Verification of Security Policy Enforcement in
Enterprise Systems

Puneet Gupta and Scott D. Stoller

Abstract Many security requirements for enterprise systems can peesged in
a natural way as high-level access control policies. A heyel policy may refer
to abstracinformation resourcesndependent of where the information is stored;
it controls both direct and indirect accesses to the infoionait may refer to the
context of a request, i.e., the request’s path through thiesy, and its enforcement
point and enforcement mechanism may be unspecified. Emfaneeof a high-level
policy may depend on the system architecture and the coafigus of a variety
of security mechanisms, such as firewalls, host login pesions, file permissions,
DBMS access control, and application-specific security mmatssms. This paper
presents a framework in which all of these can be conveniamitl formally ex-
pressed, a method to verify that a high-level policy is ecédr, and an algorithm to
determine a trusted computing base for each resource.

1 Introduction

Many security requirements for enterprise systems can peessed in a natural
way as high-level access control policies. These policiag be high-level in mul-
tiple ways. First, a high-level policy may refer to abstradbrmation resources
independent of where the information is stored. For exangalesider the require-
ment that only employees in the registrar’s office may acestasdent transcripts.
This should apply regardless of whether the transcriptalhstored in one DBMS,

Puneet Gupta
Computer Science Dept., Stony Brook University, e-m@agjupt a@s. st onybr ook. edu

Scott D. Stoller
Computer Science Dept., Stony Brook University, e-nstilol | er @s. st onybr ook. edu

* This work is supported in part by ONR under Grant N00014-@1828 and NSF
under Grants CNS-0831298, CNS-0627447, CCF-0613913, aiS-@09230. Email:
{pgupta,stollef@cs.stonybrook.edu.

2 Puneet Gupta and Scott D. Stoller

partitioned (e.g., by campus, college, or grad/undergaat)ng multiple DBMSs,
saved in backup files, etc. Second, a high-level policy atstroth direct andh-
directaccesses to the information. For example, the above pafipliés that other
users cannot read transcripts by directly accessing thenDBMS or by invoking
operations of an application (possibly running with a dife userid) that accesses
the database and returns information from the transciipiisd, a high-level policy
may refer to theontextof a request, i.e., the request’s path through the system. Fo
example, a policy might state that employees in the registoffice are permitted
to access student transcripts only via a web browser ruroring host in the cam-
pus network and requesting the information from the Regfigipplication Server.
Note that this is analogous to the use of calling contextkstatrospection) in the
Java security model. Fourth, the policies maydedocalizedin the sense that the
enforcement point and enforcement mechanism may be uffiggeé¢tor example,
if transcripts are stored in a DBMS, the above requiremeghbie enforced in the
DBMS or an application that connects to the DBMS. With théslaapproach, the
system should be designed so that unauthorized users carmwhvent that appli-
cation and access the DB directly. This policy might alsotfereed in part by the
operating system (based on login permissions and file psionis on the relevant
servers) and the network (blocking connections to the sdrgen hosts on which
unauthorized users have login permissions).

Each high-level policy is enforced by one or more securitchamisms in a
system (perhaps involving DBMSs, middleware, operatingiesys, file systems,
firewalls, etc.). Enforcement also depends on the systehitacture, which affects
the possible paths that requests can take through the syatesometimes refer to
the configurations of security mechanismd@s-level policies Ensuring that the
low-level policies, together with a given system architieet correctly enforce given
high-level policies is a challenging problem.

Since enforcement of the high-level policies that contoaksss to an information
resource might involve multiple hardware and software congmts in the system,
a natural question during security analysis is to identifyusted computing base
(TCB) for each information resource. Note that the answeyr degpend on the low-
level policies as well as the system architecture.

Security policies with one or more of the above “high-levelffaracteristics are
natural during system design. The main contributions o faiper are (1) explicit
identification of these characteristics of high-level p@s, (2) a framework that al-
lows convenientand formal specification of such high-level policies, modeling of
low-level policies, and modeling of relevant aspects oftesysarchitecture, (3) a
method for verifying that the low-level policies in a systeorrectly enforce (“im-
plement”) the high-level policies, and (4) an algorithméomputing a trusted com-
puting base (TCB) for a component or information resource.

