
Verification of Security Policy Enforcement in
Enterprise Systems?

Puneet Gupta and Scott D. Stoller

Abstract Many security requirements for enterprise systems can be expressed in
a natural way as high-level access control policies. A high-level policy may refer
to abstractinformation resources, independent of where the information is stored;
it controls both direct and indirect accesses to the information; it may refer to the
context of a request, i.e., the request’s path through the system; and its enforcement
point and enforcement mechanism may be unspecified. Enforcement of a high-level
policy may depend on the system architecture and the configurations of a variety
of security mechanisms, such as firewalls, host login permissions, file permissions,
DBMS access control, and application-specific security mechanisms. This paper
presents a framework in which all of these can be conveniently and formally ex-
pressed, a method to verify that a high-level policy is enforced, and an algorithm to
determine a trusted computing base for each resource.

1 Introduction

Many security requirements for enterprise systems can be expressed in a natural
way as high-level access control policies. These policies may be high-level in mul-
tiple ways. First, a high-level policy may refer to abstractinformation resources,
independent of where the information is stored. For example, consider the require-
ment that only employees in the registrar’s office may accessstudent transcripts.
This should apply regardless of whether the transcripts areall stored in one DBMS,

Puneet Gupta
Computer Science Dept., Stony Brook University, e-mail:pgupta@cs.stonybrook.edu

Scott D. Stoller
Computer Science Dept., Stony Brook University, e-mail:stoller@cs.stonybrook.edu

? This work is supported in part by ONR under Grant N00014-07-1-0928 and NSF
under Grants CNS-0831298, CNS-0627447, CCF-0613913, and CNS-0509230. Email:
{pgupta,stoller}@cs.stonybrook.edu.

1



2 Puneet Gupta and Scott D. Stoller

partitioned (e.g., by campus, college, or grad/undergrad)among multiple DBMSs,
saved in backup files, etc. Second, a high-level policy controls both direct andin-
direct accesses to the information. For example, the above policy implies that other
users cannot read transcripts by directly accessing them ina DBMS or by invoking
operations of an application (possibly running with a different userid) that accesses
the database and returns information from the transcripts.Third, a high-level policy
may refer to thecontextof a request, i.e., the request’s path through the system. For
example, a policy might state that employees in the registrar’s office are permitted
to access student transcripts only via a web browser runningon a host in the cam-
pus network and requesting the information from the Registrar Application Server.
Note that this is analogous to the use of calling context (stack introspection) in the
Java security model. Fourth, the policies may bedelocalized, in the sense that the
enforcement point and enforcement mechanism may be unspecified. For example,
if transcripts are stored in a DBMS, the above requirement might be enforced in the
DBMS or an application that connects to the DBMS. With the latter approach, the
system should be designed so that unauthorized users cannotcircumvent that appli-
cation and access the DB directly. This policy might also be enforced in part by the
operating system (based on login permissions and file permissions on the relevant
servers) and the network (blocking connections to the server from hosts on which
unauthorized users have login permissions).

Each high-level policy is enforced by one or more security mechanisms in a
system (perhaps involving DBMSs, middleware, operating systems, file systems,
firewalls, etc.). Enforcement also depends on the system architecture, which affects
the possible paths that requests can take through the system. We sometimes refer to
the configurations of security mechanisms aslow-level policies. Ensuring that the
low-level policies, together with a given system architecture, correctly enforce given
high-level policies is a challenging problem.

Since enforcement of the high-level policies that control access to an information
resource might involve multiple hardware and software components in the system,
a natural question during security analysis is to identify atrusted computing base
(TCB) for each information resource. Note that the answer may depend on the low-
level policies as well as the system architecture.

Security policies with one or more of the above “high-level”characteristics are
natural during system design. The main contributions of this paper are (1) explicit
identification of these characteristics of high-level policies, (2) a framework that al-
lows convenientand formal specification of such high-level policies, modeling of
low-level policies, and modeling of relevant aspects of system architecture, (3) a
method for verifying that the low-level policies in a systemcorrectly enforce (“im-
plement”) the high-level policies, and (4) an algorithm forcomputing a trusted com-
puting base (TCB) for a component or information resource.

