
Domain Partitioning for

Open Reactive Systems

Scott D. Stoller

Computer Science Department

State University of New York at Stony Brook

http://www.cs.sunysb.edu/˜stoller/

1

The Problem

Consider open reactive system with typed method-call interface.

Program for environment is often unavailable or unsuitable for

model-checking (state-space exploration) or thorough testing.

Goal: Generate a suitable program that models the environment.

Many inputs are equivalent, that is, lead to same output

(system state and return value).

Examples: secure distributed voting system + insecure network,

getLen procedure + caller.

For efficient testing and explicit-state model-checking:

•Use static analysis to partition inputs into equivalence classes.

•Generate model of environment that uses one representative
of each equivalence class.

2

Domain Partitioning

Domain Partitioning: Given function f , partition domain(f)

into equivalence classes EC0, EC1, . . . such that x, y ∈ ECi implies

f(x) = f(y).

Symbolic representations (formulas) are used, because the par-

tition may be infinite, and each equivalence class may be infinite.

Reactive system: model it as a function

f(curState , input) = 〈nextState, output〉.

Prior work on domain partitioning focuses on arithmetic.

This work focuses on objects and cryptography.

3

Running Example: getLen

class SD { byte[] data; byte[] sig; } // Signed Data

Integer getLen(SD sd, PublicKey k) {
if (sd.sig is a valid signature of sd.data

with respect to k)

return new Integer(sd.data.length);

else return null;

}

Analysis result for getLen: {ECerr, EC0, EC1, . . .}

ECerr = {〈sd, k〉 | sd = null ∨ k = null

∨ sd is not correctly signed WRT k}

ECi = {〈sd, k〉 | sd 6= null ∧ k 6= null
∧ sd is correctly signed WRT k

∧ sd.data.length = i}

4

Analysis Method: Three Steps

1. Use points-to escape (PTE) analysis [Whaley & Rinard

1999] to analyze flow of references (storage locations).

2. Use data-flow analysis to analyze flow of values.

The abstract domains and transfer functions typically embody

symbolic evaluation.

3. Construct equivalence classes based on what information

about inputs is revealed by the return value and updates to global

storage.

Exceptions and static fields (global storage):

handled in the paper; usually ignored in this talk.

5

Step 1: Points-to Escape (PTE) Analysis

Program representation: like Java bytecode, with variables
instead of operand stack.

Analysis result: a PTE graph 〈Nodes, Edges, esc〉
at each program point.

node: represents set of objects

edge: represents possible references

esc(n): set of ways by which objects represented by node n

may escape from method m:
return value,
static variables,
parameters of m,
arguments of methods called by m

6

Step 1 (PTE Analysis): Some Kinds of Nodes

There is one kind of node for each way a program can obtain

references.

The allocation node nst for a new statement st

represents objects allocated at st.

The parameter node np for a reference parameter p

represents the object bound to p.

The load node nst for a load statement st : l1 = l2.f

represents objects that l2.f might point to.

The return node nst for a method invocation statement st

represents objects returned by invocations at st.

7

Step 1 (PTE Analysis): Example

class SD { byte[] data; byte[] sig; }

Integer getLen(SD sd,

PublicKey k) {
0 Sig v = Sig.getInstance();

1 v.initVerify(k);

2 byte[] d = sd.data;

3 v.update(d);

4 byte[] s = sd.sig;

5 boolean b = v.verify(s);

6 if (b) {
7 i = new Integer(d.length);

8 •return i; }
9 else return null;

}

k

load

load
st4

data

sig s

param

k

return

st2

st0 v

i
allocation

param

sd sd
d

st7

esc(nst7): return value
esc(nst4): param sd, call st5

8

Step 2 (Data-Flow Analysis): Domains

There is an abstract domain for each class and primitive type.

Each abstract value represents a set of concrete values.

Default domain for class cl is the union of:

• expressions representing values of type cl retrieved from read-
only inputs by field accesses (e.g., sd.data for cl = byte[]) and
functional methods (e.g., k.getAlgorithm() for cl = String).