Although there is a sizable literature on formal specifaratnd analysis of se-
curity policies, we are not aware of any previous work thatlieitly deals with
high-level policies with these characteristics. The ipl@y between system archi-
tecture and the policies has a significant impact on our freorle Frameworks for
security policy specification and analysis generally igneystem architecture and

Verification of Security Policy Enforcement in Enterprisgsg&ms 3

request context (in the sense described above), exceppéoiadized frameworks
for network (e.g., firewall) policy analysis. Although ouafmework is broad and
flexible enough to model relevant aspects of network secantl operating system
security, our focus is on application-level security pielsc

We are implementing a policy development environment baseaxir framework
and plan to evaluate it on case studies based on a univensity &inancial institu-
tion. Important directions for future work are to consideligy administration and
trust management.

2 Related Work

Coordination of Policies in Distributed Systems

Firmato [BMNW299] is a higher-level language for specifyifirgwall policies. Fir-
mato policies get translated into rule-sets for differentiels of firewalls, insulating
administrators from the details of each model’s configoratanguage. In addition,
given the network topology, each firewall’s policy can becsgkzed to contain only
the rules relevant to traffic that may pass through it. Worlemmato does not con-
sider verification of firewall policies against overall netl security requirements
or analysis of how firewall policies interact with securityligies of other compo-
nents.

Garcia-Alfaro, Cuppens, and Cuppens-Boulahia [GACCRI@ggijhe and give al-
gorithms to detect several specific kinds of anomalies (isistencies and potential
errors) in network security configuration, specificallynfiguration of firewalls and
network intrusion detection systems (NIDS). In contrast,work is aimed at veri-
fication of general application-level security requirettsetaking network security
configuration into account but in less detail. Thus, the kinfiproperties verified,
and the analysis algorithms used, are quite different.

loannidiset al. [IBI *07] propose the concept girtual private service§VPSs)
to describe a service implemented by a collection of comptsnehose security
policies must be configured in a coordinated way to enforcacaess control pol-
icy associated with the service. They express all accegsat@olicies in the same
language, namely KeyNote [BFIr99], without distinguisipitnigh-level” and “low-
level” policies. A policy for a VPS can be delocalized—in fiaular, its enforce-
ment might involve multiple components—but is otherwissibally a low-level
policy, in our terminology. They describe a system architefor deploying and
enforcing policies. They do not consider formal analysisification, or refinement
of policies.

Bandara, Lupu, Moffett, and Russo [BLMRO04] propose a formathodology
for policy refinement, based on event calculus [BLRO3]. 8immst policies today
are developed iad hocways, not using a formal refinement methodology, we focus
instead on verification of given low-level policies agaigisen higher-level policies
(requirements). Also, their framework is completely gérien order to use it for

4 Puneet Gupta and Scott D. Stoller

'mplemenls
runs-on
academic IR
academic db
- : runs-on
runs-on
implements:

personal db personal IR

browserz

browser; external host firewall

nuns-on

internal host
grad school app

Fig. 1 Architecture of student information system. Edge labetxgp the corresponding relation.
The components connected iont er nal LAN are related to each other Jia nk relation.

refinement of enterprise security policies, one would neédttoduce relations and
rules similar to those used in our framework to model systerhigecture and access
control policies.

Sheyner, Haines, Jha, Lippmann, and Wing [S6&] present a method to effi-
ciently constructttack graphswhich represent attacks involving sequences of ex-
ploits of vulnerabilities in components of a system. Ourkiisriargely complemen-
tary to attack graph analysis. Attack graphs are based pghiman vulnerabilities
in components; access control policies and calling behaaie not considered, ex-
cept when they affect a vulnerability. Also, attack graptesgenerally used to find
violations of system-level security requirements (e.grouinay login to a host), not
application-level security policies.

3 Framework

Running Example. We use a student information system as a running example to
illustrate our framework. Student information is classifees academic (transcript,
etc.) or personal (SSN, citizenship, etc.). The systemit@atire is shown in Figure

1. Academic information and personal information are staneseparate databases.
sol ar is aweb-based university information system; for brevitymodekol ar

and the associated web server as a single component.