Although there is a sizable literature on formal specification and analysis of se-
curity policies, we are not aware of any previous work that explicitly deals with
high-level policies with these characteristics. The interplay between system archi-
tecture and the policies has a significant impact on our framework. Frameworks for
security policy specification and analysis generally ignore system architecture and



Verification of Security Policy Enforcement in Enterprise Systems 3

request context (in the sense described above), except for specialized frameworks
for network (e.g., firewall) policy analysis. Although our framework is broad and
flexible enough to model relevant aspects of network security and operating system
security, our focus is on application-level security policies.

We are implementing a policy development environment basedon our framework
and plan to evaluate it on case studies based on a university and a financial institu-
tion. Important directions for future work are to consider policy administration and
trust management.

2 Related Work

Coordination of Policies in Distributed Systems

Firmato [BMNW99] is a higher-level language for specifyingfirewall policies. Fir-
mato policies get translated into rule-sets for different models of firewalls, insulating
administrators from the details of each model’s configuration language. In addition,
given the network topology, each firewall’s policy can be specialized to contain only
the rules relevant to traffic that may pass through it. Work onFirmato does not con-
sider verification of firewall policies against overall network security requirements
or analysis of how firewall policies interact with security policies of other compo-
nents.

Garcı́a-Alfaro, Cuppens, and Cuppens-Boulahia [GACCB06]define and give al-
gorithms to detect several specific kinds of anomalies (inconsistencies and potential
errors) in network security configuration, specifically, configuration of firewalls and
network intrusion detection systems (NIDS). In contrast, our work is aimed at veri-
fication of general application-level security requirements, taking network security
configuration into account but in less detail. Thus, the kinds of properties verified,
and the analysis algorithms used, are quite different.

Ioannidiset al. [IBI +07] propose the concept ofvirtual private services(VPSs)
to describe a service implemented by a collection of components whose security
policies must be configured in a coordinated way to enforce anaccess control pol-
icy associated with the service. They express all access control policies in the same
language, namely KeyNote [BFIr99], without distinguishing “high-level” and “low-
level” policies. A policy for a VPS can be delocalized—in particular, its enforce-
ment might involve multiple components—but is otherwise basically a low-level
policy, in our terminology. They describe a system architecture for deploying and
enforcing policies. They do not consider formal analysis, verification, or refinement
of policies.

Bandara, Lupu, Moffett, and Russo [BLMR04] propose a formalmethodology
for policy refinement, based on event calculus [BLR03]. Since most policies today
are developed inad hocways, not using a formal refinement methodology, we focus
instead on verification of given low-level policies againstgiven higher-level policies
(requirements). Also, their framework is completely generic; in order to use it for



4 Puneet Gupta and Scott D. Stoller

Fig. 1 Architecture of student information system. Edge labels specify the corresponding relation.
The components connected oninternal LAN are related to each other vialink relation.

refinement of enterprise security policies, one would need to introduce relations and
rules similar to those used in our framework to model system architecture and access
control policies.

Sheyner, Haines, Jha, Lippmann, and Wing [SHJ+02] present a method to effi-
ciently constructattack graphs, which represent attacks involving sequences of ex-
ploits of vulnerabilities in components of a system. Our work is largely complemen-
tary to attack graph analysis. Attack graphs are based primarily on vulnerabilities
in components; access control policies and calling behavior are not considered, ex-
cept when they affect a vulnerability. Also, attack graphs are generally used to find
violations of system-level security requirements (e.g., who may login to a host), not
application-level security policies.

3 Framework

Running Example.We use a student information system as a running example to
illustrate our framework. Student information is classified as academic (transcript,
etc.) or personal (SSN, citizenship, etc.). The system architecture is shown in Figure
1. Academic information and personal information are stored in separate databases.
solar is a web-based university information system; for brevity,we modelsolar
and the associated web server as a single component.



