Rule Evaluation Algorithm for RPPM2
Ishan Mehta and Scott D. Stoller
2015-05-22

This algorithm checks whether a rule matches a request. It is based on the MatchPrincipal algorithm described in [Crampton and Sellwood, 2014]. The pseudocode in red is the extensions to print a path that matches each path condition in the rule’s condition, when the rule matches the request.

[bookmark: _GoBack]The implementation in algorithmRPPM2.py is based on James Sellwood’s implementation of MatchPrincipal. We thank Crampton and Sellwood for sharing their code with us.

/**
 * This function gets the initial mapping from the rule to be evaluated and the request to be processed
 *@r – Rule to be evaluated for the request
 *@req – Request to be evaluated
**/

function getInitialMapping(r, req)
	mapping = {}
	mapping = mapping U {r.subject:req.user}
	mapping= mapping U {r.action.resource:req.resource}
	return mapping

/**
 * This function evaluates the rule r for a particular request for a system graph G
 *@ r – Rule to be evaluated. r.condition is a conjunction of path conditions, represented as an array of path conditions.
 *@G – System Graph
 *@req – Request to be evaluated
**/
bool evaluateRule(r, G, req)
	M = getInitialMapping(r, req)
	parent = {}
	satisfyingTuple = []
	return (evaluatePathCondition(r.condition,0, G, m, parent, satisfyingTuple))

/**
 *This function initializes the start node. If no start node can be initialize a list of all the vertices will be sent
*@ π [] – array of path conditions pci, representing a conjunction of those path conditions
* @ index – the index of path condition to be considered
* @G – System Graph
* @M – map of parameter values seen till now
**/
function getStartNodes (π [], index, G, M)
	if (π[index].start_constant is not None)
		return [π[index].start_constant]
	if (π[index].start_variable is not None)
// iterate over (key,value) pairs in map M
for k,v in M	
			if (k == π[index].start_variable)
				return [v]
	return [G.vertices]

/**
 * This function initializes the destination node. If no destination node can be initialize a list of all the vertices will be sent.
*@ π [] – array of path conditions pci, representing a conjunction of those path conditions
* @ index – the index of path condition to be considered
* @G – System Graph
* @M – map of parameter values seen till now
**/
function getDestinationNodes (π [], index, G, M)
	if (π[index].dest_constant is not None)
		return [π[index].dest_constant]
	if (π[index].dest_variable is not None)
for k,v in M	
			if (k == π[index].dest_variable)
				return [v]
	return [G.vertices]

/**
 *This function initializes the start and destination node and call evaluate to evaluate the path condition.
*@ π [] – array of path conditions pci, representing a conjunction of those path conditions
* @ index – the index of path condition to be considered
* @G – System Graph
* @M – map of parameter values seen till now
* * @parent{} - parent is a map of parent pointers. for a tuple t added to SEEN during the BFS for path condition i, parent((i,t)) is the tuple from which t was first reached during that BFS.
* @satisfyingTuple[] – constains the final node for the pathconditon i to back trace the path.
**/

bool evaluatePathCondition(π [], index, G, M, parent{}, satisfyingTuple[])
	/*Get the start node from the path condition and the mapping. If a mapping does not exist a list of all the nodes will be sent*/
	startNodes = getStartNodes(π [], index, G, M)

/*Get the destination node from the path condition and the mapping. If a mapping does not exist a list of all the nodes will be sent*/

	destNodes = getDestinationNodes(π [], index, G, M)
	for src in startNodes
if (evaluatePathConditionGivenIndex (π [], index, G, M, src , destNodes) is true)
			return true
		end if
	end for
return false

