
RBAC-PAT: A Policy Analysis Tool for Role Based
Access Control ?

Mikhail I. Gofman1, Ruiqi Luo1, Ayla C. Solomon2, Yingbin Zhang1, Ping Yang1,
and Scott D. Stoller3

1 Dept. of Computer Science, Binghamton University, NY 13902, USA
2 Dept. of Computer Science, Wellesley College, Wellesley, MA 02481, USA

3 Dept. of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA

Abstract. Role-Based Access Control (RBAC) has been widely used for ex-
pressing access control policies. Administrative Role-Based Access Control (AR-
BAC) specifies how an RBAC policy may be changed by each administrator.
Because sequences of changes by different administrators may interact in un-
intended ways, it is often difficult to fully understand the effect of an ARBAC
policy by simple inspection. This paper presents RBAC-PAT, a tool for analyzing
RBAC and ARBAC policies, which supports analysis of various properties in-
cluding reachability, availability, containment, weakest precondition, dead roles,
and information flows.

1 Introduction

Role-Based Access Control (RBAC) is widely used for expressing access control poli-
cies in areas such as health care and finance. In large organizations, RBAC policies
are often managed by multiple administrators with varying authority. An Administra-
tive Role Based Access control (ARBAC) policy specifies how each administrator may
change the RBAC policy. Changes by one administrator may interact in unintended
ways with changes by other administrators. Consequently, the effect of an ARBAC pol-
icy is hard to understand by manual inspection alone.

Policy analysis helps systems designers and administrators understand and debug
policies. This paper presents RBAC-PAT, a tool for analyzing various properties of
RBAC and ARBAC policies, including (1) reachability: e.g., can user u be assigned
to role r (called a “goal”)? (2) availability: e.g., is user u always a member of role r?
(3) role-role containment: is every member of role r1 also a member of role r2? (4)
weakest precondition: what are the minimal sets of initial roles that enable a user to get
added to roles in the goal? (5) dead roles: what roles cannot be assigned to any user? and
(6) information flow: can information flow from object o1 to object o2? For properties
(1)–(5), the analysis considers all RBAC policies reachable from a given initial RBAC
policy by actions allowed by a given ARBAC policy for a given set of administrators.

? This work was supported in part by NSF Grants CNS-0831298 and CNS-0627447 and ONR
Grant N00014-07-1-0928.



2 Preliminaries

Role Based Access Control. The central notion of RBAC is that users are assigned
to appropriate roles, and roles are granted appropriate permissions. Role hierarchy is
a partial order on the set of roles. For example, GradStudent � Student means that
role GradStudent is senior to role Student , i.e., every member of GradStudent is also
implicitly a member of Student .

Administrative Role Based Access Control. ARBAC97 [2] controls changes
to the user-role assignment, the permission-role assignment and the role hi-
erarchy. Authority to assign users to roles and revoke users from roles are
specified by the can assign and can revoke relations, respectively. For exam-
ple, can assign(DeptChair ,Grad ∧ ¬RA,TA) specifies that the administrative role
DeptChair has authority to assign a user who is a member of Grad but not a mem-
ber of RA to the role TA. A role that appears in a positive precondition, like Grad in
this example, is called a positive role; similarly, RA is a negative role in this example.
Authority to assign and revoke permissions is controlled similarly.

3 Tool Description

Parser/Checker

GUI

Parsed Policy 

Evidence Generator

BACK−END

FRONT−END

Policy Analysis EnginePolicy Analysis Engine

Hierarchy Converter

Converted Policy

ARBAC Policy Property

Evidence

Fig. 1. System architecture.

The architecture of RBAC-PAT is shown in Figure 1.
Below, we describe its main components.

3.1 Hierarchy Converter

This components converts hierarchical policies into
non-hierarchical policies for analysis [3].

3.2 Policy Analysis Engine

Reachability, availability, role-role containment, and
weakest precondition. RBAC-PAT implements algo-
rithms we developed for user-role reachability analysis

of ARBAC with and without the separate administration restriction [4]. Separate ad-
ministration requires that administrative roles and regular roles are disjoint. Our algo-
rithms for the other analysis problems are either similar to these algorithms or reduce
the problem to user-role reachability analysis [4, 3]. We developed forward and back-
ward algorithms for user-role reachability with separate administration and analyzed
their parameterized complexity. The idea of parameterized complexity is to identify an
aspect of the input that makes the problem computationally hard, introduce a parameter
k to measure that aspect, and develop an algorithm that may have high complexity in
terms of k, but is polynomial in the overall input size when the value of k is fixed. Such
an algorithm is said to be fixed parameter tractable with respect to k (“FPT w.r.t. k”).

In the forward algorithm, a simple backward slicing transformation eliminates roles
and rules irrelevant to the given goal. Next, a reduced state graph is constructed; reach-
ability is determined from it. Each node corresponds to an RBAC policy; each edge



corresponds to a change allowed by the ARBAC policy. The following reduction is
applied: (1) Transitions that revoke non-negative roles or add non-positive roles are
prohibited; (2) Transitions that add non-negative roles or revoke non-positive roles are
called invisible transitions and get combined with a preceding visible transition to form
a single composite transition. The forward algorithm is FPT w.r.t. the number of mixed
roles, i.e., roles that are both positive and negative. This number is usually significantly
smaller than the total number of roles. For example, in ARBAC policies we developed
for a university and a health care facility, the percentage of mixed roles is less than 25%.

