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Abstract. This paper shows how to use Barrier Certificates (BaCs) to
design Simplex Architectures for hybrid systems. The Simplex architec-
ture entails switching control of a plant over to a provably safe Baseline
Controller when a safety violation is imminent under the control of an
unverified Advanced Controller. A key step of determining the switching
condition is identifying a recoverable region, where the Baseline Con-
troller guarantees recovery and keeps the plant invariably safe. BaCs,
which are Lyapunov-like proofs of safety, are used to identify a recover-
able region. At each time step, the switching logic samples the state of
the plant and uses bounded-time reachability analysis to conservatively
check whether any states outside the zero-level set of the BaCs, which
therefore might be non-recoverable, are reachable in one decision period
under control of the Advanced Controller. If so, failover is initiated.
Our approach of using BaCs to identify recoverable states is computa-
tionally cheaper and potentially more accurate (less conservative) than
existing approaches based on state-space exploration. We apply our tech-
nique to two hybrid systems: a water tank pump and a stop-sign-obeying
controller for a car.

Keywords: Simplex architecture; Hybrid systems; Barrier certificates; Reach-
ability; Switching logic

1 Introduction

The Simplex Architecture [20], illustrated in Fig. 1, traditionally consists of
two versions of a controller, called the advanced controller (AC) and baseline
controller (BC), and a physical plant (P ). The advanced controller is designed
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for maximum performance and is in control of the plant under nominal operating
conditions. However, certification that the advanced controller keeps the plant
state within a prescribed safety region (i.e., region of safe operation) may be
infeasible, due to its complexity or adaptiveness, or because an accurate model
of it is unavailable for analysis. In contrast, the baseline controller is certified to
maintain safety of the plant. When the plant is under control of AC, a decision
module (DM) periodically, with decision period ∆t, monitors the state of the
plant and switches the control of the plant to the baseline controller if the plant
is in imminent danger (i.e., within the next decision period) of entering a state
that might lead to a safety violation.

The switching condition used in the decision module is determined as follows.
A state of the plant is recoverable if BC can take over from that state (due to
a switch) and keep the plant invariably safe; in other words, the composition
of P and BC, denoted P × BC, when started from a recoverable state, will
always remain within the safety region. An unbounded time horizon is used in
the definition of recoverable states because, in general, we have no bound on how
long BC needs to take corrective actions and overcome the plant’s momentum
(in a general sense, not limited to physical motion) toward unsafe states.

A state is switching if the plant, under control of AC, may enter an unrecov-
erable state during the next decision period, i.e., within time ∆t. This definition
reflects the discrete-time nature of DM . The switching condition simply checks
whether the current state is switching.

Note that switching states are a subset of recoverable states which are a
subset of safe states.

Fig. 1. The two-controller Simplex Architecture.

The earliest methodology for computing switching conditions is based on
Lyapunov stability theory and reduces the problem to solving linear matrix in-
equalities (LMIs) [4]. The method applies to plants with linear time-invariant
dynamics and a linear baseline controller [19]. This approach is computationally
efficient but limited in applicability. More general approaches were later devel-
oped [3,2], based on state-space exploration, also called state-space reachability.
Several reachability algorithms for hybrid systems have been developed, e.g.,
[7,21,6,1].

There are many reachability algorithms, varying in the shape of the regions
(e.g., boxes or regions bounded by polynomials), whether the partitioning of the
state space into regions is pre-determined or adaptive, etc.



Methods based on reachability are attractive for their broad applicability:
they can handle nonlinear hybrid systems. A hybrid system is a system with both
discrete and continuous variables and with multiple modes, each with a differ-
ent dynamics (for the continuous variables). However, they face several issues.
The main issue is the high computational cost associated with their reachability
analysis, especially for high-dimensional systems, since the number of explored
regions tends to grow exponentially with the dimensionality. While reachability
algorithms are improving, the computational cost, in time or memory, remains
prohibitive in many cases.

Accuracy is also an issue. Reachability algorithms generally compute an over-
approximation of the reachable states. The amount of over-approximation is
generally larger for non-linear systems, and it tends to increase over time (i.e.,
proportional to the time horizon of the reachability calculation). Reachability
computations with an unbounded time horizon (as when identifying recoverable
states) can in theory converge (i.e., reach a fixed-point) when the set of reachable
states lies within a bounded region of the state space. In practice, however, the
ever-increasing “looseness” of the over-approximation often causes the reacha-
bility computation to diverge even in those cases. Even if it converges, a loose
over-approximation of reachability makes the computation of recoverable states
conservative, i.e., many recoverable states will not be recognized as such, causing
unnecessary switches to BC.