Verification of Security Policy Enforcement in Enterprisgsg&ms 5

Information Resources. An information resourceabbreviated IR, represents
a kind of information handled by the system. The relaiiorpl ement s(C, |)
means that compone@t(partially or completely) implements IRi.e.,C stores that
kind of information. For example, the student informatigatem contains two IRs,
acadeni cl Randper sonal | R, each implemented by a corresponding database
(e.g.,i npl enent s (academni cDB, academ cl R)). The distinction between
an IR and the components that implement it is useful if therimfation in the IR is
partitioned, replicated, archived, etc.

The information in an IR is assumed to be structured as a seicofds, whose
attributes (fields) and their types are specified in the defmbf the IR. We refer
to these as attributes of the IR, although they are actuttipates of the records
in it. An attribute type can be a primitive data type (e.grirff) or an IR, denoting
a reference to a record in another IR (recursive types atelgted). For example,
the attributes oicadem cl Randst udent | Rinclude an attributé d with type
String, which identifies the student that the record is abi®g have a straightfor-
ward API with operations for manipulating records. For eptanthe API includes
an operatiom eadFi el d with arguments ecor d (the record being accessed) and
fi el d (the field being accessed).

Components.A system is built frontomponentsvhich may represent software
(e.g.,sol ar) or hardware (e.g., a host or firewall). Each component Hebues,
accessed using the dot operator. For example, for a soft@anponen€, C. host
is the host on whicl€ runs. Attributes can also provide information about idignti
management, e.g., which authentication services andtdiseservices are used by
the component.

Each component has an API. For example, the API for the de¢shaadeni cDB
andper sonal DB is modeled (ignoring details of SQL) as containing funcsion
like readFi el d, witeField, readRecord, and addRecor d. The API
for sol ar containsget Tr anscri pt, get SSN, andget Ci ti zenshi p. We
model the browser as offering its user a single functiomquest , which non-
deterministically sends some request to a web server §rcse, solar). For brevity,
we consider only the above functions; other functions cambedeled and analyzed
similarly.

Each component haslew-level permit policythat controls invocations of func-
tions in the component’'s API and is enforced locally by thenponent. The lan-
guage for low-level policies is described later in this Bmtt

High-Level Policies. High-level policies are expressed in a simple rule-based
language, which is an extension of Datalog with simple datectures that can be
read, but not constructed or updated, by policy rules. Agyalule has the form
Q <- P, ..., B, and meansQ holds if P, throughP, hold. Variables start with
an uppercase letter, constants start with a lowercase, latté string constants ap-
pear in single quotes. The rules define the relatiBar m t (“high-level permit”).
hPerm t (U, R Op, C) holds if the system should permit (allow) requests
from userU to perform operatioi®p on resourcer in contextC. A resourceis a
componentor IR. The rules may also define auxiliary relatiéior convenience, the
name and arguments of the operation are modeled as attribi@p (this is just a

6 Puneet Gupta and Scott D. Stoller

% A Student can read any field in the records for hinself or
% her sel f.
(P1) hPermt(User, Resource, Op, Context) <-

Resource in {academ clR personal | R},

p. function = readField, Op.record.id = User.id

% A Graduate School Clerk can read every student’s transcript,

% if accessed through solar from (a browser running on) an

% internal host. Note: Context.head() is the first elenent of

% the context. internalHost(H) is an auxiliary predicate

% (definition elided) that holds if host His part of the canpus

% net wor k.

(P2) hPermt(User, academclR Op, Context) <-
Op. function = readField, Op.field = "transcript’,
User.role = ‘GradSchl d erk’, Context.contains(solar),
runs-on(Context.head(), H), internal Host(H)

% A registrar can read a student’s personal information, if
% accessed from an internal host
(P3) hPermt(User, personallR Op, Context) <-
p. function = readRecord, User.role = 'Registrar’,
runs-on(Context.head(), H), internal Host(H)

% An adm nistrative user can add new records to acadeniclR
(P4) hPermt(User, academclR Op, Context) <-
p. function = addRecord, User.role = ‘adnmin’

% An adm ni strative user can add new records to personal IR
(P5) hPermt(User, personall R Op, Context) <-
p. function = addRecord, User.role = ‘admin’

Fig. 2 lllustrative high-level policy rules for the student infoation system

modeling convention, not an assumption about the impleatient); the operation
name is stored i©Op. f uncti on. The contexC is a sequence of tuplds, f)—
wherec is a component or IR, andl is a function inc's APl—representing the
call chain (or “path”) by which the request propagated tigtothe system. Figure 2
shows some high-level policies for the running example.

