
1

Announcements, 3/16/2023

Today: Software Architecture

Break around 11:15am



2

Acknowledgements

Some of these slides are based on the lecture notes from Prof. Alex 
Kuhn, Prof. Emina Torlak at University of Washington, and Ian 
Sommerville’s Software Engineering textbook
.



3

Thoughts on reading

� Was anything particularly interesting or unexpected?

� Any points that I could clarify further?

� Anything you disagreed with?



4

Outline

� What is software architecture?

� Why is software architecture design important?

� What makes good architecture?

� Examples of different architecture styles



5

What is software architecture?



6

How do we bridge requirements and code?

� Software architecture: The fundamental structure to build and 
evolve a software system

�

� Software architecture is similar to blueprints for an architect



7

IEEE definition

Architecture is the fundamental organization of a software system 
embodied in its components, their relationships to each other and to 
the environment, and the principles guiding its design and evolution.



8

Architecture abstractions

� Multiple levels of abstractions

� On the small scale, architecture refers to how a program is 
decomposed into components

� On a large scale, it is concerned with the architecture of complex 
enterprise systems that include other systems and programs 
(distributed over many computers and potentially owned by different 
companies)



9

What does software architecture look like?

Presto DB Architecture – A High Performing Distributed Relational Database

From https://www.8bitmen.com/what-database-does-facebook-use-a-1000-feet-deep-dive/



10

Simple web architecture diagram

Frontend Backend



11

Supporting web + native app

Frontend Backend



12

Fundamental parts of architecture

� Components: a component is an element that implements a 
coherent set of functionality or features
� Deliberately broad: can be a class, package, library, etc.
� Usually interacts with other components through well defined interfaces 

or connectors



13

Fundamental parts of architecture

� Connectors: a connector defines how components are connected 
together
� Deliberately broad definition for anything that transmits information 

between components
� Can be function calls, API calls, requests, etc.
� Connector mechanisms do not store state or functionality themselves



14

Why is software architecture design important?



15

(short answer)

� Requirements change

� Thus your code must also change

� Good architecture makes code easier to change



16

Additional reasons why architecture is important

� To create a reliable, secure and efficient product, you need to pay 
attention to architecture design which includes:
� Overall organization
� How the software is decomposed into components
� Server structure
� Technologies that you use to build the software

� The architecture of a software product affects its performance, 
usability, security, reliability and maintainability



17

Architecture design

� Need to design an overall system architecture early on
� This design usually affects many components in the system, so 

refactoring the system architecture is quite expensive

� When designing software architecture, you do not need to decide 
how each individual component is implemented
� You design the interface for the components first, and determine the 

implementation later in the process



18

Many factors influence architectural choices

� Product lifetime – How long will the product last? How many 
revisions?

� Software comparability – Does it need to be compatible with other 
software?

� Number of users – How many users do you need to support? 
Could this change rapidly?

� Nonfunctional product characteristics – Any security or 
performance requirements?

� Software reuse – Can you reuse large components from other 
products?



19

What makes a good architecture?



20

Goals for a good architecture

� Satisfies requirements

� Manages complexity of project

� Can handle changes and evolutions



21

Essence of good software design

Good design is easier to change than bad design
� Not always true, but a good general guide



22

Key architecture design principle
� Separation of concern between components

� The less each component knows about the others, the easier to change
� Use encapsulation to hide information
� Makes for more modular programs

More modular systems are easier to understand, reuse, and evolve.



23

To achieve modularity
� Think about interfaces between components
� Public interface: code that can be seen and run by other 

components
� Private implementation: data and methods that are only 

accessible within the component

� You want stable interfaces between components that change slowly



24

Key properties of architectures
� Cohesion: How closely operations in a component are related (low 

versus high)
� Coupling: How interdependent components are (low versus high)

� Desire high cohesion and low coupling

Learn more at:
http://en.wikipedia.org/wiki/Coupling_(computer_programming)
http://en.wikipedia.org/wiki/Cohesion_(computer_science)



25

How is this class' cohesion?
class Person {

var name: String
var address: Address
var nearbyRestaurants: [Restaurant]
var phoneNumber: String

func validatePhoneNumber(number: String) {
[...]

}

func updateAddressOnServer(address: Address) {
[...]

}

func displayPersonInfoOnContactScreen() {
[...]

}
}



26

Example architecture styles



27

Client-server architecture

Clients Server



28

Pipe and filter

� Examples:
� Command lines
� Compilers

pipe pipe pipe



29

Model-view-controller (MVC)



30

Architecture involves tradeoffs



31

Shared database architecture
� Example of a system with two 

components 
(C1 and C2) that share a common 
database
� Assume C1 runs slowly because it 

has to reorganize the information 
in the database before using it

� The only way to make C1 faster 
might be to change the database

� This means that C2 also has to be 
changed, which may affect its 
response time

User interface

C1 C2

Shared database

Figure 4.2. Shared database architecture

By Ian Sommerville. Licensed under CC BY 2.5 SCOTLAND



32

Multiple database architecture
� Here each component has its own 

copy of the parts of the database 
that it needs
� If one component needs to change 

the database organization, this does 
not affect the other component

� However, a multi-database 
architecture may run more slowly 
and may cost more to implement 
and change
� A multi-database architecture needs 

a mechanism (component C3) to 
ensure that the data shared by C1 
and C2 is kept consistent when it is 
changed

User interface

C1

Figure 4.3. Multiple database architecture

C1 database C2 database

C3

Database reconciliation

C2

Database reconciliation

By Ian Sommerville. Licensed under CC BY 2.5 SCOTLAND



33

Fixing architecture issues

� We build up Technical debt
� Early decisions make it more expensive to modify and fix the system 

over time

� And so we must Refactor
� Changing the architecture of an implementation without changing the 

functionality


