INSTRUCTIONS
The implementation is in algorithmRPPM2.py. It requires Python 3. The implementation does not yet contain a parser. To create a new input to the algorithm, you need to write Python code that constructs data structures representing the system graph, policy, and request. The implementation contains several numbered testcases. Specifically, the code defining testcase n is in algorithmRPPM2.py, immediately following the comment containing “test_casen”. To run testcase n, run the program with n as the argument. For example, "python algorithmRPPM2.py 2" runs testcase 2. The testcases are described below.
TESTCASES 1-9
Testcase 1: Scenario: one path condition has a parameter and the next path condition has the same parameter and the value and thus evaluates to true.
System Graph:
[image:]
Request : subject: Samrat
 action: read(Scabies_Item1)
Rule:
	Subject: Clinician
	Action: read(Clinician, Item)
	Condition:
Clinician . treating(*);healthRec;contains+ . Item ^ Clinician . member;treating(*);healthRec;contains+ . Item
Testcases 2-9:
These testcases use variants of the system graph, request, and rule in Testcase 1. High-level descriptions of the testcases appear below. For details of the testcases, see the code in algorithmRPPM2.py, immediately following the comments containing “test_case2” to “test_case9”.
Testcase 2. Scenario: one path condition has a parameter and the next path condition has the same parameter but different value and thus evaluates to false.
Testcase 3. Scenario: No starting and destination nodes included in the path conditions and thus all pair of nodes are considered as the source nodes and destination nodes and evaluated against the path conditions.
Testcase 4. Scenario: To check for the multivalue attributes across the edge is working correctly.
Testcase 5. Scenario: To check for the path condition having reverse relation.
Testcase 6. Scenario: To check for the path condition with + attribute and thus allowing multiple edges with same relations and to check the parameters are evaluated correctly across all the edges.
Testcase 7. Scenario: To check for the wild card * in the relationship label of the edge.
Testcase 8. Scenario: To check for multiple destination nodes in the first path condition and the parameter getting initialized and included in the map when evaluating the next path condition.
TESTCASES 10-22
Testcases 10-22 use the same system graph and same request. They use variants of the same rule, differing only in the rule’s Condition. To avoid clutter, the testcases are numbered as 1-12 below, but they are numbered as testcases 10-22 in algorithmRPPM2.py. For example, the testcase that uses C1 below is defined in the code in algorithmRPPM2.py that starts with the comment containing “test_case10”.
[image:]
Request: Subject: a
 Action: read(1,2)
Rule R<i>: Subject: S
 Action: read(X,Y)
	Condition: C<i>
C1: S . p(X,A); q(X,B,C); r(B); r(B) . T
Result1: True. X=1, A=2, B=2, C=3, T=c1.
C2: same as C1 except q(X,B,C) -> q(X,B,B)
Result2: False.
C3: same as C1 except second occurrence of r(B) -> r(C)
Result3: True. T=c2.
C4: same as C1 except q(X,B,C) -> q(A,B,4)
Result4: True. T=a.
C5: same as C1 except q(X,B,C) -> q(X,B,2)
Result5: False.
C6: S . p(A,B); r(A); r(B) . T
Result6: True. T=c1.
C7: S2 . r(A); r(A); r(A) . T note: S2 is a new variable.
Result7: True. S2=c1, A=2, S2=c1.
C8: S2 . r(A); r(2); T
Result8: True. S2=c2, A=4, T=c1 or S2=c1, A=2, T=c1.
C9: S2 . r(2); r(A)+; p(B,4) . T note: r(A)+ is traversed twice.
Result9: True. S2 = c1, A=3, T=b2
C10: same as C9, except r(A)+ -> r(A)* note: r(A)* is traversed twice.
Result10: True. Same as Result9.
C11: same as C9, except p(B,4) -> p(B,5)* note: p(B,5)* is traversed 0 times.
Result11: True. S2 = c1, A=3, T = c2 or S2=c1, A=2, T=c1.
C12: S2 . q(A,3,C); p(3,C) . T note: I used underline instead of overline to indicate reversal here.
[bookmark: _GoBack]Result12: True. S2=b1, C=4, T=a
image1.png

image2.png