Verification of Security Policy Enforcement in Enterprise Systems 5

Information Resources.An information resource, abbreviated IR, represents
a kind of information handled by the system. The relationimplements(C, I)
means that componentC (partially or completely) implements IRI , i.e.,C stores that
kind of information. For example, the student information system contains two IRs,
academicIR andpersonalIR, each implemented by a corresponding database
(e.g.,implements (academicDB, academicIR)). The distinction between
an IR and the components that implement it is useful if the information in the IR is
partitioned, replicated, archived, etc.

The information in an IR is assumed to be structured as a set ofrecords, whose
attributes (fields) and their types are specified in the definition of the IR. We refer
to these as attributes of the IR, although they are actually attributes of the records
in it. An attribute type can be a primitive data type (e.g., String) or an IR, denoting
a reference to a record in another IR (recursive types are prohibited). For example,
the attributes ofacademicIR andstudentIR include an attributeid with type
String, which identifies the student that the record is about. IRs have a straightfor-
ward API with operations for manipulating records. For example, the API includes
an operationreadFieldwith argumentsrecord (the record being accessed) and
field (the field being accessed).

Components.A system is built fromcomponents, which may represent software
(e.g.,solar) or hardware (e.g., a host or firewall). Each component has attributes,
accessed using the dot operator. For example, for a softwarecomponentC, C.host
is the host on whichC runs. Attributes can also provide information about identity
management, e.g., which authentication services and directory services are used by
the component.

Each component has an API. For example, the API for the databasesacademicDB
andpersonalDB is modeled (ignoring details of SQL) as containing functions
like readField, writeField, readRecord, and addRecord. The API
for solar containsgetTranscript, getSSN, andgetCitizenship. We
model the browser as offering its user a single function,request, which non-
deterministically sends some request to a web server (in this case, solar). For brevity,
we consider only the above functions; other functions can bemodeled and analyzed
similarly.

Each component has alow-level permit policythat controls invocations of func-
tions in the component’s API and is enforced locally by the component. The lan-
guage for low-level policies is described later in this section.

High-Level Policies.High-level policies are expressed in a simple rule-based
language, which is an extension of Datalog with simple data structures that can be
read, but not constructed or updated, by policy rules. A policy rule has the form
Q <- P1, . . .,Pn and means:Q holds if P1 throughPn hold. Variables start with
an uppercase letter, constants start with a lowercase letter, and string constants ap-
pear in single quotes. The rules define the relationhPermit (“high-level permit”).
hPermit(U, R, Op, C) holds if the system should permit (allow) requests
from userU to perform operationOp on resourceR in contextC. A resourceis a
component or IR. The rules may also define auxiliary relations. For convenience, the
name and arguments of the operation are modeled as attributes of Op (this is just a



6 Puneet Gupta and Scott D. Stoller

% A Student can read any field in the records for himself or
% herself.
(P1) hPermit(User, Resource, Op, Context) <-

Resource in {academicIR, personalIR},
Op.function = readField, Op.record.id = User.id

% A Graduate School Clerk can read every student’s transcript,
% if accessed through solar from (a browser running on) an
% internal host. Note: Context.head() is the first element of
% the context. internalHost(H) is an auxiliary predicate
% (definition elided) that holds if host H is part of the campus
% network.
(P2) hPermit(User, academicIR, Op, Context) <-

Op.function = readField, Op.field = ’transcript’,
User.role = ‘GradSchlClerk’, Context.contains(solar),
runs-on(Context.head(), H), internalHost(H)

% A registrar can read a student’s personal information, if
% accessed from an internal host
(P3) hPermit(User, personalIR, Op, Context) <-

Op.function = readRecord, User.role = ’Registrar’,
runs-on(Context.head(), H), internalHost(H)

% An administrative user can add new records to academicIR
(P4) hPermit(User, academicIR, Op, Context) <-

Op.function = addRecord, User.role = ‘admin’

% An administrative user can add new records to personalIR
(P5) hPermit(User, personalIR, Op, Context) <-

Op.function = addRecord, User.role = ‘admin’

Fig. 2 Illustrative high-level policy rules for the student information system

modeling convention, not an assumption about the implementation); the operation
name is stored inOp.function. The contextC is a sequence of tuples(c, f )—
wherec is a component or IR, andf is a function inc’s API—representing the
call chain (or “path”) by which the request propagated through the system. Figure 2
shows some high-level policies for the running example.

