
Conceptual Synthesis of Mechanisms from Qualitative

Speci�cations of Behaviour�

Devika Subramanian

Cheuk-San Wang, Scott Stoller, Arjun Kapur

Computer Science Department

Cornell University

Ithaca, New York 14853

13 January 1992

Abstract

This paper describes a novel method for the synthesis of mechanisms from their qualitative
behavioural speci�cations. The technique has been implemented in the context of automated
design of mechanisms in Technics Lego. We introduce a new kinematic abstraction called a
unity machine which is a machine with a single degree of freedom. Unity machines are the
mechanical analogues of functions in programming languages. Unity machines are the key
abstraction that allow for compositional synthesis of mechanisms from a basis set, guided by
functional speci�cations. Geometric constraints accumulated during unity machine synthesis
are satis�ed by a qualitative kinematics analyzer based on Kramer's [Kramer] geometric engine.
This allows us to cleanly integrate detailed dimensional synthesis by feature-oriented re�nement
with the abstract unity machine synthesis. Three steps in the design process { unity machine
construction, qualitative kinematic analysis, and re�nement { are illustrated in the context of
the design of an autonomous tripod walker.

�This work was supported by NSF-IRI-8907271 and the Xerox Design Research Institute. The Legoites are listed
in reverse alphabetical order. The �rst Legoites who worked on an early version of the Lego synthesis program
were Scott Benson and Robert Wisniewski. Their help and participation in the Cornell Design Project is gratefully
acknowledged.

1

1 Introduction

The design problem is the calculation of the structure of the desired artifact in some implementation
medium, from a speci�cation of its function or behaviour1. The keys to automated conceptual
synthesis are:1) the design of an e�ective language for speci�cation of structure and behaviour 2)
the design of e�ective abstractions that bridge behavioural and structural descriptions. This paper
presents a simple speci�cation language, and a new kinematic abstraction called unity machines

that links structure and behaviour.
Our main goal is to design new qualitative representations suited for kinematic synthesis. Kine-

matic synthesis is our focus because there are no algorithmic methods known for synthesizing
mechanisms from descriptions of kinematic behaviour. The standard process of designing mecha-
nisms consists of selecting a mechanism type from a catalog [Artobolevsky], and then calculating
the actual dimensions of the links using numerical methods. Engineers typically rely on intuition
and experience for selection of an initial conceptual design from the catalog. In this paper, we
demonstrate the power of qualitative representations for automating conceptual design of mecha-
nisms, and the clean integration of qualitative and quantitative methods for completing detailed
design.

Our allied goal is to provide power tools for designers for creating new conceptual designs of
devices in multiple implementation media using behavioral speci�cations. We illustrate the ideas
in this paper in the context of the design of a 6-legged tripod walker which can move forward
and backward at a rate of 3 meters/minute. The implementation medium is the Technics Lego
set, which is a universal set which can realize all the lower kinematic pairs and several important
higher pairs [Reuleaux]. Our behavioural speci�cation language allows for both qualitative and
quantitative information. Qualitative information about the type of motion is used to guide the
conceptual synthesis. Quantitative information is used during the re�nement to a concrete design.

� Given: an input shaft oriented along the x axis, uniformly rotating at 1200 rpm.

� Find: a device with 6 outputs each of which traces a closed elliptical path parallel to the
x-z plane and where all paths are traced in the same sense (clockwise or counterclockwise).
Additionally, outputs 1,3,5, are in phase with respect to each other, and are each � out of
phase with respect to the in-phase outputs 2,4 and 6. The six outputs are physically separated
in space such that at any instant the endpoints of output links 1,3 and 5 as well as those of
2,4, and 6 form non-degenerate triangles parallel to the xy plane.

The Technics Lego world is an implementation domain with low setup cost, non-trivial geometry
which is a challenge for most present day three-dimensional modelers, and with which a combina-
torial number of potential assemblies can be built. A kinematic pair can be realized in an average
of about 4 ways in the set, so a typical assembly with 20 kinematic pairs can be put together in
about 420 ways. The need for abstract descriptions and their subsequent re�nement is essential for
containing the complexity of synthesis from function in this domain. Our design method, shown in
Figure 4, consists of the four steps outlined below.

1. The construction of a composite unity machine from the input-output speci�cation.

2. The satisfaction of the geometric constraints accumulated during the previous step by quali-
tative kinematic analysis [Kramer].

1To be very precise, we will use information about behaviour only. There is considerable confusion in the literature
about the use of the terms function and behaviour. For us, function relates to how the mechanism interacts with the
environment and behaviour relates to intrinsic motion descriptions.

2

3. Feature-oriented re�nement of the unity machine to a concrete Lego design. This can be
preceded by a pre-processing step which minimizes the machine by exploiting function sharing
[Ulrich] using constraints imposed by the physical realization in the given implementation
medium.

4. Quantitative kinematic analysis of the re�ned design.

The key kinematic abstraction employed is the use of machines with a single degree of freedom
called unity machines. Unity machines can be composed like mathematical functions. Each unity
machine is viewed as a motion transformer. The decomposition of the design problem via unity
machines reduces the complexity of the problem as compared to a pure piece level synthesis. This
paper focuses on kinematics alone; however, Figure 4 shows how information about dynamics can
be incorporated in using bond graphs [Karnopp]. In the rest of the article, we will step through
the �rst three phases described above in the context of the design of the tripod walker.

2 The Design Method

This section describes the synthesis method which produces a conceptual design for a mechanism.
The next section explains the re�nement process that leads to a concrete design. We �rst introduce
the formal language used for specifying inputs and outputs to our synthesis system.

2.1 Describing Behaviour

We use �rst-order predicate calculus to describe the various properties of input and output motion.
Motions are objects in our language. We introduce the predicates in the language by describing
the input and outputs of our tripod walker.
input(walker,i), type(i,rotation), raxis(i,x-axis),

speed(i,.05), sense(i,clockwise), continuous(i).