/**
 *This function evaluated the parameter values against the mapping of parameters already seen. If a new parameter is found it will be added to the map and if the matching is not found then a parameter with false value is set */
* @ par – parameters in the relation
* @ p – parameter values across the edge
* @M – map of parameter values seen till now
**/

function evaluateParameters(par, p, M)
	index = 0
parameterMatchfFailed = false
	for par in par
		if par[0] is uppercase character
			for k,v in M
				par_exist = false
				if (k == par)
					par_exist= true
					if (v != p [index]) then
						parameterMatchfFailed = true
						break														end if
				end if
			end for
if par_exist is false
				M = M U “par:p[index]”
			end if
		else
		if (par != p[index])
			parameterMatchfFailed = true
		 end if
		if parameterMatchfFailed is true
break
end if
index++
	end for
	return parameterMatchfFailed

/**
 *This function evaluates individually the path condition and recursively calls the next path condition if the destination node is reached.
*@ π [] – path conditions pci
* @index – the index of path condition to be considered
* @G – System Graph (Graph G = (V, E))
* @M – map of parameter values seen till now
* @src - Start Node
* @destNodes – Set of possible destination nodes
* @parent{} - parent is a map of parent pointers. for a tuple t added to SEEN during the BFS for path condition i, parent((i,t)) is the tuple from which t was first reached during that BFS.
* @satisfyingTuple[] – constains the final node for the pathconditon I to back trace the path.
**/
bool evaluatePathConditionGivenIndex (π [], index, G, M, src , destNodes, parent{}, satisfyingTuple[])

/*Each tuple of the Q contains a node to be visited, the path condition it needs to be evaluated against and the mapping of parameters seen till now.*/
Initialize empty queue Q
/*The SEEN list contains the tuples that have been visited. Each tuple contains a node which was visited, the path condition that node was evaluated against, and the mapping of the parameters.*/
Initialize empty set of visited nodes SEEN

/* Working queue to keep a list of nodes to be visited*/
add (src, π[index],M) to Q

/* A cache to add all the nodes which are visited */
SEEN = SEEN ∪ {(src, π[index],M)}

while Q is not empty do
dequeue next entry (h, φ,M) from Q
		Initialize empty list of (node, suffix, M) tuples Θ
// consider edges directed away from h
/*E are the edges of the graph-- h – from node, w = to node, r – relation value of the edge, p – parameter value of the edge*/
for each edge (h, w, r, p) ∈ E do

if φ = π1*; π2 then
Θ = Θ ⊔ [(h, π2, M)]
 	φ = π1+; π2
end if

/* If the head of expression value is equivalent to the edge value, then if parameters exist they will be evaluated or new substitutions will be included in the map and added to the working queue. If the parameters in the head of the path condition expression cannot be matched with the parameters in the edge label then no new entry will be added in the working queue.*/
if H(φ) = r then
		if H(φ).parameter is None or H(φ).parameter is ‘*’
Θ = Θ ⊔ [(w, S(φ), M)]
				else
					parameterMatchFailed = evaluateParameters(H(φ).parameter, p, M)
					if parameterMatchFailed is false
						Θ = Θ ⊔ [(w, S(φ), M)]
					end if
				end if
			end if

			/* This is the step to check for symmetric relationships. Symmetric relationships are the relationships connected with undirected edges */
if (r ∈ S and (w, h, r, p) ∉ E) then

/* If the head of expression value is equivalent to the edge value, then if parameters exist they will be evaluated or new substitutions will be included in the map and added to the working queue. If the parameters in the head of the path condition expression cannot be matched with the parameters in the edge label then no new entry will be added in the working queue.*/

if H(φ) = then
			//Change for RPPM2
		if H(φ).parameter is None or H(φ).parameter is ‘*’
Θ = Θ ⊔ [(w, S(φ), M)]
					else
						parameterMatchfFailed = evaluateParameters(H(φ).parameter, p, M)

						if parameterMatchFailed is false
							Θ = Θ ⊔ [(w, S(φ), M)]
						end if
			end if
end if
			end if
end for