The backward algorithm has two stages. The first stage uses backward search from
the goal to construct a directed graph G. Each node in G is a set of roles, and each
edge is labeled with a can assign rule and corresponds to a role assignment action
allowed by that rule. However, some negative preconditions of can assign transitions
cannot be evaluated during the backward search. The second stage is a forward search
that annotates G with the additional information needed to check those preconditions,
namely, sets of irrevocable roles that might be left in the state by previous transitions.
For ARBAC policies with at most one positive precondition per rule, our backward
algorithm is FPT w.r.t. the number of irrevocable roles.

We developed a forward algorithm for analysis of ARBAC without separate ad-
ministration that is FPT w.r.t. the number of mixed roles and the number of users. We
also identified a condition called hierarchical role assignment that is often satisfied in
practice, and we showed that our algorithms that assume separate administration give
accurate results for policies satisfying this condition. Informally, the condition is that an
administrator cannot assign users to administrative roles that are not junior to his own
administrative role.

ARBAC policy analysis problems could be solved using general-purpose finite-state
verification tools, but those tools lack the specialized optimizations in our algorithms
and would be asymptotically less efficient for some families of policies. A detailed
comparison with related work on verification and security policy analysis appears in [4].

RBAC-PAT computes policy statistics, including the numbers of mixed roles and
irrevocable roles, and checks whether separate administration and hierarchical role as-
signment hold. RBAC-PAT uses this information to try to choose the most appropriate
analysis algorithms for a given analysis problem. In cases where separate administration
restriction is satisfied and it is unclear whether the forward or the backward algorithm
will be faster, RBAC-PAT prompts the user to choose between these algorithms.

Dead role analysis. We developed an algorithm to detect dead roles in an ARBAC
policy, i.e., roles that cannot be assigned to any user. Dead roles might indicate flaws
in the policy. A straightforward algorithm for detecting dead roles is: for every user ui,
compute a set Ri of roles that can be assigned to ui until all roles have been assigned
to some user or all users have been considered; roles not in

⋃
Ri are dead. If the policy

satisfies separate administration, the following optimizations are applied: (1) a slicing
transformation is used to eliminate roles and rules irrelevant to unassigned roles, and
only users with distinct sets of initial roles are considered; and (2) at each step, we
consider the user that can potentially be assigned to the most currently unassigned roles.

Information flow analysis. Information flow analysis helps administrators understand
the information flows allowed by an RBAC policy. Information can flow directly from



object o1 to object o2 if there exists a user that can read from o1 and write to o2. Os-
born [1] proposed an algorithm for constructing an information flow graph from an
RBAC policy, in which an edge o1 → o2 specifies that information can flow directly
from o1 to o2. We improve this algorithm by eliminating infeasible intermediate edges,
for example, edges resulting from roles that have not been assigned to any users. RBAC-
PAT also supports information flow queries such as “can information flow, directly or
transitively, from object o1 to object o2?”

Evidence generation. RBAC-PAT provides evidence that shows why a property holds
or is violated. For example, if the answer to a reachability analysis query is yes, RBAC-
PAT provides a sequence of administrative actions that leads to the specified role as-
signment, and highlights the corresponding ARBAC rules in the policy.

3.3 Case Studies

We developed RBAC and ARBAC policies for a university and a health care facility.
Here are some sample properties for the university policy: (1) User-role reachabil-
ity: can a user initially in role DeptChair and a user initially in role Undergrad to-
gether assign the latter user to HonorsStudent? (2) Weakest Precondition: what are the
weakest preconditions for an administrator initially in DeptChair to assign a user to
HonorsStudent? (3) Role-role containment: is TA contained in Grad? (4) Information
flow query: can information flow from GradeBook to DeptReport? RBAC-PAT termi-
nates in at most 0.19 second for all queries we tried. RBAC-PAT also helped uncover
some flaws in the original university policy, for example, a place where we accidentally
used Student instead of Undergrad and places where we forgot to take role hierarchy
into account, e.g., places where we forgot that Provost inherits from Staff . Further,
in order to validate our FPT results and explore the practical performance of the algo-
rithms, we applied RBAC-PAT to reachability analysis of hundreds of randomly gen-
erated policies [4]. For the policies containing 13 reachable mixed roles and 32 roles,
RBAC-PAT generates at most 232320 states and 2900920 transitions, and terminates in
8.6 hours. For the policies containing 5 reachable mixed roles and 500 roles, RBAC-
PAT generates at most 510 states and 2550 transitions, and terminates in 155 minutes.

Acknowledgement. We thank C. R. Ramakrishnan, Jian He, Yogesh Upadhyay, Pinki
Pasad, and Joel St. John for their contributions to the tool development.

References

1. S. Osborn. Information flow analysis of an RBAC system. In SACMAT, pages 163 – 168,
2002.

2. R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-based adminis-
tration of roles. TISSEC, 2(1):105–135, 1999.

3. A. Sasturkar, P. Yang, S. D. Stoller, and C. Ramakrishnan. Policy analysis for administrative
role based access control. In IEEE CSFW, pages 124–138, 2006.

4. S. Stoller, P. Yang, C. R. Ramakrishnan, and M. Gofman. Efficient policy analysis for admin-
istrative role based access control. In CCS, pages 445–455, 2007.