A third issue is the required expertise and manual effort. Reachability algo-
rithms typically have several numerical parameters that indirectly control the
cost and accuracy of the computation. While there are general guidelines and
heuristics for choosing initial parameter values, detailed understanding of the
reachability algorithm and the hybrid system, and considerable experimenta-
tion, are often needed to tune the parameters in order to obtain acceptably
accurate results in reasonable time, when this is possible.

This paper presents an alternative approach to computing recoverable states,
based on barrier certificates [16,17], a methodology developed for safety verifica-
tion of hybrid systems. Specifically, we observe that the 0-level set of a barrier
certificate for P × BC separates recoverable and unrecoverable states. We still
use reachability to compute switching states. This combination of techniques—
namely, using barrier certificates to compute recoverable states, and reachability
to compute switching states, instead of using reachability for both—is advan-
tageous, because the issues with reachability algorithms are much more severe
when computing recoverable states, due to the unbounded time horizon, than
when computing switching states, which involves a short time horizon.

Our approach is mostly automatic for a class of systems that includes some
nonlinear hybrid systems. For these systems, the problem of computing a barrier
certificate can be reduced to solving a sum-of-squares (SOS) optimization prob-
lem [16,17], which can be solved by semidefinite programming solvers. We use
SOSTOOLS [14], a MATLAB toolbox for solving SOS optimization problems; we
also experimented with Spotless (https://github.com/spot-toolbox). SOS-
TOOLS can handle hybrid systems in which the differential equations, guards,
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and invariants are defined by polynomial expressions such that the minimum
and maximum degrees of each polynomial are even. SOSTOOLS does require
some expertise and manual effort to choose suitable parameter values.

To increase assurance in the correctness of barrier certificates computed by
SOSTOOLS, we use Z3 (https://github.com/Z3Prover/z3/wiki), a state-of-
the-art satisfiability modulo theories (SMT) solver, to verify their correctness.
This ensures that bugs or limitations of numerical accuracy in SOSTOOLS can-
not compromise the soundness of our results.

We apply our approach to two hybrid systems as case studies. A water tank
system that controls the flow of water via a valve into a tank is modeled using
a three-mode hybrid automaton with one continuous variable. The next case
study describes a stop-sign-obeying controller for a car as a hybrid automaton
with three-modes and two continuous variables. The implementation aspects
of computing the barrier certificates are discussed and the switching logics are
illustrated for the two case studies.

The rest of the paper is organized as follows. Section 2 provides background
knowledge on Hybrid Systems and Barrier Certificates. Section 3 presents our
approach to computing the switching logic using BaCs and bounded-time reacha-
bility. Section 4 considers our SOS characterization of BaCs. Sections 5 describes
our two case studies. Section 6 discusses related work. Section 7 offers our con-
cluding remarks and directions for future work.

2 Background

From the discussion above, we can see that the two central issues for designing the
Simplex Architecture are: (1) Identifying the Safety Region, which results
in a proof of safety of P ×BC, and (2) Deriving the recoverable region and
the switching boundaries, which defines the switching logic implemented by
the DM.

In this paper, we model P×BC as a hybrid system, denoted by HB . This for-
malism allows us to model both the continuous-time evolution and the discrete-
time instantaneous changes in the behavior of the plant under the BC’s control.
We formally define a hybrid system as follows.

Definition 1. A Hybrid System H = (X , L,X0, I, F, T ) is a six-tuple [16]:

– X ⊆ Rn is the continuous state space.
– L is a finite set of modes, also known as locations. The overall state space of

the system is X = L×X and a state of the system is denoted by (l,x) ∈ L×X .
– X0 ⊆ X is a set of initial states.
– I : L → 2X is the invariant, which assigns to each location l an invariant set
I(l) ⊆ X that contains all possible continuous states while in mode l.

– F : X → 2R
n

is a set of vector fields. F assigns to each (l,x) a set F (l,x) ⊆ Rn
that constrains the evolution of the continuous state as ẋ ∈ F (l,x).