// consider edges directed towards h. This step is similar to above step, just the edges considered will be towards the node.
for each edge (w, h, r, p) ∈ E do
if φ = π1*; π2 then
Θ = Θ ⊔ [(h, π2, M)]
 	φ = π1+; π2
end if

/* If the head of expression value is equivalent to the edge value, then if parameters exist they will be evaluated or new substitutions will be included in the map and added to the working queue. If the parameters in the head of the path condition expression cannot be matched with the parameters in the edge label then no new entry will be added in the working queue.*/

if H(φ) = then
		//Change for RPPM2
	if H(φ).parameter is None or H(φ).parameter is ‘*’
Θ = Θ ⊔ [(w, S(φ), M)]
				else
					parameterMatchFailed = evaluateParameters(H(φ).parameter, p, M)
					if parameterMatchFailed is false
						Θ = Θ ⊔ [(w, S(φ), M)]
					end if				
end if
			end if

if (r ∈ S and (h,w, r, p) ∉ E) then

/* If the head of expression value is equivalent to the edge value, then if parameters exist they will be evaluated or new substitutions will be included in the map and added to the working queue. If the parameters in the head of the path condition expression cannot be matched with the parameters in the edge label then no new entry will be added in the working queue.*/

if H(φ) = r then
		if H(φ).parameter is None or H(φ).parameter is ‘*’
Θ = Θ ⊔ [(w, S(φ), M)]
					else
						parameterMatchFailed = evaluateParameters(H(φ).parameter, p, M)
						if parameterMatchFailed is false
							Θ = Θ ⊔ [(w, S(φ), M)]
						end if
			end if
end if
end if
end for

// determine match or other nodes to visit
for each (n, φs, m) ∈ Θ do
if (n, φs,m) ∉ SEEN then
if φs = ⋄ then
if n in destNodes and index == π.size() then
parent((index, (n, φs, m))) = (h, φ,M)
satisfyingTuple[index] = (n, φs,m)
	// the rule is satisfied. Print the satisfying substitution, etc.
	print “the rule is satisfied”
	print “substitution = “ + m
	for i = 1 to pi.size()
		print “path satisfying conjunct “ + i + “ = “ + getPath(i,satisfyingTuple[i])
	end for
	return true
else if n in destNodes
		// if pi[index].dest_variable is an unbound variable, bind it to n.
if (π[index].dest_variable is not None and π[index].dest_variable not in m)
	m = m U { π[index].dest_variable :n}
/* (n, φs,m) satisfies path condition pi[index]. Remember this, and try to satisfy the next path condition. satisfyingTuple is a global variable such that satisfyingTuple[i] is a worklist-tuple that satisfies pi[i]. */
parent((index, (n, φs, m))) = (h, φ,M)
satisfyingTuple[index] = (n, φs,m)
if (evaluate_path_condition (path_condition[], index+1, G,m) == true) then
		return true
end if
else
parent((index, (n, φs, m))) = (h, φ,M)
add (n, φs, m) to Q
SEEN = SEEN ∪ {(n, φs,m)}
end if
end if
 end for
end while
return false // no match
/* getPath(i,(n, phi, m)) returns the path created by iteratively following parent pointers for the BFS for path condition i, until it reaches a node without a parent pointer for that BFS, which should be the start node for that BFS. */
function getPath(i, (n, phi, m))
path = [(n, phi, m)]
while parent((i,(n,phi,m))) != null
	(n,phi,m) = parent((i, (n,phi,m)))
	path.append((n,phi,m))
end while
path = reverse(path)
// keep the nodes, discard the residual conditions and substitutions
nodePath = list containing the first component of each tuple in path
return nodePath
Differences between pseudo code and implementation: In the pseudocode, the system graph and path condition are passed as parameters. In the code, they are, instead, global variables. Modifying the code to pass them as parameters is straightforward, but would require several parameters or introducing a new type for the system graph, because the system graph is currently represented as several separate components, not as a single structure containing those components.