The sentence above describes the input motion i to be a continuous, clockwise rotation about the
x-axis with an angular speed of 0.05 (1200 rpm). Commas denote logical conjunction. The language
allows for the speci�cation of both qualitative and quantitative properties. The 6 outputs of the
walker are described as follows: for 1 � k � 6:
output(walker,ok), path(ok,ellipse), speed(ok,P),
P < .005, sense(ok,clockwise), continuous(ok)
The path predicate allows us to specify the curve traced by a translational motion. The phase
relationships between the motions are described as follows:
phase(oi,oj,0) where i and j are of the same parity (even or odd), 1 � i; j � 6,
phase(oi,oj,�) where i and j are of di�erent parity, 1 � i; j � 6

We can also describe geometric constraints between motions. We can state that two rotational
axes are parallel. More predicates in our language are introduced by their use in the later sections.
type(i,rotation), type(j,rotation), r-axis(i,A), r-axis(j,B), parallel(A,B)

The complete set of predicates for describing motion are in Figure 1. One might ask whether our
choice of vocabulary could be justi�ed by a principled analysis. These motion descriptors appear to
be adequate for describing a large number of the mechanisms in Artobolevsky catalog[Artobolevsky]
of mechanisms and are in fact used in the informal explanations that accompany the �gures. Clearly,
this vocabulary de�nes a �nite number of equivalence classes of motion and sets up the stage for
de�ning an orthogonal set of basis unity machines that convert one motion class to another.

3

type(M,X) : motion M is of type X 2frotation, translation, rotation+translationg
sense(M,X) : applies to rotations only and X 2 fclockwise, counterclockwiseg
reverse-dir(M) : motion M reverses sense (oscillation or reciprocation)
period(M,X) : periodic motion M where X is the time taken to complete one cycle
continuous(M) : motion M is continuous (has zero dwell time)
intermittent(M) : motion M has non-zero dwell time
raxis(M,X) : rotation M has axis A (a directed line in space)
tpath(M,X) : motion M traces path of geometric description

X 2 fline, circle, ellipse, helix, screwg.
phase(M,N,P) : motion M has phase P relative to motion N
range(M,R) : motion M has range R
speed(M,S) : motion M has speed S

Figure 1: The motion description vocabulary

2.2 Describing Structure

A key abstraction called a Freudenstein diagram [Freudenstein74], or F-diagram for short, captures
those aspects of mechanisms that are determined solely by kinematic pairing and are independent
of metric properties2. An example of such a property is the number of degrees of freedom (DOF)
possessed by a mechanism. An unconstrained object in space has three translational and three
rotational degrees of freedom. When it is kinematically paired with another object, the �rst object
loses at least one degree of freedom. F-diagrams are introduced in most textbooks on mechanisms
[MabieRein].

De�nition 1 The F-diagram of a mechanism is an undirected graph with vertex set V and edge set

E such that every link in the mechanism is represented by a vertex in V, and for every kinematic pair

between two links in the mechanism, there is a labeled edge in the F-diagram between the vertices

that denote the links. There are some vertices called ground vertices which stand for the links which

are grounded.

Edges are labeled by the type of kinematic pair that exists between the two links. Our label set
consists of the six lower pairs (revolute, prismatic, helical, spherical, planar, and cylindrical) and
four higher pairs (gear pairs, worm gear, rack-and-pinion, and cams).

The F-diagram corresponding to a pair of meshed gears is in Figure 5. An F-diagram of a
mechanism is an abstract representation because dimensional information is lost in the construction.
Thus the diagram in Figure 5 could well represent a planetary gear system where a simple gear
rotates along the toothed inner circumference of a larger gear. F-diagrams can be used to compute
the mobility, or the total number of degrees of freedom of a mechanism. For non-degenerate planar
mechanisms with n links of which g links are ground, and f1 one-degree-of-freedom (1-DOF) joints
and f2 2-DOF joints, we can determine the mobility M, using Grubler's equation 3.

M = 3(n� g)� 2f1 � f2

Plane revolute and plane prismatic joints both are 1-DOF joints.
2Our formalism allows for introduction of metric properties back into the abstraction.
3For non-degenerate spatial mechanisms with n links of which g links are ground, the mobility is determined by

Kutzbach's equation.
M = 6(n� g)� 5f1 � 4f2 � 3f3 � 2f4 � f5

where fi is the number of i-DOF joints for 1 � i � 5.

4

2.3 Unity Machines: Linking Structure and Behaviour

De�nition 2 A special class of F-diagrams which denote mechanisms with exactly one degree of

freedom are called unity machines. Unity machines have a distinguished vertex called the input
which is the input link of the mechanism, several output vertices which denote the output links of

the mechanism, and one or more ground links.

The mechanism um1 in Figure 5 is a unity machine. Its mobility is determined from Grubler's
equation as follows. The gear pair is a 2-DOF joint. A revolute joint is a 1-DOF joint.

M = 3(3 � 1)� 2 � 2� 1 = 1

Node 1 of um1 is the input vertex and Node 2, the output vertex. The ground link of the mechanism
is denoted by a special grounding symbol in the �gure. Neither the input nor the output link of a
unity machine can be grounded.

Unity machines are transformers of motion. We annotate the input and output vertices of a
unity machine by descriptions of motion. For instance, the gear pair um1 in Figure 5 has a pure
rotational input and converts it to a pure rotational output of the opposite sense (clockwise to
counterclockwise, or vice-versa). We characterize the relation between input and output motions
using behavioural rules. The behavioural rules for um1 are shown below. Constants are denoted by
lower-case letters and variables are upper-case letters. The symbol) denotes logical implication.
The speed ratio r in the rules is simply the ratio of the number of teeth in the gear pair that
implements the edge labeled G in um1.

1. input(um1,I), type(I,rotation), raxis(I,A), sense(I,C), speed(I,S),

speed-ratio(um1,r), output(um1,J)) type(J,rotation), raxis(J,B),

sense(J, not C), speed(J,r � S), parallel(A,B).

2. input(um1,I), continuous(I), output(um1,J)) continuous(J).

3. input(um1,I), intermittent(I), output(um1,J)) intermittent(J).

4. input(um1,I), period(I,P), output(um1,J)) period(J,P).