Call Map. A function in a component’s APl may call functions provideg b
other components. Such calls must be considered to determfiather the restric-
tions on indirect calls expressed by high-level policiesemforced. We introduce a
functioncal | Map that captures the possible calls made by each component func
tion. For simplicity and efficiencyal | Map provides, and our analysis tracks, only
equalities involving function arguments. Such equalities often needed to verify
enforcement of high-level policies; for example, to verfiyforcement of (P1) in
Figure 2, the analysis must track equalities involvingitdeargument, which iden-
tifies the user whose record is being accessatll Map represents all interactions
between components, regardless of the actual commumnicagchanism.

Verification of Security Policy Enforcement in Enterprisgsg&ms 7

Given a componer@ and a functiorf in its API, cal1lMap(C,F) returns a set of
tuples of the form(calledByR,F’,args), each describing a possible call made dur-
ing execution of that function. The above tuple represer@lao functionF’ (the
“target function”) of the “target” resource (component B) R. calledByis analo-
gous to a setuid flag. HalledBy=sel f, the target resource sees the user executing
the calling componert as the caller; ifcalledBy-cal | er, it sees the user that
calledF onC as the callerargs characterizes the possible arguments of the call to
the target functionargsis represented as a set of equalities of the fatirib = val,
whereattrib is an attribute name (recall that we model function argusestat-
tributes of an operation object), amdl can be a constant, the name of an attribute
(meaning that attributattrib of the target call equals attributl of the enclosing
calltoF), ornewar (meaning that a fresh variable will be used in the analysis to
represent this value).

Forexamplecal | Map(sol ar, get Transcri pt) containsthetuplésel f,
acadeni cDB, readField, {id=id, field="transcript’}).Theval-
ues ofcal | Map for sol ar’s get SSN andget Ci ti zenshi p functions are
similar. cal | Map(br owser;, request) contains a tuple for every function
of every other component, withewVar arguments, reflecting thaétr owser ; is
untrusted and may make arbitrary calls.

When analyzing the security of a design, thel | Map for each component is
based on the component’s behavior as described in the dégsigan implemented
system,cal | Map could be determined from the code. Determining it accuyatel
might be difficult, but an over-approximation can safely ts®di when verifying
enforcement of high-level policies. Over-approximatiomgal | Map may cause
false alarms, but in many cases, the low-level permit paidje target component
or an intervening component will block the spurious callsested calls they make,
preventing false alarms. If the analysis does raise falserel, the corresponding
call chains indicate exactly what assumptions about ptessiils and their argu-
ments are needed for enforcement of the high-level policed thecal | Map,
permit policies, or system architecture can be refined adcghy.

Hosts and Firewalls.Each component has an attribtitgpe. This attribute can
have any value, but the valueéost andfirewal | have special significance.
Hosts and firewalls are hardware components with networkections. Network
connectivity is modeled by the relatiom nk(C;, Cp) , which means that the net-
work may contain a path betwe€i andC; that does not pass through a host or
firewall. This reflects the fact that we explicitly model rosind firewalls but not
routers. By taking all paths in the network topology into@aat in thel i nk rela-
tion, we are making no assumptions about routing (or its riggualthough such
assumptions could be used to restrictithenk relation.

Hosts, like all components, have attributes, e.g., thefagters with accounts on
the host. Since each software component must run on a hoshtreduce a rela-
tionruns-on(C, H), which means that componeédmay run on hosH. Hosts
provide various services, notably communication seryit@somponents running
on them. Host-based security mechanisms may limit the camwation performed
by a component, e.g., blocking connections with componentantrusted hosts.