– T ⊆ X × X is a relation that captures the discrete transitions between two
modes. A transition ((l′,x′), (l,x)) indicates that the system can undergo a
discrete (instantaneous) transition from the state (l′,x′) to the state (l,x).

https://github.com/Z3Prover/z3/wiki


Discrete mode-transitions occur instantaneously in time. We define Guards
and Reset maps for mode-transitions as follows. Guard(l′, l) = {x′ ∈ X : ((l′,x′),
(l,x)) ∈ T for some x ∈ X} and Reset(l′, l) : x′ 7→ {x ∈ X : ((l′,x′), (l,x)) ∈ T},
whose domain is Guard(l′, l).

As per [16], for computational purposes, the uncertainty in the continuous
flows, defined by F , is the result of exogenous disturbance inputs such that:

F (l,x) = {ẋ ∈ Rn : ẋ = fl(x, d) for some d ∈ D(l)}

where fl is a vector field that governs the flow of the system in location l and d
is a vector of disturbance inputs that take the value in the set D(l) ⊂ Rm.

Trajectories or behaviors of H start from some initial state (l0,x0) ∈ X0 and
evolve in continuous time as per the dynamics defined by F until the invariant,
defined by I, is violated and/or a guard is enabled resulting in an instanta-
neous mode switch. Trajectories are obtained by concatenating the continuous
evolutions and the instantaneous discrete-time jumps between the modes.

Given a set of unsafe states Xu ⊆ X, H is said to be safe if all its trajecto-
ries avoid entering Xu. We define a mapping for mode-specific unsafe states as
Unsafe(l) = {x ∈ X : (l,x) ∈ Xu}. We also define model-specific initial states as
Init(l) = {x ∈ X : (l,x) ∈ X0}.

It is assumed that the description of the hybrid system given above is well-
posed. For example, (l,x) ∈ Xu and (l,x) ∈ X0 automatically implies that
x ∈ I(l), and ((l′,x′), (l,x)) ∈ T implies that x′ ∈ I(l′) and x ∈ I(l).

Given a set of unsafe states Xu, the safety of a hybrid system H can be
proved by computing Barrier Certificates (BaCs) [16]. BaCs are functions that
capture the following safety requirements of a hybrid system: (1) the continuous-
time evolutions within the modes must ensure that the states remain safe and
(2) a mode-transition ((l′,x′), (l,x)) from the mode l′ to l must reset a safe
state (l′,x′) /∈ Unsafe(l′) to a safe state (l,x) /∈ Unsafe(l). Next, we introduce
the formal definition of BaCs from [16].

Definition 2. Let the hybrid system H = (X , L,X0, I, F, T ), the unsafe set Xu

and some fixed non-negative constants σ(l,l′), for all (l, l′) ∈ L× L, be given. A
BaC is a collection of functions Bl(x), for all l ∈ L, that are differentiable with
respect to its argument and satisfy:

Bl(x) > 0 ∀x ∈ Unsafe(l) (1)

Bl(x) ≤ 0 ∀x ∈ Init(l) (2)

∂Bl
∂x

(x).fl(x, d) ≤ 0 ∀(x, d) ∈ I(l)×D(l) (3)

Bl(x)− σ(l′,l)Bl′(x′) ≤ 0 ∀(x,x′) ∈ X 2 such that

x′ ∈ Guard(l′, l) and x ∈ Reset(l′, l)(x′) (4)

Theorem 3 and Proposition 2 of [16] ensure that the existence of BaC, as
defined above, proves the safety of H. Initial states are assumed to be safe
(Eqs. 1 and 2). Eq. 3 dictates that the value of the BaC cannot increase along



the continuous evolution of any trajectory within a mode. Finally Eq. 4 ensures
that the discrete mode transitions reset safe states to safe states. Eqs. 1 - 4
ensure that a trajectory that starts out in an initial state, and thus with a BaC
value ≤ 0, can never obtain a BaC-value of > 0. Thus the zero level sets of the
functions, Bl(x) = 0, create a “barrier” between Unsafe(l) and the safe states of
the mode.

3 Switching Logic

Let P be the physical plant, AC the advanced controller, BC the baseline con-
troller, and HB the hybrid system modeling the composition of P and BC. We
use the following notations: xAC(T ) denotes the the state of the plant under
control of the AC, uAC(T ) is the control input provided by the AC, and T is
the discrete time. Let M be the number of modes in HB .