The input and output of um1 are rotations about di�erent centers. The axes of rotation are
parallel to each other. The �rst rule describes the change to the input motion made by the machine:
the speed is changed by the ratio r and the sense of rotation is reversed. um1 preserves the continuity
and periodicity of the input motion. If the input motion is intermittent, the output motion is also
intermittent. Properties of motion preserved by um1 are expressed by rules 2, 3 and 4 which are
frame axioms.

A more interesting unity machine is shown in Figure 6. This machine is an inversion of a slider
crank and forms part of the leg assembly of the walker. The behaviour of this machine is captured
by the following rules. The input to the machine is a pure rotation, its output is a path traced by
a speci�c point on the output link. Note that um2 preserves the continuity and periodicity of the
input motion.

1. input(um2,I), type(I,rotation), raxis(I,A), sense(I,C),

speed(I,S), output(um2,J))
type(J,translation), tpath(J,ellipse), speed(J,S), sense(J,not C).

2. input(um2,I), continuous(I), output(um2,J)) continuous(J).

3. input(um2,I), intermittent(I), output(um2,J)) intermittent(J).

4. input(um2,I), period(I,P), output(um2,J)) period(J,P).

5

2.4 The Elementary Unity Machines

The equivalence classes of motion described by our vocabulary de�ne various classes of rotations,
translations and mixed motions. The rotations that are distinguishable are listed below.

1. type(M,rotation), continuous(M), sense(M,S)

2. type(M,rotation), continuous(M), reverse-dir(M)

3. type(M,rotation), intermittent(M), sense(M,S)

4. type(M,rotation), intermittent(M), reverse-dir(M)
Every rotation has an associated speed, and axis of rotation. Two rotations can be related by

a phase described by the phase predicate. Rotations have sense: clockwise and counterclockwise.
The reverse-dir predicate when applied to rotation describes oscillatory motion. The angular
range of oscillation is captured by the predicate range. Note that each entry in the table stands
for an in�nite set of rotary motions over all speeds, axes of rotation, and ranges of motion.

The types of translational motions that can be distinguished include the ones in the table below.
Translational motions trace a path described by the predicate tpath(M,X) where X can be a line,
circle, ellipse, helix or screw. A line is represented by a pair consisting of a point on the line
in 3-space and a vector that describes its orientation. A circle is described by a triple (radius,
normal-vector, center) where radius is a real number, normal-vector is a unit vector perpendicular
to the plane of the circle, and center is the location of the center of the circle in 3-space. Similar
geometric descriptions are given for the other objects.

5. type(M,translation), continuous(M), tpath(M,X)

6. type(M,translation), intermittent(M), tpath(M,X)

7. type(M,translation), continuous(M), tpath(M,X), reverse-dir(M)

8. type(M,translation), intermittent(M), tpath(M,X), reverse-dir(M)
We have identi�ed 26 equivalence classes of motion: 4 translation types each with 5 possible

paths that can be traced, 2 rotations with de�nite sense each with two possible values for sense,
and 2 oscillatory rotations. Note that each class contains motions with speeds, phases and range
drawn from the set of real numbers.

We call these basic motions. We can now provide a basis set of elementary unity machines
that convert one basic motion class to another. This allows us to obtain a complete set of unity
machines relative to our motion description vocabulary.

De�nition 3 An elementary unity machine is a unity machine that cannot be composed from other

unity machines. It converts one basic motion in our system to another basic motion.

Elementary unity machines are thus the atoms of our motion conversion system. Some elements
of the basis set of unity machines are in Figure 7: these are all the possible conversions from rotary
motion. We represent the elementary motion converters as F-diagrams. The common names of the
mechanisms and their index number in Artebelovsky's catalog are shown in the Figure. We have
a database of elementary unity machines indexed by their input and output motions to facilitate
queries of the form: list the unity machines which have inputs matching X, as well as list the unity
machines with outputs that unify with Y.

2.5 Composing Unity Machines

The power of unity machines as the building block of our synthesis system comes from the observa-
tion that the composition of two unity machines yields another unity machine. Thus complex unity
machines can be built from simpler ones by a compositional process. What needs to be explained
now is the nature of the composition that preserves the single DOF property.

6

The composition of unity machines is achieved by merging the output link of a unity machine
with the input link of another, provided that their motions are uni�able. That is, the set intersection
of the two motions should not be the empty set. Since a �nite number of motion types can be
distinguished in our vocabulary of motion, we can specify the uni�cation rules exhaustively.

A simple example serves to illustrate the concept of motion uni�cation. Consider the unity
machine um1 introduced before. We will compose um1 with a copy of itself, um1

0

, to produce a new
unity machine. um1 has input link 1 and output link 3 (link 2 is ground). um1

0

with input link 4,
output link 6 and ground link 5 is shown in Figure 9. We will unify the motions of link 3 and link
4.

output(um1,M), input(um1',N),
type(M,rotation), type(N,rotation),
continuous(M), continuous(N),
sense(M,not C), sense(N,W),
raxis(M,A) raxis(N,B)

Motion M and N can be uni�ed because they are both continuous rotations. However, we
must ensure that they have the same sense and that they have the same rotational axis. We specify
the latter constraint by using the associate-marker(marker,motion,location) predicate, which
associates a symbol marker with motion at location. A marker is simply a local coordinate frame
attached to a joint on the F-diagram. A marker's global orientation and position are provided as
a unit vector which identi�es the direction of the z axis of the local coordinate frame, and a point
identifying the origin of the marker. Thus, uni�cation of M and N yields the constraints given below,
where J1 and J2 are the locations of these rotations.

not C = W (rotations' senses should be equal)
associate-marker(M1,M,J1), associate-marker(M2,N,J2), inline(M1,M2)

These geometric constraints are checked for feasibility in the qualitative kinematic simulation
phase of the design.

Intermittent rotations unify with intermittent rotations. The uni�cation constraints are that
they share the same sense, the same rotational axis, the same angular range and the same period.
Continuous translations unify with continuous translations. The path objects traced by two uni�-
able translations have to be uni�able also. Thus if we have two continuous translations that trace
line objects tpath(M,lineA) and tpath(N,lineB), our uni�er generates the geometric constraint
that the lines are parallel.