Call Map. A function in a component’s API may call functions provided by
other components. Such calls must be considered to determine whether the restric-
tions on indirect calls expressed by high-level policies are enforced. We introduce a
functioncallMap that captures the possible calls made by each component func-
tion. For simplicity and efficiency,callMap provides, and our analysis tracks, only
equalities involving function arguments. Such equalitiesare often needed to verify
enforcement of high-level policies; for example, to verifyenforcement of (P1) in
Figure 2, the analysis must track equalities involving theid argument, which iden-
tifies the user whose record is being accessed.callMap represents all interactions
between components, regardless of the actual communication mechanism.



Verification of Security Policy Enforcement in Enterprise Systems 7

Given a componentC and a functionF in its API,callMap(C,F) returns a set of
tuples of the form(calledBy,R,F ′

,args), each describing a possible call made dur-
ing execution of that function. The above tuple represents acall to functionF ′ (the
“target function”) of the “target” resource (component or IR) R. calledByis analo-
gous to a setuid flag. IfcalledBy=self, the target resource sees the user executing
the calling componentC as the caller; ifcalledBy=caller, it sees the user that
calledF onC as the caller.argscharacterizes the possible arguments of the call to
the target function.argsis represented as a set of equalities of the formattrib = val,
whereattrib is an attribute name (recall that we model function arguments as at-
tributes of an operation object), andval can be a constant, the name of an attribute
(meaning that attributeattrib of the target call equals attributeval of the enclosing
call to F), ornewVar (meaning that a fresh variable will be used in the analysis to
represent this value).

For example,callMap(solar, getTranscript) contains the tuple(self,
academicDB, readField, {id=id, field=‘transcript’}). The val-
ues ofcallMap for solar’s getSSN andgetCitizenship functions are
similar. callMap(browser1, request) contains a tuple for every function
of every other component, withnewVar arguments, reflecting thatbrowser1 is
untrusted and may make arbitrary calls.

When analyzing the security of a design, thecallMap for each component is
based on the component’s behavior as described in the design. For an implemented
system,callMap could be determined from the code. Determining it accurately
might be difficult, but an over-approximation can safely be used when verifying
enforcement of high-level policies. Over-approximationsin callMap may cause
false alarms, but in many cases, the low-level permit policyof the target component
or an intervening component will block the spurious calls ornested calls they make,
preventing false alarms. If the analysis does raise false alarms, the corresponding
call chains indicate exactly what assumptions about possible calls and their argu-
ments are needed for enforcement of the high-level policies, and thecallMap,
permit policies, or system architecture can be refined accordingly.

Hosts and Firewalls.Each component has an attributetype. This attribute can
have any value, but the valueshost andfirewall have special significance.
Hosts and firewalls are hardware components with network connections. Network
connectivity is modeled by the relationlink(C1, C2), which means that the net-
work may contain a path betweenC1 andC2 that does not pass through a host or
firewall. This reflects the fact that we explicitly model hosts and firewalls but not
routers. By taking all paths in the network topology into account in thelink rela-
tion, we are making no assumptions about routing (or its security), although such
assumptions could be used to restrict thelink relation.

Hosts, like all components, have attributes, e.g., the set of users with accounts on
the host. Since each software component must run on a host, weintroduce a rela-
tionruns-on(C, H), which means that componentC may run on hostH. Hosts
provide various services, notably communication services, to components running
on them. Host-based security mechanisms may limit the communication performed
by a component, e.g., blocking connections with componentson untrusted hosts.



8 Puneet Gupta and Scott D. Stoller

Firewalls provide a similar security mechanism, typicallyforwarding some mes-
sages and dropping others, based on the firewall’s local policy. An obvious way
to capture this is to model network security mechanisms as they are implemented
(e.g., at the packet level). However, this level of detail would unnecessarily com-
plicate the model and slow the analysis. We adopt a higher-level view, in which
hosts and firewalls are modeled as forwarding (or dropping) inter-component func-
tion calls, rather than packets. We include relevant network-layer information, such
as the source and destination network addresses, as attributes of the operation object
Op representing the call. With this approach, the API of a host or firewall includes
the operations (of other components) that it forwards; its low-level permit policy al-
lows calls that it forwards and denies calls that it drops; and itscallMap normally
indicates that the call gets forwarded with unchanged arguments.