Safety of P under the BC can be established by computing a BaC {B1(x),
B2(x), ..., BM (x)} for HB . The implementation aspects of computing the BaC
are deferred to Sec. 4. Given a mode l of HB , Recov(l) denotes the intersection
of the interior of the zero-level set of Bl(x) and I(l). Note that the sets of states
Recov(l) contain the initial states and are recoverable under AC.

We make the following assumptions.

1. DM samples xAC(T ) and uAC(T ) every ∆t units of time.
2. The AC also works in discrete time: uAC(T ) is updated at time (T +∆t).

The assumptions made by the switching logic are not restrictive. Knowledge
of the control input allows the switching logic to become less conservative, as
discussed later in the section. The assumptions can also be relaxed by assuming
conservative bounds on the plant dynamics under the AC’s control. The system
models also assume reliable hardware, since Simplex is not intended to tolerate
hardware failures.

Reachability computation is a key element of the switching logic. Reach≤∆t
(xAC(T ),uAC(T )) denotes the set of plant states reachable under the control
input uAC(T ) in the time interval [T, T + ∆t]. Reach=∆t(xAC(T ),uAC(T )) is
the set of plant states that are reachable under the control input uAC(T ) at time
t = T +∆t.

Algorithm 1 outlines the switching logic. Step 2 involves two on-the-fly reach-
ability computations. For scalability, the reach-set computation time must be less
than or equal to∆t. The online reach-set computation algorithm of [5] can handle
fairly large hybrid systems. The dimension of the largest system considered for
online reachability in [5] is 30. Alternatively, we can use the real-time reachabil-
ity algorithm from [9]. When online reachability computation is not scalable, we
can employ a combination of offline and online strategies. In the offline step, the
state and input spaces are partitioned into finite regions and reach-sets for the
partitions, computed apriori, are stored in a table. At run-time, given the state
and the control input, the reach set of the corresponding partition is applied.

To compute the set intersections in steps 3 and 4, we can employ standard
polyhedral libraries, like PolyLib [10]. Non-convex zero-level sets of BaCs may



Algorithm 1: DM’s Switching Logic

1 Obtain the sample (xAC(T ),uAC(T ));
2 Compute Reach≤∆t(xAC(T ),uAC(T )) and Reach=∆t(xAC(T ),uAC(T );
3 safety = (Reach≤∆t(xAC(T ),uAC(T )) ∩Xu == ∅);
4 recoverability = Reach=∆t(xAC(T ),uAC(T )) ⊆ (

⋃M
l=1 Recov(l));

5 if safety ∧ recoverability then
6 Continue with AC;
7 else
8 Switch to BC;
9 end

need to be over-approximated as convex sets to enable set intersection. When
safety and recoverability evaluate to True, the plant is guaranteed to be i) safe
in [T, T +∆t] and ii) recoverable at T +∆t.

Next, we sketch a proof of the safety of P under the switching logic.

Lemma 1. P remains safe during time t ∈ [T, T + ∆t], i.e. ∀t ∈ [T, T + ∆t] :
xAC(t) /∈ Xu.

Proof. The proof is based on the observation that after obtaining the sample
(xAC(T ),uAC(T )), the switching logic ensures that AC does not drive P into
unsafe states: if Reach≤∆t(xAC(T ),uAC(T )) has a non-zero intersection with
the unsafe states, then in step 3, safety will become False, resulting in a failover
being performed in step 8. Note that uAC(T ) does not change in [T, T + ∆t]
under Assumption 2.

Lemma 2. Every state sample xAC(T ) seen by the switching logic in step 1 of
the algorithm is recoverable.

Proof. The proof is based on induction. As the base case, we know that the
initial states are recoverable. Consider the sample xAC(T ) and assume that
it is recoverable. The set of all possible samples xAC(T + ∆t) is contained in
Reach=∆t(xAC(T ),uAC(T )). If any of these reachable states lies outside the
union of the Recov(.) sets of all of the modes of HB , then it may be potentially
non-recoverable. If such a state is reachable, then a failover will be triggered as
recoverability will become False in step 4. Thus every state sample xAC(T ) seen
in step 1 will be recoverable.

Theorem 1. The switching logic of the Simplex architecture defined in Algo-
rithm 1 keeps P invariably safe.