8 Puneet Gupta and Scott D. Stoller

Firewalls provide a similar security mechanism, typicdtbywarding some mes-
sages and dropping others, based on the firewall's locatypohn obvious way
to capture this is to model network security mechanisms &g éine implemented
(e.g., at the packet level). However, this level of detailldounnecessarily com-
plicate the model and slow the analysis. We adopt a highvel-kew, in which
hosts and firewalls are modeled as forwarding (or droppimgyicomponent func-
tion calls, rather than packets. We include relevant netvieyer information, such
as the source and destination network addresses, as @ttrifithe operation object
Oprepresenting the call. With this approach, the API of a hosirewall includes
the operations (of other components) that it forwardspitslevel permit policy al-
lows calls that it forwards and denies calls that it dropst igmcal | Map normally
indicates that the call gets forwarded with unchanged aeguim

Low-Level Policies. Low-level policies for all components are represented in
a common rule-based language. The actual configuratioutageg of the access
control mechanisms get translated to this common languhigezan be automated.
Low-level policy rules have the same form as high-level golules. They define
auxiliary relations (if desired) and the relatiparmi t (U, R, Op, M), where
the uselJ, resourcdr, and operatio®@pare the same as foiPer i t , andM mode
M describes the communication mechanism through which teeatipn is invoked.
The modeM enables us to model the fact that different functions may fierex
through different interfaces or with different policie® avoid irrelevant details and
distinctions about communication mechanisms, we defineestloat reflect how
the communication mechanism relates to the system artinieecdA modeM has
an attributet ype whose possible values am: r ect , indicating that the function
is called by a user directly executing/running the compeénleacal , indicating
that the function is called via some inter-process commatitin mechanism by an-
other component on the same host; enot e, indicating that the function is called
over the network via some communication mechanism. The rivbdey have ad-
ditional attributes, depending on its type.Nf. t ype=I ocal , M. r equest er
identifies the calling component. M. t ype=r enot e, the attributedM. srcl P,
M. srcPort, M. dest | P, andM. dest Port represent the source IP address,
source port, destination IP address, and destinationnesgigctively.

We could express low-level policies in an existing languBgeattribute-based
access control, such as OrBAC [ABB3], which offers useful abstractions for
structuring policies. Our language is simple but flexiblel @xpressive: those ab-
stractions can easily be represented in our language uskiligay relations, and
making them built-in would complicate our analysis algamit without providing
any additional leverage.

Figure 3 contains low-level policies for the student infation system.
canpusl Paddr (IPaddr) is an auxiliary predicate that holds if the given IP ad-
dress is part of the campus network.

Verification of Security Policy Enforcement in Enterprisgsg&ms 9

firewall:
permt(User, Resource, Op, Mde) <-
Resource in {webServer, solar}, Mdde.type = renote,
Mode. dest Port = 443

sol ar:
permt(User, solar, Op, Mde) <-
Op. function in {getTranscript, getSSN, getCtizenship},
Op.recordld = User.id, Mde.type = renote
permt(User, solar, Op, Mde) <-

User.role = ‘GradSchl derk’, Op.function = getTranscript,
Mbde. type = renote, canpusl Paddr(Mde. srcl P)
webServer:
permt(_, solar, _,)
dbServer:

permt(User, Resource, Op, Mdde) <-
Resource in {academ cDB, personal DB}, Mbdde.type = renvote,
Mode. dest Port = 8000

per sonal DB:

permt(User, personal DB, Op, Mde) <-
User.role = ‘Registrar’, Op.function = readRecord,
Mbde. type = renote, canpusl Paddr(Mde. srcl P)

permt(User, personal DB, Op, Mbde)
User.rol e ‘solar’, Op.function = readField,
Mode. t ype renote

permt(User, personal DB, Op, Mde) <-
User.rol e ‘admn’, Op.function = addRecord,
Mbde. t ype direct

AY

acadenmn cDB:
perm t(User, academ cDB, Op, Mde) <-
User.role = ‘solar’, Op.function = readField,
Mbde. t ype = renote
permt(User, academ cDB, Op, Mde) <-
User.rol e ‘admn’, Op.function = addRecord,
Mbde. t ype direct

Fig. 3 Low-level policies for student information system

4 \ferification of Enforcement

This section sketches an algorithm for verifying that the-level policies and sys-
tem architecture together enforce the high-level polidies simplicity, the algo-
rithm assumes that the policies does not contain recursius.restriction is satis-
fied by most policies and can easily be relaxed if necessary.