Low-Level Policies.Low-level policies for all components are represented in
a common rule-based language. The actual configuration languages of the access
control mechanisms get translated to this common language;this can be automated.
Low-level policy rules have the same form as high-level policy rules. They define
auxiliary relations (if desired) and the relationpermit(U, R, Op, M), where
the userU , resourceR, and operationOpare the same as forhPermit, andM mode
M describes the communication mechanism through which the operation is invoked.
The modeM enables us to model the fact that different functions may be offered
through different interfaces or with different policies. To avoid irrelevant details and
distinctions about communication mechanisms, we define modes that reflect how
the communication mechanism relates to the system architecture. A modeM has
an attributetype whose possible values are:direct, indicating that the function
is called by a user directly executing/running the component; local, indicating
that the function is called via some inter-process communication mechanism by an-
other component on the same host; orremote, indicating that the function is called
over the network via some communication mechanism. The modeM may have ad-
ditional attributes, depending on its type. IfM.type=local, M.requester
identifies the calling component. IfM.type=remote, the attributesM.srcIP,
M.srcPort, M.destIP, andM.destPort represent the source IP address,
source port, destination IP address, and destination port,respectively.

We could express low-level policies in an existing languagefor attribute-based
access control, such as OrBAC [ABB+03], which offers useful abstractions for
structuring policies. Our language is simple but flexible and expressive: those ab-
stractions can easily be represented in our language using auxiliary relations, and
making them built-in would complicate our analysis algorithm without providing
any additional leverage.

Figure 3 contains low-level policies for the student information system.
campusIPaddr(IPaddr) is an auxiliary predicate that holds if the given IP ad-
dress is part of the campus network.



Verification of Security Policy Enforcement in Enterprise Systems 9

firewall:
permit(User, Resource, Op, Mode) <-

Resource in {webServer, solar}, Mode.type = remote,
Mode.destPort = 443

solar:
permit(User, solar, Op, Mode) <-

Op.function in {getTranscript, getSSN, getCitizenship},
Op.recordId = User.id, Mode.type = remote

permit(User, solar, Op, Mode) <-
User.role = ‘GradSchlClerk’, Op.function = getTranscript,
Mode.type = remote, campusIPaddr(Mode.srcIP)

webServer:
permit(_, solar, _, _)

dbServer:
permit(User, Resource, Op, Mode) <-

Resource in {academicDB, personalDB}, Mode.type = remote,
Mode.destPort = 8000

personalDB:
permit(User, personalDB, Op, Mode) <-

User.role = ‘Registrar’, Op.function = readRecord,
Mode.type = remote, campusIPaddr(Mode.srcIP)

permit(User, personalDB, Op, Mode) <-
User.role = ‘solar’, Op.function = readField,
Mode.type = remote

permit(User, personalDB, Op, Mode) <-
User.role = ‘admin’, Op.function = addRecord,
Mode.type = direct

academicDB:
permit(User, academicDB, Op, Mode) <-

User.role = ‘solar’, Op.function = readField,
Mode.type = remote

permit(User, academicDB, Op, Mode) <-
User.role = ‘admin’, Op.function = addRecord,
Mode.type = direct

Fig. 3 Low-level policies for student information system

4 Verification of Enforcement

This section sketches an algorithm for verifying that the low-level policies and sys-
tem architecture together enforce the high-level policies. For simplicity, the algo-
rithm assumes that the policies does not contain recursion.This restriction is satis-
fied by most policies and can easily be relaxed if necessary.

The default starting points for requests are all functionssf of all componentssr

that can be directly invoked . At each starting point, the arguments to the (top-level)



10 Puneet Gupta and Scott D. Stoller

function call and the identity of the user making the call arerepresented by variables.
The algorithm computes all possible chains of functions call that can propagate
from each starting point through the system, based on the system architecture and
callMap. Note that these call chains, ignoring the arguments to eachfunction,
correspond to the “context” argument ofhPermit in the high-level policy. If the
call map contains cycles, the number of call chains may be infinite. If a possible
call C would extend a call chain with a call that is the same, modulo renaming of
variables introduced bynewVar, as a call already in the call chain, then that call is
not explored. To ensure this condition is sound, we include in the policy language
only selected functions for accessing the context; currently, we includehead()
andcontains(expr) (not, e.g.,length()).