Proof. At every time step T , the switching logic ensures that P remains safe over
the finite time horizon of length ∆t as per Lemma 1. Additionally, it follows from
Lemma 2 that the switching logic ensures that the next state sample xAC(T+∆t)
remains recoverable, and therefore safe. If the next state sample is potentially
non-recoverable, indicated by recoverability becoming False in step 4, then the
failover that is executed in step 8 ensures the plant remains safe under BC.

Thus, the switching logic ensures that P remains invariably safe.



Algorithm 1 combines the offline computation of the BaCs with the online
reachability computation at step 2 to guarantee the safety of the plant. The
set intersection and the union operations involved in computing safety and re-
coverability in steps 2 and 3 must also be performed online, and add to the
computational cost of performing on-the-fly reachability analysis.

Online reachability computations may be avoided by conservatively pre-
computing the sets for different partitions of the state space. The state space
may be partitioned into different equivalence classes that reach the same sets of
states in time up to, and at T + ∆t for conservative assumptions of the AC’s
inputs. Despite being computationally efficient, such a switching logic is prone
to being overly conservative by not allowing the AC to operate over the largest
possible region in the state space.

The switching logic in Algorithm 1 ensures that the operating region of the
AC is maximized if the computation of the reachable sets is exact and the recov-
erable regions of the modes, obtained by intersecting the interior of the zero-level
sets with the mode invariants, is maximal. This is often desired as the AC is in-
tended to deliver better performance and/or serve mission-critical purposes.

4 Computing BaCs for Hybrid Systems

Let the hybrid system H and the descriptions of all the sets I(l), D(l), Init(l),
Unsafe(l),Guard(l′, l), and Reset(l′, l)(x′) be given along with some nonnegative
constants σl′,l, for each l ∈ L and (l, l′) ∈ L2, l 6= l′. The search for a BaC for
H can be cast as an instance of SOS optimization as follows. Find values of the
coefficients which make the expressions

−Bl(x)− σTInit(l)(x)gInit(l)(x) (5)

Bl(x)− ε− σTUnsafe(l)(x)gUnsafe(l)(x) (6)

− ∂Bl
∂x

(x)fl(x, d)− σI(l)T (x, d)gI(l)(x)− σTD(l)(x, d)gD(l)(d) (7)

−Bl(x) + σl,l′Bl′(x
′)− σTGuard(l,l′)(x, x

′)gGuard(l,l′)(x−

σTReset(l,l′)(x, x
′)gReset(l,l′)(x, x

′) (8)

and the entries of σInit(l), σUnsafe(l), σI(l)σD(l), σGuard(l,l′), σReset(l,l′) sum of squares,
for each l ∈ L and (l, l′) ∈ L2, l 6= l′. See [16] for further details on computing
BaCs for hybrid systems, e.g., the definitions of gInit(l) and gUnsafe(l), etc. Such
SOS optimization programs can be solved using SOSTOOLS [16,17]. SOS op-
timization and SOSTOOLS itself have been applied to large systems, e.g., an
industry-level hybrid system with 10-dimensional state in [8].

SOSTOOLS may run into numerical issues or provide incorrect solutions
for some inputs as reported in [12,13]. We can overcome these issues by vali-
dating the BaCs using satisfiability modulo theory solvers, like Z3. Validation
entails casting the negation of the assertion: for all relevant states, Eqs. 5–8 are
non-negative. That is, Z3 looks for a state that makes any of these equations



negative. The domain of SMT formulae depends upon the mode or mode-pair
under consideration. SOSTOOLS is re-parameterized if Z3 reports unsoundness
of the solutions.

5 Case Studies

5.1 Case Study 1: Simple Water Tank System

(a) Water Tank System. (b) Stop Sign Obeying Controller.

Fig. 2. Hybrid automata of the composition HB for the two case studies.

We consider a simple water tank system adopted from [15], where a controller
seeks to keep the water level x in a tank between a certain range. Fig. 2a shows
the hybrid automaton of the composition HB . In mode on, the water tank is
filled by a pump that increases the water level (x′ = 1). The pump can be
turned off when x ≥ 7, and must be turned off when x > 9. More water pours
in (x := x+ 1) when the pump is shutting down.