2.6 The Synthesis Algorithm

The algorithm [Nilsson] used for the synthesis is a backward chainer that starts from the goal
motion desired and composes a unity machine that matches the speci�cation. The algorithm shown
in Figure 2 handles single-input, single-output unity machine synthesis. It is a non-deterministic
procedure as written: step 2 involves picking some elementary unity machine in the database
whose output uni�es with the required output motion. This procedure is sound: a compound
unity machine produced by it is guaranteed to satisfy the input output relation. The procedure is
also complete: if there exists a unity machine that satis�es the input output relation and which is
composable from the elementary unity machines, the procedure will �nd it.

The synthesis algorithm produces the design shown in Figure 10 given the problem of synthe-
sizing one of the legs of the walker. The geometric constraints produced, which are omitted from

7

procedure Single-Synthesize(Input,Output)
Given : Input: speci�cation of the input and

Output: speci�cation of the output.
Find : A sequence of elementary unity machines which when composed

satisfy the input-output speci�cation,
along with a set of geometric constraints.

1. If Output uni�es with Input return the null unity machine, the empty substitution, and the
empty constraint set.

2. Let U(I,O) be an elementary unity machine whose output O uni�es with Output with substi-
tution �. Let I� be the substitution instance of the input of this elementary unity machine.
Let C denote the set of geometric uni�cation constraints generated.

3. Let A, �0, C0 be the unity machine sequence, substitution, constraints returned by
Synthesize(Input,I�).

4. Return append(A,U(I,O)), �0 Æ �, and C [C0.

Figure 2: Synthesizing Single Input, Single Output Unity Machines

the �gure for clarity, will be satis�ed during the kinematic simulation stage described in the next
section.

2.7 Optimization of Unity Machines by Function Sharing

The synthesis procedure given in the previous subsection handles one output at a time. To synthe-
size the 6-legged walker we need to achieve 6 subgoals that describe the motions of the individual
legs, as well as the phase relationships between these motions. A synthesis procedure that satis�es
multiple goals in sequence is described in Figure 3. The �rst phase of the multiple goal synthesis
procedure produces modular designs, where no functionality is shared. The six subgoals for the
legged walker are achieved in sequence resulting in six copies of the unity machine shown in Fig-
ure 10. Our multi-output synthesis procedure works very much like a modern day compiler: the
�rst phase generates an intermediate design which is then optimized in the second phase. The
optimization looks for opportunities to merge kinematic function: it identi�es common function-
ality achieved at di�erent points in the design, which can be achieved by a single unity machine.
The idea is to perform common-subexpression-elimination on the initial design. Algorithmically, it
involves detecting common subgraphs in the F-diagram and replacing them by a single instance.

In the case of the design of the walker, we could share the initial step-down of rotation obtained
by unity machine um3. The subgraph that stands for um3 in all 6 legs can be replaced by a single copy
of um3 whose output is fanned out. An even better design would share the functionality of both um1

and um3: however the need to satisfy the phase relations between the motions (which is achieved
by um1) invalidates this attempted optimization step. The algorithm in Figure 3 only searches
for individual elementary unity machines that are shared among a set of unity machines. This
optimization step has low complexity. The detection of larger common subgraphs (i.e., compositions
of elementary unity machines) makes the optimization problem NP-complete. The application of
the optimisation algorithm to the synthesis of the walker produces the design shown in Figure 11.

8

procedure Synthesize(Input,Outputs)
Given : Input: speci�cation of the input and

Outputs: a sequence Output1 : : : Outputn of motions to be synthesized.
Find : A sequence of elementary unity machines which when composed

satisfy the input-output speci�cation,
along with a set C (initially empty) of geometric constraints.

For i from 1 to n do
umi,Ci � single-synthesize(Input,Outputi)

For i from 1 to n do
For j from 1 to n do

for each uk in umi do
for each vl in umj do

if i 6= j then if Input(uk) = Input(vl) and Output(uk) = Output(vl)
then merge uk and vl.

Figure 3: Synthesizing Single Input, Multiple Output Unity Machines

2.8 Analyzing Complex Devices as Finite State Machines

Unity machines are a useful abstraction for understanding the construction of complex mechanisms
from simpler ones. Unity machines are to kinematics what side-e�ect-free programs are to functional
languages. They allow for simple compositional synthesis, and provide opportunities for further
optimization by function sharing.

Unity machines can be used to describe devices with more than one degree of freedom provided
they can be discretized into machines with one degree of freedom. This is akin to representing
an output function f(x; y) as the union of one-argument functions

S
xi2X

f(xi; y) where X is the
set of allowed values of the �rst argument. This strategy of decomposition works as long as X is
a �nite set. A two speed gear box can be thought of as a 2 state unity machine. In one state,
it is a unity machine with a low gear ratio; in the other, it is a unity machine with a high gear
ratio. The transition between the two states is determined by the position of the gear-shift lever.
Methods of synthesizing �nite state automata from high-level speci�cations can be brought to bear
on synthesizing machines with more than one degree of freedom. This is currently being explored.

3 Kinematic Simulation of Lego Mechanisms

Kinematics is the study of position, velocity and acceleration of links without considering the forces
that produce them. A kinematic analysis produces the velocity and acceleration of all the links
in a mechanism given a description of the input motion. It can also generate the path traced by
the mechanism for given driving inputs. A good way to view kinematics is as geometry in motion
[Shigley].

Our project uses simulation in two ways: to satisfy geometric constraints generated during
unity machine synthesis, and to animate a completed mechanism. For animation, the analysis
must be quantitative and exact; for geometric constraint satisfaction during synthesis, qualitative
simulation suÆces because the designs are abstract during this phase.