While constructing call chains, the algorithm accumulatesconstraints on the val-
ues of variables (the starting variables and variables introduced bynewVar) that
represent function arguments; the constraints express that the calls in the chain are
permitted by the low-level policies of the components involved (including hosts and
firewalls). Values of function arguments obtained fromcallMap are reflected in
the formula as equality conjuncts; for example, ifcallMap indicates that a function
call represented byOp1 hasCS as the value of thedept argument,Op1.dept =
CS is conjoined to the formula. The constraint for a call is determined by matching
the conclusions of thepermit rules in the low-level policy of the component with
the call, and, for each rule that matches, instantiating thevariables in the rule based
on the match and then backchaining to construct a first-orderlogic formula repre-
senting conditions under which the instantiated conclusion can be derived. Since
we assume the policy rules are not recursive, the backchaining always terminates.
If the accumulated constraint becomes unsatisfiable, the algorithm does not explore
extensions of that call chain.

For each call chainS (including prefixes of longer call chains), the algorithm
checks whether the call chain is consistent with the high-level policy. Specifically,
let ΨL be the constraint computed forS, and letC be the context defined byS,
i.e., S[i] is a call to functionfirst(C[i]) of componentsecond(C[i]), wherefirst
andsecondreturn the indicated components of a tuple. Call chainS is consistent
with the high-level policy if, for every instantiation of the variables that satisfies
ΨL (in other words,S is feasible), the instantiated calllast(S) with contextC is
permitted by the high-level policy. To check this efficiently, we use backchain-
ing to compute a first-order logic formulaΨH representing the conditions (includ-
ing conditions on the context) under which the callS[n] is permitted by the high-
level policy, using a variableV to represent the call’s context, and then we check
whether the formula(V = C)∧ΨL ∧¬ΨH is satisfiable. The satisfiability of this
formula implies an inconsistency in the system. Our currentprototype uses Yices
(http://yices.csl.sri.com/) for this purpose. If the satisfiability check
succeeds, the logic tool can provide an instantiation of thevariables for which the
formula is true; this instantiation ofS is a counterexample that illustrates how the
high-level policy can be violated.

The following example illustrates how our analysis works and how it can identify
vulnerabilities. For this example, we modify the low-levelpolicies in Figure 3 as



Verification of Security Policy Enforcement in Enterprise Systems 11

follows: the rule forGradSchlClerk in solar’s low-level policy is removed
and replaced with the following rule in the low-level policyfor academicDB:

permit(User, academicDB, Op, Mode) <-
User.role = ‘GradSchlClerk’, Op.function = readField,
Op.field = ‘transcript’, Mode.type = remote,
campusIPaddr(Mode.srcIP)

Consider a call chain that propagates along the following path (i.e.,
context) C0: [(browser2, request), (internalHost, request),
(dbServer, readField), (academicDB, readField)]. The con-
straint associated withS is (note: when it is necessary to rename a variable in a
rule during backchaining, in order to avoid name collisions, the algorithm appends
the name of the component that the rule is for and/or a sequence number; variables
characterizing the top-level call, such asUser andOp in the formula below, never
get renamed):

ΨL : Mode_academicDB.type = remote ∧ Mode_academicDB.destPort =
8000 ∧ Op.function = readField ∧ Op.field = ‘transcript’ ∧

User.role = ‘GradSchlClerk’ ∧ campusIPaddr(Mode_academicDB.srcIP)

The last call in this chain is to functionreadField of componentacademicDB,
which implementsacademicIR. The following constraint is computed for this
function call from the high-level policy:

ΨH : Op.function = readField ∧ Op.field = ‘transcript’ ∧ User.role
= ‘GradSchlClerk’ ∧ Context.contains(solar) ∧
runs-on(Context.head(), H) ∧ internalHost(H)

The formula(Context = C0 ∧ΨL) ∧ ¬ΨH is satisfiable; note that the conjunct
Context.contains(solar) in ΨH is not satisfied whenContext= C0. This
shows that the modified low-level policy does not enforce thehigh-level policy.
The significance of this violation depends on why the high-level policy requires that
solar be in the context for these accesses. For example,solarmight be responsi-
ble for logging accesses to student transcripts by grad school clerks, for compliance
with student privacy regulations. Such an error might not benoticed during system
execution, while our analysis exposes it during the design stage.