• the cross-product of the domains for the fields of cl.

Custom domains may be supplied for selected classes and types.

They typically embody symbolic evaluation.

Example: Custom abstractions related to Signature.

sign(key , data) represents return val of sign,

verify(key , data, sig) represents return val of verify, etc.

9

Step 2 (Data-Flow Analysis): Algorithm

Valuation: a function from (1) nodes in the PTE graph and

(2) variables with primitive types to abstract values.

Analysis result: a valuation ρ at each program point.

Each statement st determines a transfer function [[st]].

valuation at st• = [[st]](PTE graph at •st, valuation at •st)

User may supply custom method abstractions [[m]].

[[m]] is used by transfer functions for statements that invoke m.

[[m]] distinguishes behavior for different outcomes (exceptions).

Other methods are inlined.

Analysis is expressed as a set of constraints on valuations.

Constraint for st uses [[st]] to relate valuations at •st and st•.
Contraints are solved by a worklist algorithm.

10

Step 2 (Data-Flow Analysis): Example

Integer getLen(SD sd,

PublicKey k) {
0 Sig v = Sig.getInstance();

1 v.initVerify(k);

2 byte[] d = sd.data;

3 v.update(d);

4 byte[] s = sd.sig;

5 boolean b = v.verify(s);

6 if (b) {
7 i = new Integer(d.length);

8 •return i; }
9 else return null;

}

k

load

load
st4

data

sig s

param

k

return

st2

st0 v

i
allocation

param

sd sd
d

st7

ρ(nst0) = Signature(verifying, [], . . .)
ρ(nst7) = Integer(sd.data.length)
ρ(b) = verify(k, sd.data, sd.sig, . . .)

11

Step 3: Construct Input Partition

Information about inputs may escape (be revealed) by being
• part of the return value (e.g., sd.data.length), or
• inferrable from return value (e.g., validity of sd.sig)

StmtEsc: statements that can cause values to escape:
return, throw, method invoc., store into escaping object.

esc(st): abstract value that escapes at statement st

type(st): type of value that escapes at statement st

escStruct(st): concrete structures that could escape at st, i.e.,
set of values of type type(st), quotiented by structural equality
(graph isomorphism) for selected objects (e.g., new objects).

Example: esc(return i) = Integer(sd.data.length)
escStruct(return i) =

⋃
i∈int{ [Integer(i)] }

12

Step 3: Construct Input Partition

Path: edge-simple paths p from enterm to exitm

guard(p): conjunction of guards on edges in p

esc(p): abstract val that escapes along p, i.e.,
⊗

st∈p∩StmtEsc esc(st)

escStruct(p): structures that could escape along p, i.e.,⊗
st∈p∩StmtEsc escStruct(st)

PATH = Path quotiented by: p ≡ p′ iff esc(p) = esc(p′)
Extend guard and escStruct to PATH :
guard(P) =

∨
p∈P guard(p), escStruct(P) =

⋃
p∈P escStruct(p)

param: tuple of parameters of m

partn(m) =
⋃

P ∈ PATH

s ∈ escStruct(P)

{{param | esc(P) ∈ s ∧ guard(P)}}

13

Step 3: Construct Input Partition: Example

partn(getLen) =

{{〈sd, k〉 | ¬normalGetLen}}

∪
⋃

i∈int{{〈sd,k〉 | sd.data.length = i ∧ normalGetLen}}

normalGetLen =

availableSigAlg(”SHA1withDSA”)

∧ sd 6= null ∧ k 6= null

∧ compatible(k.getAlgorithm(),”SHA1withDSA”)

∧ verify(”SHA1withDSA”, k, sd.data, sd.sig)

14

Case Study: Distributed Voting System

Described in paper about Phalanx [Malkhi and Reiter, 1998].

Any voter can vote at any polling station (PS).

1. When a voter V tries to vote, the PS contacts other PSs to

ensure V has not voted elsewhere.

2. When balloting is finished, the PSs co-operate to agree on

the final tallies.

Voting system must be safe and live even if up to k PSs are

• Byzantine faulty (fault-tolerance)

• compromised (intrusion-tolerance)

How many PSs need to be contacted?