In mode off, the pump is off and the valve is closed, but water leaks slowly
(x′ = −0.1). We assume that the valve must be opened completely (mode open)
before reactivating the pump. The valve can be turned on when x < 5, and must
be turned on when x < 3. In mode open, water drains quickly, and the system
closes the valve and turns on the pump when 1 ≤ x ≤ 2.

We assume that the disturbance in the continuous evolution is 0. The system
is not asymptotically stable as the value of x varies within a certain range without
reaching an equilibrium point. Its behavior is also nondeterministic.

Due to the fact that SOSTOOLS requires the minimum and maximum de-
grees of an SOS to be even, we made several changes to the original model of [15].
In particular, we modified the degrees of the invariants and guards to meet this
requirement without affecting the behavior of the system.

BaCs and Switching Logic. Note that the zero-level sets of BaCs separate
an unsafe region from all system trajectories. Thus, we need to have margins



between the unsafe region and the system trajectories. The unsafe region of the
system is Xu = {x|x ≤ 0} ∪ {x|x ≥ 11}. We compute the barrier certificates
for the initial states x0 ∈ [1, 9]. Since in each location l, x can only take a value
within the invariant I(l) of l, BaCs only need to satisfy Eqs. 5- 8 in the invariant
set I(l) [16]. We take the intersection of Xu and I(l) as the unsafe region for
mode l. The runtimes needed to compute the BaCs using SOSTOOLS and to
validate them on Z3 are 1.142s and 0.206s, respectively, on an Intel Core i7-4770
CPU @ 3.4 GHz with 16GB RAM.

Fig. 3a shows the resulting BaCs. The zero-level set of the BaCs for modes
on, off, and open is {x = 0.0384}, {x = 10.9709}, and {x = 6.2624}, respectively.
Note that we only consider the zero-level set within the invariant of the mode.
The recoverable regions are Recov(on) = [0.0384, 9], Recov(off ) = [3, 10.9709],
and Recov(open) = [1, 6.2624]. The figure shows that the intersection of the
interior of the zero-level set and the invariant of each mode separates the unsafe
region from all system trajectories. The validation of the BaCs using Z3 proves
that they satisfy all of the conditions. We obtain the recoverable region of the
system as

⋃M
l=1 Recov(l) = [0.0384, 10.9709].

(a) BaCs of the modes. The red lines
represent the unsafe regions. The black
line shows the system trajectory.

(b) Safe, unsafe and unrecoverable
states with ∆t = 0.5 under different
control inputs uAC .

Fig. 3. BaCs of the system and snapshot of the switching logic at run-time.

As an instance of the Simplex architecture, the water tank system could be
controlled by an advanced controller with a more complex control objective. At
any given time, the decision module in the Simplex architecture decides whether
or not to switch to BC based on Algorithm 1. Fig. 3b illustrates a snap-shot of
the switching logic at time T across the state space. For illustration purposes,
we discretize the state space and apply the switching logic for each discrete state
with the corresponding control input uAC . Note that the control input is applied
to the water level, i.e., ẋ = uAC . We have x(T +∆t) = x(T ) + uAC ·∆t.

To check the safety condition in Algorithm 1, it is sufficient to check if the
intersection of the line segment from x(T ) to x(T + ∆t) and the unsafe region



Xu is empty. A red dot is used in Fig. 3b to represent unsafe states that do
not satisfy the safety condition. To check the recoverability condition, we use
the recoverable region computed above and check if x(T +∆t) ∈

⋃M
l=1 Recov(l).

A black dot is used to represent the unrecoverable states that do not satisfy
the recoverability condition. We switch to BC if the current state is unsafe or
unrecoverable. If the current state satisfies both safety and recoverability, shown
as a green dot, we continue with the AC. Note that if uAC < 0, then the smaller
uAC is, the larger lower bound we have for the safe states. Also, when uAC > 0,
the larger uAC is, the smaller upper bound we have for the safe states.

5.2 Case Study 2: Stop-Sign-Obeying Controller

Our second case study is a stop-sign-obeying controller of a car that chooses
when to begin decelerating so that it stops at or before a stop sign [18]. Fig. 2b
shows the corresponding hybrid automaton HB . The system of stop-sign obeying
controller has 2 variables with second order derivatives and quadratic functions
as guards and invariants.