9

Most texts on machines and mechanisms [Shigley, MabieRein] provide excellent numerical meth-
ods for detailed kinematic analysis. Commercially available programs like ADAMS use iterative
techniques like the Newton-Raphson method with eÆcient encodings of the geometric constraints
[Orlandea]. A numerical simulation requires a complete geometric description of the mechanism,
whereas qualitative simulation only requires the information present in unity machines. The output
of the qualitative simulator is a set of symbolic translation and rotation operations [Kramer] that
assemble the mechanism so that the geometric constraints are satis�ed. When the dimensions of
the links of the mechanisms are instantiated, we obtain an exact quantitative simulation that can
be used for animation of the mechanism.

3.1 Qualitative Simulation

The kinematic simulation method described here satis�es the geometric constraints accumulated by
the synthesis algorithm. We employ a technique called degrees of freedom (DOF) analysis devised
by Kramer [Kramer] which produces a symbolic solution to the positions of the various links in the
unity machine. Kramer considered lower kinematic pairs only; we have extended his method to
handle higher kinematic pairs (gears). We present a short summary of the method.

3.2 Degrees of Freedom Analysis

DOF considers the mechanism, described as an F-diagram, as an unassembled collection of links,
initially. Each kinematic pair in the F-diagram is translated into a set of geometric constraints
about the relative positions and orientations of the links. The geometric constraints accumulated
during synthesis are added to this set. The constraints are then solved incrementally. The result
of the DOF analysis is a metaphorical assembly plan (MAP), which is a sequence of translations
and rotations of the links that assembles the mechanism for given values of the driving inputs.
DOF analysis is well suited for producing animation since, in analyzing a mechanism, it generates
a symbolic MAP once, which can be executed eÆciently for various input values.

3.2.1 Markers and Geometric Constraints

We now show the algorithm that generates MAPs in the context of the 4-bar linkage. A critical
concept in the algorithm is a marker, introduced earlier. The marker's global location and orien-
tation are denoted gmp(M) and gmz(M) respectively. The latter stands for the global orientation of
the z-axis of the marker. Kramer uses a set of primitive geometric constraints between markers.
These are
coincident(M1;M2) : markers M1 and M2 have the same location in space
inline(M1;M2) : M1 lies on the line through M2 parallel to M2's z-axis.
in-plane(M1;M2) : M1 lies in the plane through M2 normal to M2's z-axis.
parallel-z(M1;M2) : the z-axes of M1 and M2 are parallel.
rigid(M1;M2) : relative motion between M1 and M2 is not possible.

Geometric relationships among the links in the mechanism are described in terms of relationships
between markers. For the four bar linkage in Figure 12, we attach markers D1 and D2 to the left
and right ends of the ground link (r1), markers A1 and A2 to the bottom and top ends of the input
link (r2), markers B1 and B2 to the left and right ends of the connecting rod (r3) and markers C1

and C2 to the top and bottom ends of the output link (r4). We can now describe the connections
between the links as: revolute(D1,A1),revolute(C2,D2), revolute(A2,B1)

revolute(B2,C1), angle(D1, A1, �2)

10

A revolute joint can be de�ned in terms of the primitive set of constraints.
revolute(M1,M2) = coincident(M1,M2) ^ parallel-z(M1,M2)

3.2.2 The Construction of MAPs

In the construction of the metaphorical assembly plan for the four bar linkage, constraints are
satis�ed one at a time by moving objects by the actions of translation and rotation. Constraints,
once satis�ed, are maintained as invariants for the remainder of the analysis. Initially each link
has 3 rotational and 3 translational degrees of freedom. The MAP produced by this analyis for the
four-bar linkage problem is :

1. Translate link r1 (resp. r4) so that one of its ends is coincident with the point D1 (resp. D2)
on the ground.

2. Rotate link r1 about D1 to satisfy the input angle constraint �2.

3. Determine the intersections of the loci of endpoints of links r1 and r4 and pick one of inter-
section points, say I (assuming one exists).

4. Rotate r4 about D2 so its endpoint is coincident with I.

5. Translate and rotate r3 so its endpoints coincide with those of r2 and r4.

The actions that can achieve a constraint while maintaining others, are stored in a structure
called the Plan Fragment Table (PFT). Entries in the table are indexed by the type of constraint
that the plan satis�es. All of the entries in the PFT require that one of the markers involved in a
constraint be �xed to a ground link. The plan fragment describes how the constraint is satis�ed
by translating and/or rotating the movable link. The kinematic analyzer examines the constraints
involving the �xed markers �rst and selects the plan fragments which will achieve them. The entire
PFT can be found in [Kramer]. To solve for the constraints on the oating link, locus analysis is
employed. The locus of possible locations for B1 are constrained by that of A2, with which it is
coincident to. A2 has one rotational degree of freedom. Similarly, the locus of possible locations for
B2 are constrained by that of C1, which also has one rotational degree of freedom. Locus analysis
intersects these two sets to obtain solutions for the position of the middle link. Locus tables have
the geometric description of the locus of links like A and C which have one rotational degree of
freedom. Once the intersection points are found, the positions of the markers B1 and B2 are known,
and link B can be positioned by appropriate translations and rotations.

A limitation of Kramer's DOF analysis technique is that it handles only a restricted set of
joints; namely, the six lower pairs and a few higher pairs (universal joint and slotted-pin joint).
Prominent among the higher pairs that it does not handle are toothed joints, such as connections
involving gears, racks, and worm gears. Since such joints play a key role in many mechanisms, we
have extended the method to handle them. We use a preprocessing step outlined in the appendix
to convert gear-gear connections into assertions involving only the primitive geometric constraints
de�ned by Kramer, since adding additional constraints could signi�cantly complicate the analysis.

The DOF analyzer has been partially implemented; we are currently working on completing
the implementation. As a test of the existing code, we simulated the motion of one of the walker's
legs. The leg is described abstractly by the F-diagram in Figure 7. The dimensions of the links
were obtained by instantiating the mechanism using Lego pieces. The section of the analyzer that
constructs plans is implemented including the augmentations to include analysis of gears. The plan
was executed for various values of the driving input, producing for each value the positions and

11

orientations of all of the pieces. This output was used to create an animated sequence showing the
walker in motion4.