5 Trusted Computing Base

In general, atrusted computing base(TCB) consists of the hardware and software
responsible for enforcing a security policy. We define a setT of components to be
a TCB for resource (component or IR)r in systemS(a system is defined by sets of
components and IRs, with their attributes;links, runs-on, andimplements
relations; and low-level policies for each component) withhigh-level policyH if
“correct” behavior by the components inT (i.e., behavior consistent with their low-
level policy andcallMap) is sufficient to ensure that all call chains that end atr are



12 Puneet Gupta and Scott D. Stoller

consistent withH. Recall that consistency of a call chain with a high-level policy is
defined at the end of Section 4.

More formally, to check whetherT is a TCB for enforcement of the high-level
policy for r in systemSwith high-level policyH, we construct a variantrelax(S, T̄)
of the system, wherēT (the complement ofT) is the set of components ofSnot in
T, and then use the method described in Section 4 to check whether call chains
in that system that end atr are consistent withH. The variantrelax(S, T̄) is the
same as systemS except that, for every componentC in T̄, the low-level permit
policy of C is replaced with the single rulepermit(User, Resource, Op,
Mode) <- true, and for every functionF in C’s API, callMap(C,F) returns
the set containing all tuples of the form(calledBy,R′

,F ′
,args) such thatcalledBy∈

{self,caller}, R′ is a component or IR ofSother thanC, F ′ is a function in the
API of R′, andargsmaps all parameters ofF ′ to newVar.

Designers might want to specify conditions on the acceptable TCB for a
resource—for example, that the TCB for a resource contains only components with
specified administrators. Our TCB analysis provides a basisfor checking such prop-
erties.

References

[ABB+03] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miège, C. Saurel, and G. Trouessin. Organization Based Access Control. In
4th IEEE International Workshop on Policies for Distributed Systems and Networks
(Policy’03), June 2003.

[BFIr99] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Ke romytis. The
KeyNote trust management system, version 2, IETF RFC 2704, September 1999.

[BLMR04] Arosha K. Bandara, Emil Lupu, Jonathan D. Moffett,and Alessandra Russo. A goal-
based approach to policy refinement. In5th IEEE Workshop on Policies for Dis-
tributed Systems and Networks (POLICY), pages 229–239, 2004.

[BLR03] Arosha K. Bandara, Emil C. Lupu, and Alessandra Russo. Using event calculus to
formalise policy specification and analysis. InProc. 4th IEEE Workshop on Policies
for Distributed Systems and Networks (Policy 2003), 2003.

[BMNW99] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A novel
firewall management toolkit. InIEEE Symposium on Security and Privacy, pages
17–31, 1999.

[GACCB06] Joaquı́n Garcı́a-Alfaro, Frédéric Cuppens, and Nora Cuppens-Boulahia. Analysis
of policy anomalies on distributed network security setups. In Proc. 11th European
Symposium on Research in Computer Security (ESORICS 2006), volume 4189 of
Lecture Notes in Computer Science, pages 496–511. Springer, September 2006.

[IBI +07] Sotiris Ioannidis, Steven M. Bellovin, John Ioannidis,Angelos D. Keromytis,
Kostas G. Anagnostakis, and Jonathan M. Smith. Virtual private services: Coordi-
nated policy enforcement for distributed applications.International Journal of Net-
work Security, 4(1):69–80, January 2007.

[SHJ+02] Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lippmann, and Jeannette M.
Wing. Automated generation and analysis of attack graphs. In IEEE Symposium on
Security and Privacy, pages 273–284, 2002.