The default starting points for requests are all functisinef all components;
that can be directly invoked . At each starting point, theuargnts to the (top-level)

10 Puneet Gupta and Scott D. Stoller

function call and the identity of the user making the callr@@resented by variables.
The algorithm computes all possible chains of function$ et can propagate
from each starting point through the system, based on therayarchitecture and
cal | Map. Note that these call chains, ignoring the arguments to @&auttion,
correspond to the “context” argumentloPer m t in the high-level policy. If the
call map contains cycles, the number of call chains may baifafilf a possible
call C would extend a call chain with a call that is the same, modef@aming of
variables introduced byewVar , as a call already in the call chain, then that call is
not explored. To ensure this condition is sound, we includéaé policy language
only selected functions for accessing the context; culrewe includehead()
andcont ai ns(expn (not, e.g.) engt h()).

While constructing call chains, the algorithm accumulatasstraints on the val-
ues of variables (the starting variables and variablesdhtced bynewVar) that
represent function arguments; the constraints expresstthaalls in the chain are
permitted by the low-level policies of the components ineal (including hosts and
firewalls). Values of function arguments obtained froal | Map are reflected in
the formula as equality conjuncts; for exampledfl | Map indicates that a function
call represented b§p1 hasCsS as the value of thdept argumentOpl. dept =
CSis conjoined to the formula. The constraint for a call is det@ed by matching
the conclusions of thper mi t rules in the low-level policy of the component with
the call, and, for each rule that matches, instantiatingén@bles in the rule based
on the match and then backchaining to construct a first-dedge formula repre-
senting conditions under which the instantiated conclusian be derived. Since
we assume the policy rules are not recursive, the backeipalivays terminates.
If the accumulated constraint becomes unsatisfiable, garithm does not explore
extensions of that call chain.

For each call chairs (including prefixes of longer call chains), the algorithm
checks whether the call chain is consistent with the higietlpolicy. Specifically,
let Y be the constraint computed f& and letC be the context defined b$,
i.e., Sli] is a call to functionfirst(CJi]) of componentsecondC|i]), where first
andsecondreturn the indicated components of a tuple. Call cHais consistent
with the high-level policy if, for every instantiation of éhvariables that satisfies
Y (in other words,Sis feasible), the instantiated cadlst(S) with contextC is
permitted by the high-level policy. To check this efficigntive use backchain-
ing to compute a first-order logic formutey representing the conditions (includ-
ing conditions on the context) under which the ¢gt] is permitted by the high-
level policy, using a variabl¥ to represent the call's context, and then we check
whether the formuldV = C) A ¥ A -4 is satisfiable. The satisfiability of this
formula implies an inconsistency in the system. Our curpentotype uses Yices
(http://yices.csl.sri.com) for this purpose. If the satisfiability check
succeeds, the logic tool can provide an instantiation ofviréables for which the
formula is true; this instantiation @is a counterexample that illustrates how the
high-level policy can be violated.

The following example illustrates how our analysis workd aow it can identify
vulnerabilities. For this example, we modify the low-leyallicies in Figure 3 as

Verification of Security Policy Enforcement in Enterprisgsg&ms 11

follows: the rule forG-adSchl C er k in sol ar’s low-level policy is removed
and replaced with the following rule in the low-level polifyr acadeni cDB:
permt(User, academ cDB, Op, Mde) <-
User.role = ‘GradSchl derk’, Op.function = readField,

Op.field = ‘“transcript’, Mde.type = renvote,
canpusl| Paddr (Mode. srcl P)

Consider a call chain that propagates along the followingh pé.e.,
context) CO: [(browser,, request), (internal Host, request),
(dbServer, readField), (academ cDB, readField)]. The con-
straint associated witB is (note: when it is necessary to rename a variable in a
rule during backchaining, in order to avoid name collisighge algorithm appends
the name of the component that the rule is for and/or a seguanber; variables
characterizing the top-level call, such@ser andQp in the formula below, never
get renamed):

Y : Mode_academ cDB.type = renote A Mode_academ cDB. dest Port =
8000 A Op.function = readField A Op.field = ‘“transcript’ A
User.role = ‘GradSchl G erk’ A canpusl Paddr (Mbde_acadeni cDB. srcl P)

The last call in this chain is to functiareadFi el d of componenacadem cDB,
which implementsacadem ¢l R. The following constraint is computed for this
function call from the high-level policy:

Y,y : Op.function = readField A Op.field = “transcript’ A User.role
= ‘GradSchl G erk’ A Context.contains(solar) A
runs-on(Context.head(), H A internal Host(H)