4 Re�nement

Given an F-diagram of the unity machine to be synthesized, we �rst convert it to a more convenient
line-graph where the edges stand for links and where the nodes stand for the joints in the mechanism.

De�nition 4 The line graph D of an F-diagram F is a graph whose edge set is the vertex set of F

and whose vertex set is the edge set of F. There is an edge labeled j from node x to node y in D if

and only if x and y meet at a vertex j in F.

The line graph of the simplest unity machine um1 is shown in Figure 13. The re�nement problem
is: given a line graph for a mechanism, to �nd sets of interacting Lego components that implement
the edges so that they form the joints represented by the vertices of the graph. Our basic approach
to this problem is to use feature-oriented re�nement. An example illustrates the idea: there are
exactly two ways to create s(see the transcript �le for additable revolute joints in the Lego world:
one is by inserting the long-pin feature found on an axle joint into a pin-hole found in bricks with
holes, full beacons and gears, and the other is by inserting a short pin found in L-beacons into a
partial-wide-hole feature found in at Lego bricks with holes and in half beacons. A complete list
of features found in Lego pieces that participate in kinematic connections is found in the appendix.

These features can be justi�ed by a �rst-principles analysis of the con�guration spaces of the
interacting pieces. Such an identi�cation process has been attempted by Faltings [Faltings90] in his
paper on qualitative kinematics using con�guration spaces. The con�guration space construction
identi�es equivalence classes of positions of the two meshed gears when the teeth are in contact;
free space occurs when they are not in contact. The features found in the Lego pieces could be
formally justi�ed by the construction of the con�guration space of interactions between components
considered pairwise.

4.1 The Re�nement Method

Using feature-oriented re�nement allows us to formulate a set of pure geometric constraints into a
discrete constraint satisfaction problem. Thus instead of solving for contact points geometrically,
we identify the sets of features needed to realize a joint in the line graph and use a local propagation
method (Waltz �ltering) to �nd a consistent set of components that implement the line graph.

Consider the problem of instantiating the line graph of um1. The revolute joints can be realized
by using the long-pin feature and the pin-hole feature. The gear connection can be realized by
two meshing gears. So the component that implements edge 1 in the line graph is a Lego brick
with holes (which has the pin-hole feature) which connects to the gear using an axle-joint piece
(which has the long-pin feature). The axle-joint piece �ts into the axle-hole feature in a gear,
realizing the revolute joint. The other revolute joint is formed in similar fashion. Thus a simple
non-deterministic re�nement procedure that maps edges in the line graph directly to individual
components requires the following information. These tables have been constructed for the Lego
world.

1. The list of features and the kinematic connections formed by feature-feature interactions.

4We have an animation available on videotape on request

12

2. The table of (feature, list of pieces where they are found) pairs.

3. The table of (piece, list of features it contains) pairs.

4.2 The Need for a More Sophisticated Re�nement Procedure

The simple re�nement procedure outlined in the previous subsection works best when joints are
realized by the interaction of two components. Unfortunately, this is true in only the simplest of
mechanisms. A joint may have some passive ("useless") degrees of freedom. For example, if we
connect an axle-joint to two bricks with holes, we would theoretically have two revolute joints.
However, the two bricks with holes are e�ectively connected by a single revolute joint. The extra
rotational degree of freedom of the joint is irrelevant.

We are now in the process of developing a more sophisticated procedure that considers the use
of multiple components to generate a single edge in the line graph. The issues involved in this
re�nement procedure are discussed briey below.

Instead of classifying kinematic connections by the feature pairs that implement them, we
construct compound feature interactions (in principle, feature interaction plans) that identify the
features that participate as well as the geometric constraints satis�ed by them. An instance of such
a constraint is that the two features be coincident. It could also constrain the orientations of the
features in space. Augmenting the feature interaction pairs in this fashion allows for generating
re�nements when there isn't a simple mapping between pieces and the edges in the line graph. The
dimensions of the chosen links are determined used standard parametric design tools (ADAMS).
The metaphorical assembly plan generated in the previous section can be used to assemble the
chosen components in a feasible con�guration.

5 Conclusions and Future Work

This paper has presented some of our results from a prototype program that synthesizes mecha-
nisms from functional speci�cations. The key innovation was the introduction of an abstraction
of kinematic function based on number of degrees of freedom, called unity machines. Unity ma-
chines allow us to apply many of the conceptual tools and techniques from functional program
optimization to the problem of designing e�ective machines. The design of the new qualitative
motion vocabulary allows for a systematic enumeration of elementary unity machines which forms
the basis of our complete synthesis procedure. The synthesis procedure relies on a motion uni�er
which generates a variety of constraints, including geometric constraints. These are satis�ed by the
qualitative kinematic simulation method called degrees of freedom analysis. The extension of this
analysis to �xed axis gears is presented in the Appendix. The symbolic solution to the positions
of the links in a mechanism allowed for clean integration with a quantitative simulator. The issues
involved in generating concrete designs were discussed, and a preliminary algorithm for producing
simple re�nements was given.

Unity machines and discretized �nite-state unity machines account for over half of the mech-
anisms in Artebelovsky's catalog. This indicates the wide applicability of our abstraction to the
problem of automating conceptual design in the domain of kinematics. Our future plans include
the incorporation of subassembly learning, as well as the generation of design rationale to aid in
the automatic modi�cation of machine-generated designs. We will also add dynamic considerations
into the design. The kinematic designs that we have considered so far have treated bodies as rigid.
A new idea is to exploit elastic design to achieve exibilities that have useful function. An example

13

is the design of modern suspension bridges where there is exibility along the direction of the bridge
to bend until the loads in the cables on either side are equal. To incorporate these possibilities
into the design space we need to include description of elastic implementation media as well as the
kinematic functions that they can accomplish. This requires enriching our qualitative vocabulary
of motions to include higher level descriptions of kinematic function. This is an avenue we will
explore in future work, since many innovative designs involve exploiting exible media.

Acknowledgements

CSG models of the Lego pieces were constructed using the PADL 2 [Hartquist and Marisa] lan-
guage and evaluated using the RayCasting Engine (RCE) [Ellis 1991]. Rendering, mass property
calculation, and null-object detection were accomplished using the Ray casting Engine [Marisa]
provided by Cornell Programmable Automation, Cornell University.