A quorum.

15

Quorum System

A b-dissemination quorum system is a set QS of quorums (sets

of servers) such that (∀Q1, Q2 ∈ QS : |Q1 ∩ Q2| ≥ b + 1).

Suppose:

• at most b servers are faulty.

• every operation is performed by a quorum.

• quorum Q1 performs op1.

• quorum Q2 performs op2.

Then Q1 ∩ Q2 contains at least one uncompromised server S.

S can inform all servers in Q2 that op1 was done.

16

Distributed Voting System: Initialization

Central authority gives:

• a private key, a secret si, and all public keys to PSi.

• an unguessable voter ID (VID) to each voter, secret from PSs.

• an access tag 〈h(VID), {h(f(si,VID))}1≤i≤n〉 for each voter

to PSi.

Notation:

h is a one-way collision-resistant function.

f is a pseudo-random function.

n is the number of PSs

17

Distributed Voting System: Initiator’s Algorithm

PSi: On receiving a VID from a voter:

1. Compute v = h(VID) and sv = f(si,VID).

2. Search for an access tag 〈v, S〉 for some S.
If not found, reject.

3. Send [voteReq(v, sv)]i to (at least) a quorum of PSs.

4. Wait for replies from a quorum of PSs.

5. If all replies are signed copies of the above request,
allow the vote. Otherwise, reject.

Notation:

[msg]i is msg signed by PSi.

18

Distributed Voting System: Responder’s Alg.

Overview: PSj accepts and stores the first legitimate voteReq

vreq for each voter. If PSj receives another voteReq’s for the

same voter, it replies with vreq.

PSj: On receiving vreq = [voteReq(v, sv)]i:

1. Search for an access tag 〈v, S〉 for some S.
If not found, ignore the request.

2. Check that sv ∈ S. If not, ignore the request.

3. Check whether voted contains a voteReq vreq ′ for voter v.

4. If so, reply with [vreq ′]j.

If not, insert vreq in voted and reply with [vreq]j.

19

Code for Environment (Adversary)

Domain Partitioning: Partitions (for all methods) represented

by approx 25 expressions. Number of equiv classes with 6 quo-

rums, 2 voters, 2 candidates, 5 polling stations: approx 425

Code for adversary is similar to [Roscoe and Goldsmith, 1996],

but deals with equivalence classes (and RMI).

known := {E ∈ Partn | E ∩ InitialKnowledge 6= ∅}
while (true) {

non-deterministically choose an equiv. class E in known;
send a message in E to system
intercept response res;
known = closure(known ∪ equivalenceClass(res))

}

Code is written manually, could be generated semi-automatically.
20

Checking the Distributed Voting System

First apply three transformations [Stoller and Liu, 2001]:

centralization: merge processes into one process

RMI removal: replace RMI with local invocation and copy

pseudo-crypto: replace java.security with javacheck.-
security, which “simulates” crypto

Model checker systematically explores all non-deterministic

choices by adversary and scheduler. It implements state-less

search with sleep sets, as in Verisoft [Godefroid 1996].

21

Result of Model Checking

Found a violation of the safety property: if any polling station

believes voter VID voted at PSi, then VID voted at PSi.

This is due to the accidental omission of part of an integrity
check for incoming voteReqs.

An access tag should contain a sequence 〈〈h(f(si,VID))〉〉1≤i≤n

not a set {h(f(si,VID))}1≤i≤n.

Responder’s Algorithm (corrected):

PSj: On receiving vreq = [voteReq(v, sv)]i:

1. Search for an access tag 〈v, S〉 for some S.
If not found, ignore the request.

2. Check that sv = S[i]. If not, ignore the request.

. . .

22

Related Work

Partition Analysis [Richardson and Clarke, 1985]

Auto. Closing Open Reactive Systems [Colby et al., 1998]

Summary

The analysis extracts a declarative description of the information

about inputs that escapes from a method invocation.

The analysis result provides a basis for manual or semi-automatic

generation of code that models the environment of an open

reactive system.

23