The formula(Context = CO A ¥) A -4} is satisfiable; note that the conjunct
Cont ext . cont ai ns(sol ar) in % is not satisfied whefontext = C0. This
shows that the modified low-level policy does not enforce high-level policy.
The significance of this violation depends on why the higlel@olicy requires that
sol ar beinthe contextfor these accesses. For exaraplear might be responsi-
ble for logging accesses to student transcripts by gradscherks, for compliance
with student privacy regulations. Such an error might nobdtced during system
execution, while our analysis exposes it during the dedigges

5 Trusted Computing Base

In general, drusted computing bagd CB) consists of the hardware and software
responsible for enforcing a security policy. We define alsef components to be
a TCB for resource (component or IR)n systemS (a system is defined by sets of
components and IRs, with their attributé$;nks, r uns- on, andi npl enent s
relations; and low-level policies for each component) witgh-level policyH if
“correct” behavior by the componentsTn(i.e., behavior consistent with their low-
level policy anccal | Map) is sufficient to ensure that all call chains that endate

12 Puneet Gupta and Scott D. Stoller

consistent wittH. Recall that consistency of a call chain with a high-levdigyas
defined at the end of Section 4.

More formally, to check whetheF is a TCB for enforcement of the high-level
policy forr in systemSwith high-level policyH, we construct a variamtelax(S,T)
of the system, wheré@ (the complement of) is the set of components ¬ in
T, and then use the method described in Section 4 to check amhedi chains
in that system that end atare consistent wittd. The variantrelax(S,T) is the
same as syster8 except that, for every compone@tin T, the low-level permit
policy of C is replaced with the single rulger m t (User, Resource, Op,
Mbde) <- true, and for every functiorf in C's API, callMap(C,F) returns
the set containing all tuples of the forfalledBy R, F’, args) such thatalledBye
{self,caller}, R is a componentor IR o other tharC, F’ is a function in the
APl of R, andargsmaps all parameters & to newvar .

Designers might want to specify conditions on the acceptaiCB for a
resource—for example, that the TCB for a resource contailysammponents with
specified administrators. Our TCB analysis provides a asishecking such prop-
erties.

References

[ABBT03] A. Abou El Kalam, R. El Baida, P. Balbiani, S. BenferhatCippens, Y. Deswarte,
A. Miege, C. Saurel, and G. Trouessin. Organization Basedess Control. In
4th IEEE International Workshop on Policies for Distribdt8ystems and Networks
(Policy’03), June 2003.

[BFIr99] Matt Blaze, Joan Feigenbaum, John loannidis, amgiefos D. Ke romytis. The
KeyNote trust management system, version 2, IETF RFC 27>egber 1999.

[BLMRO04] Arosha K. Bandara, Emil Lupu, Jonathan D. Moffethd Alessandra Russo. A goal-
based approach to policy refinement. Sth IEEE Workshop on Policies for Dis-
tributed Systems and Networks (POLIC)yages 229-239, 2004.

[BLRO3] Arosha K. Bandara, Emil C. Lupu, and Alessandra Rusdsing event calculus to
formalise policy specification and analysis. Rroc. 4th IEEE Workshop on Policies
for Distributed Systems and Networks (Policy 20@8)03.

[BMNW99] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avigi Wool. Firmato: A novel
firewall management toolkit. IHEEE Symposium on Security and Privapages
17-31, 1999.

[GACCBO06] Joaquin Garcia-Alfaro, Frédéric Cuppensd &lora Cuppens-Boulahia. Analysis
of policy anomalies on distributed network security setuipsProc. 11th European
Symposium on Research in Computer Security (ESORICS,28fl6jne 4189 of
Lecture Notes in Computer Scienpages 496-511. Springer, September 2006.

[IBIT07] Sotiris loannidis, Steven M. Bellovin, John loannidiapgelos D. Keromytis,
Kostas G. Anagnostakis, and Jonathan M. Smith. Virtualapeiservices: Coordi-
nated policy enforcement for distributed applicatiohsternational Journal of Net-
work Security4(1):69-80, January 2007.

[SHJ"02] Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richardhhipp and Jeannette M.
Wing. Automated generation and analysis of attack graphm$EEE Symposium on
Security and Privacypages 273-284, 2002.