References

[Artobolevsky] I. Artobolevsky.Mechanisms in Modern Engineering Design, vols. 1-4. MIR
Publishers, Moscow, 1979. English translation.

[CutTan] M.R. Cutkosky and J.M. Tanenbaum, Research in Computational Design
at Stanford, Research in Engineering Design, Vol 2, pp 53-59, Springer-
Verlag, 1990.

[Ellis91] J. L. Ellis, G. Kedem, T. C. Lyerly, R. J. Marisa, J. P. Menon, D. G. Thiel-
man, and H. B. Voelcker, The RayCasting Engine and ray representations,
, in Proc. ACM SIGGRAPH Symposium on Solid Modeling Foundations
and CAD/CAM applications, pp. 255-267 edited by J. R. Rossignac and J.
Turner, June 1991.

[Faltings90] Boi Faltings. Qualitative Kinematics in Mechanisms. Arti�cial Intelligence
44 (1990), pp. 89-119.

[Freudenstein74] F. Freudenstein and L.S. Woo, Kinematic Structure of Mechanisms, in
Basic Questions of Design Theory edited by W.R. Spillers, North Holland,
1974.

[Hartquist and Marisa] E. E. Hartquist and H. A. Marisa, PADL 2 Users' Manual, Cornell Pro-
grammable Automation, Ithaca, 1988.

[Hoeltzel and Chieng] D. A. Hoeltzel and W.-H. Chieng. Pattern Matching as an Automated
Approach to Mechanism Design in Theory of Machines and Mechanisms,
1990.

[Joskowicz and Sacks] Leo Joskowicz and Elisha Sacks. Computational Kinematics. IBM Research
Report RC 16869 (#74799) 5/16/91.

[Karnopp] Synthetic Dynamics: Bond Graphs in Design, in Basic Questions of Design
Theory edited by W.R.Spillers, North Holland, 1974.

14

[Kramer] Glenn Andrew Kramer. Geometric Reasoning in the Kinematic Analysis of
Mechanisms. TR-91-02, Schlumberger Laboratory for Computer Science,
1990; Solving Geometric Constraint Systems. In Proceedings of the National
Conference on Arti�cial Intelligence, pp. 708-714, Boston, July 1990.

[MabieRein] H. M. Mabie and C. F. Reinholtz,Mechanisms and Dynamics of Machinery,
4th edition, John Wiley and Sons, 1987.

[Marisa] Richard Marisa, The RayCasting Engine User's Guide, Cornell Pro-
grammable Automation, Ithaca, 1991.

[Nilsson] N.J. Nilsson, R.E. Fikes, R. Duda, P. Hart, The STRIPS planner, in Read-

ings in Arti�cial Intelligence edited by Bonnie Webber and N.J. Nilsson,
Tioga Press, 1982.

[Orlandea] N. Orlandea, M.A. Chase, D.A Calahan, A sparsity oriented approach to
the dynamic analysis and design of mechanical systems, Journal of Engi-
neering for Industry, Transactions ASME Ser B, Vol 99, pp 773-784, 1977.

[Owens91] A. Owens, Technology Development: A case study of blade cleaners, Xerox
Webster Design Center Internal Memo, February 1991.

[Reuleaux] M. M. Reuleaux, The Kinematics of Machinery. Macmillan & Co., New
York, 1876. Translated by Alex B. W. Kennedy.

[Shah] J. J. Shah, Conceptual Development of Form Features and Feature Mod-
elers, Research in Engineering Design, Vol 2, pp 93-108, Springer-Verlag,
1991.

[Shigley] J. E. Shigley, Kinematic Analysis of Mechanisms, 2nd edition, McGraw
Hill, 1969.

[SriTun] S. Srikanth and J.U. Turner, Toward a Uni�ed Representation of Mechan-
ical Assemblies, Engineering with Computers, Vol 6, pp 103-112, Springer-
Verlag, 1990.

[Ulrich] K. Ulrich, Computation and Pre-Parametric Design, PhD thesis, MIT AI
Lab Memo 1043, July 1988.

[UlrSee] K. Ulrich and W. Seering, Conceptual Design: Synthesis of Systems of
Components in Intelligent and Integrated Manufacturing Analysis and Syn-

thesis edited by C.R. Liu, A. Requicha and S. Chandrasekar, ASME PED-
Vol 25, 1988.

[Yang] B. Yang, U. Datta, P.Datseris, Y. Wu, An Integrated System for Design of
Mechanisms by an Expert System: DOMES, AI EDAM, Vol 3, No 1, pp
53-70, Academic Press, 1989.

15

Unity Machines

Qualitative Kinematic Simulation

(F diagrams)

Behavioural
Specification

Feature Oriented Refinement

Parametric
Structure

Detailed
Kinematic
Simulation

Detailed
Design

Bond Graphs
(transfer fns)

Refinement Using
Symbolic and
Numeric Tools

Bond Graphs Simulation

Figure 4: The Design Method

R

G

R

21

3

21 3 (grounded)

Figure 5: A simple mechanism and its F diagram

16

x

xx

x

..........................

..........................

