.add_cars(p1List)

Updated dealership1.car_list:

Seoul Auto:

 Car: [<1> Ford - 23000 - Attributes: [Red - Rain - Level-1]]

 Car: [<2> BMW - 46000 - Attributes: [Blue - Regular - Regular]]

 Car: [<3> Ferrari - 150000 - Attributes: [Violet - Regular - Level-2]]

 Car: [<11> Mercedes - 40000 - Attributes: [Grey - Snow - Regular]]

 Car: [<12> Ford - 20000 - Attributes: [Red - Rain - Level-1]]

Function Call 2 --------------------:

 dealership2.add_cars(p2List)

Updated dealership2.car_list:

Incheon Cars:

 Car: [<4> Toyota - 26000 - Attributes: [Black - Snow - Regular]]

http://www3.cs.stonybrook.edu/~alexkuhn/cse101-fall2020/labs/lab9/dealership.py

 Car: [<5> BMW - 50000 - Attributes: [Red - Sport - Level-3]]

 Car: [<6> Lotus - 50000 - Attributes: [Grey - Sport - Regular]]

 Car: [<7> Audi - 40000 - Attributes: [Blue - Regular - Level-2]]

Function Call 3 --------------------:

 dealership3.add_cars(p3List)

Updated dealership3.car_list:

Busan Vehicles:

 Car: [<8> Audi - 45000 - Attributes: [Blue - Rain - Regular]]

 Car: [<9> Ford - 30000 - Attributes: [Violet - Sport - Level-1]]

 Car: [<13> Mercedes - 40000 - Attributes: [Grey - Snow - Regular]]

 Car: [<14> Mercedes - 40000 - Attributes: [Blue - Snow - Regular]]

 Car: [<15> Mercedes - 40000 - Attributes: [Orange - Snow - Regular]]

Note: To access the contents of the attributes property of a Car object you need to use

the dot operator. For example, suppose car1 refers to a Car object. To change that car's paint

color to red we would type this: car1.attributes.paint = 'Red'.

Part 2. Update a Car

In dealership.py, complete the method update_car in the Dealership class. The method

takes the following parameters, in this order:

1. id: the ID # of the car to be updated.

2. new_value: a tuple containing the detail to be updated and the corresponding value.

The tuple will look similar to this: ('brand', 'Dodge'). Any one of the five details

can be modified, as identified by one of these

strings: 'brand', 'price', 'paint', 'tires', or 'trim'.

Your function should update the property of the car that matches the id in the given

dealership and return 'Updated'. If the id doesn't match any car offered for sale by the

dealership, return 'Car not found'. Note: No two cars will ever have the same id.

Examples:

Function Call 1 --------------------:

dealership1.update_car(1, ('brand', 'Hyundai'))

Return Value: "Updated"

Updated Dealership:

Seoul Auto:

 Car: [<1> Hyundai - 23000 - Attributes: [Red - Rain - Level-1]]

 Car: [<2> BMW - 46000 - Attributes: [Blue - Regular - Regular]]

 Car: [<3> Ferrari - 150000 - Attributes: [Violet - Regular - Level-2]]

Function Call 2 --------------------:

dealership2.update_car(100, ('paint', 'Red'))

Return Value: "Car not found"

Updated Dealership:

Incheon Cars:

 Car: [<4> Toyota - 26000 - Attributes: [Black - Snow - Regular]]

 Car: [<5> BMW - 50000 - Attributes: [Red - Sport - Level-3]]

 Car: [<6> Lotus - 50000 - Attributes: [Grey - Sport - Regular]]

 Car: [<7> Audi - 40000 - Attributes: [Blue - Regular - Level-2]]

Function Call 3 --------------------:

dealership3.update_car(8, ('trim', 'Level-1'))

Return Value: "Updated"

Updated Dealership:

Busan Vehicles:

 Car: [<8> Audi - 45000 - Attributes: [Blue - Rain - Level-1]]

 Car: [<9> Ford - 30000 - Attributes: [Violet - Sport - Level-1]]

4. Submission

Submit your completed student.py, use_student.py, point.py, and

dealership.py programs on Blackboard.

	Objectives
	1. Object-Oriented Programming Tutorial (1 point)
	2. Create a Point Class (2 points)
	3. Car Dealership Program (2 points)
	Part 1. Add a Car to a Dealership
	Part 2. Update a Car
	4. Submission