43

2 1
R

R

R

P

Figure 6: The F-diagram for an inversion of the slider crank mechanism

Input Motion Output Motion Constraints Unity Machine

type(M,rotation) type(N,rotation) sense(M,C) Gear Pair(2289)
sense(N,not C) Pin Wheel (2577)
speed(M,S)

speed(N,r � S)
r > 0

type(M,rotation) type(N,rotation) Geneva wheel (2623, 261)
continuous(M) intermittent(M) inplane(M,N) Pin Wheel Sprocket(2605)

type(M,rotation) type(N,rotation) inplane(M,N) 4 bar linkage (539,2443)
reverse-dir(N) lever gear (2412)

type(M,rotation) type(N,rotation) Escapement (2660)
intermittent(M) continuous(M) 6-bar linkage (593)

type (M,rotation) type(N,rotation) universal joint(554)
bevel(799)

type(M,rotation) type(N,translation) period(N,P) Slider Crank(2410,2417)
continuous(M) continuous(N) tpath(N,line)

reverse-dir(N)

type(M,rotation) type(N,translation) Intermittent Rack (2354)
intermittent(N)

type(M,rotation) type(N,translation) tpath(N,line) Gear Teeth(2321)
4-bar mech. (644)

type(M,rotation) type(N,translation) tpath(N,circle) 4-bar mech.(679)
sense(M,S)

sense(N,S)

type(M,rotation) type(N,translation) tpath(N,circle) 4-bar mech.(685)
sense(M,S)

sense(N,not S)

type(M,rotation) type(N,translation) tpath(N,math-fn) Lever gear mech.(2486)

Figure 7: Some of the Elementary Unity Machines

17

G

R

R

Marker M

Marker N

R

Z

Z

G

R

The Z axes of the two markers must be in line.
A marker is associated with a joint (edge) in an F-diagram.

Figure 8: Uni�cation of two continuous rotations

Input

1 2 4 5

6

Unified
Motions

R R

G

R R

G

UM1 UM1’

Output

3

Figure 9: Composing two simple unity machines

18

OutputInput W G G

UM3

R PR R

R

R

R RR R

Unified Motions

UM1 UM1’ UM2

Figure 10: Synthesizing the motion of a leg of the walker

RR
G

RR
G

R

R

P

R

RR
G

RR
G

R

R

P

R

Input

RR
G

RR
G

R

R

P

R

RR
W

RR
G

RR
G

R

R

P

R

R

R

P

R

R

R

P

R

Output 1

Output 2

Output 3

Output 4

Output 5

Output 6

Figure 11: The optimised design of the walker

19

x x

x

x

�
�
�
�
�
�
�
�
�
�
�
���������������

C
C
C
C
C
C
C
C
C
C
C
C
C
CC

. ...
.......

...

...
.......

...

...
.......

...

...
.......

...

...
.......

...

...
.......

...

...
.......

...

...
.......

...

...
.......

...

...
.......

...

...
.......

...

r1

r2

r3

r4

A2

B1

B2

C1

C2

D2D1

A1
�2

Figure 12: A four bar linkage

R R

G1 2

3

1 2

3

R R

G

Figure 13: um1 and its line graph

20

Appendix : DOF Analysis of Fixed-Axis Gears

This section describes a method of extending the kinematic analyzer to enable it to analyze mech-
anisms containing �xed-axis gears; that is, mechanisms in which the direction of the axis about
which each gear rotates is �xed in the global coordinate frame, and in which the locations of the
centers of the gears can be determined independently of the rotation of the gears. For example,
these conditions are satis�ed if each gear is attached by a revolute joint to a frame. Kinematic
analysis is performed after the mechanism has been completely (though perhaps tentatively) de-
signed. Thus, the input to the kinematic analyzer is a description of the mechanism in some initial
con�guration.

Consider two meshed gears, whose centers are represented by markers M1 andM2, respectively.
The markers are oriented so that their z-axes are orthogonal to the plane containing the gears. The
connection between these gears is described by the constraint meshed-rotation(M1;M2; r; �1; �2),

5

where r = r1=r2 is the ratio of the circumferences of the gears, and �i is the value of �i (de�ned
below) in the initial con�guration. This constraint is equivalent to the requirement r1(�1 � �1) =
r2(�2 � �2), where

d = vector-difference(gmp(M2); gmp(M1)) and �i = vector-angle(d; gmx(Mi); gmz(M1)):

The function vector-angle(v1; v2; v3) returns the angle between vectors v1 and v2, measured coun-
terclockwise from v1 to v2 as viewed from the positive direction of v3. Thus, this meshed-rotation
constraint is expanded into

aux-marker(X; vector-sum(gmp(M1); vector-scale(d; 0:5)); gmz(M1); unit-vec(d))
offset-x(X;M2; r � (�1 � �1) + �2)
offset-x(X;M1; r � (�2 � �2) + �1)

Here, d and �i are just abbreviations for the expressions given above. aux-marker de�nes a new
marker whose location, z-axis, and x-axis are determined by evaluating the given expressions. X
represents some currently unused name.

The constraint meshed-driving-input(M1;M2; s) is used to specify the values of driving inputs
for these connections. This constraint is equivalent to the requirement �1 = s, where �i is as de�ned
above. The value of s is one of the driving inputs of the mechanism.

The DOF analysis proceeds as follows.

1. All of the constraints not involving meshed rotations are satis�ed.

2. The meshed-rotation constraints are expanded as described above, except the offset-x

constraint is omitted for markers for which there is a meshed-driving-input constraint in
the problem database.

3. Each constraint meshed-driving-input(Mi;Mj ; sij) is satis�ed by rotating the link contain-
ing marker Mi.

4. The remaining offset-x predicates are satis�ed in the usual DOF-analysis manner, which
is:

5Note that we do not include here the predicates that determine the locations or the orientations of the z-axes of
the markers, since (as mentioned above) we assume that these degrees of freedom are removed by other constraints
in the problem database, that these constraints can be satis�ed by the DOF analyzer independently of the remaining
rotational DOF of each gear, and that this has been done already. When it starts processing the meshed-rotation

constraint, the analyzer can easily verify that the gears are positioned and oriented so that their teeth mesh correctly.

21

(a) Choose an unsatis�ed constraint.

(b) Check whether the preconditions (assumptions) of the corresponding PFT entry are
satis�ed.

(c) If so, satisfy the constraint using the plan fragment; otherwise, choose a di�erent con-
straint.

The offset-x constraint between two markers can be satis�ed only when the orientation of one
of them is known. Thus, as the analysis proceeds, phase information will get propagated from
links whose phase was determined by a driving input along meshed-rotation connections to the
remainder of the mechanism. Note that if too few driving inputs were speci�ed, there will be un-
constrained degrees of freedom remaining when the analysis terminates. If too many were speci�ed,
an inconsistency (due to overconstraint) may occur while determining the orientation of a link; this
situation will be detected and reported as an error.

22