The state variables p and v denote the position and velocity of the car,
respectively and S denotes the position of the stop sign. In mode ACC, the car
accelerates with a constant rate A. It can stay in the mode as long as the invariant
is satisfied, or switch nondeterministically to mode BRAKE. In mode BRAKE,
the car decelerates with a constant rate −B. It can switch nondeterministically
to mode ACC if the guard condition is satisfied. It also switches to mode STOP
if v = 0. In mode STOP, the velocity and the acceleration are both 0. We assume
that the disturbance in the continuous evolution is 0.

Note that, due to the practical limitation of SOSTOOLS, also mentioned in
Section 5.1, we slightly modify some guards and invariants of stop-sign-obeying
controller. The original model can be found in [18].

BaCs and Switching Logic. To compute BaCs, we consider ACC as the
initial mode and {(p, v)|(p − 6)2 + v2 ≥ 1} as the initial set. We choose A = 1,
B = 0.5 and S = 11.3. To compute feasible BaCs, we consider the stop sign is
at p = S − d during the computation, where d is some non-negative offset. This
allows us to maintain a safe margin (d > 0) between the unsafe region and all
possible system trajectories. Using a simple binary search, we find d = 1.3 as
the smallest possible value in the interval [0, 2], a reasonable safety margin in
this case. We set σl,l′ = 0 for all (l, l′) ∈ L2 in Eq. 8.We validate the resulting
BaCs on Z3 as discussed in Section 4. The runtimes to compute the BaCs using
SOSTOOLS and to validate them on Z3 are 1.497s and 0.295s, respectively, on
an Intel Core i7-4770 CPU @ 3.4 GHz with 16GB RAM.

In Fig. 4a, the solid curves represent zero-level sets of the computed BaCs,
whereas the regions with dashed boundary are the corresponding mode invari-
ants. The dashed red ellipse and pink rectangular region represent the initial and
unsafe states, respectively. The figure shows that the intersection of the interior
of zero-level set of the BaC for any mode and its mode invariant does not inter-
sect with the unsafe region. This ensures that the union of all the intersections of



(a) The zero-level sets of BaCs. (b) uAC(t) = 5,∆t = 0.1.

(c) uAC(t) = 10,∆t = 0.1. (d) uAC(t) = 5,∆t = 0.5.

Fig. 4. (a) Illustration of BaCs. (b)-(d) Online switching decision at time t in stop-
sign-obeying controller across the state-space for a given uAC(t) of AC and ∆t.

interior of zero-level set of BaC with its corresponding mode invariant, denoted
as

⋃M
l=1 Recov(l), can be used as the recoverable sets in the switching logic.

Fig. 4 illustrates a snap-shot of switching logic at run-time t across the
state-space in stop-sign-obeying controller in three different cases. For the il-
lustration purpose, we consider a discrete state-space. For each discrete state,
we apply the decision logic by computing both Reach≤∆t(xAC(t),uAC(t)) and
Reach=∆t(xAC(t),uAC(t)), where xAC = [p, v]T and uAC(t) is some acceleration
input provided by AC at t, i.e, v′ = uAC(t). For x(t+∆t) = [p(t+∆t), v(t+∆t)]T ,
we have v(t+∆t) = v(t)+uAC(t)∆t and p(t+∆t) = p(t)+v(t)∆t+ 1

2uAC(t)∆t2.
To check the safety condition in Algorithm 1, we check if the intersection of
the enclosure from x(t) to x(t + ∆t) (which can be over-approximated with a
rectangle) and the unsafe region Xu is empty. To check the recoverability con-
dition, we use the recoverable region computed above and check if x(t + ∆t) ∈⋃M
l=1 Recov(l). If xAC(t) satisfies both safety and recoverability condition of Al-

gorithm 1, we call it a safe state (green dot) and continue with AC. But if it only



satisfies the safety condition, we call the state as unrecoverable (black dot) and
switch to BC. The states represented as red dots do not satisfy any condition,
i.e., it is either unsafe or will go to unsafe region within ∆t. Among the subfig-
ures of Fig. 4, we either vary uAC(t) or ∆t. Note that we assume some arbitrary
values for uAC(t) for all cases that AC may provide during run-time.

6 Related Work

Our BaC-based approach is similar to the combination of offline and online
strategies in [9], but there are some key differences. The authors use the follow-
ing switching logic. The AC controls the plant if it is well within the largest
ellipsoidal safe sublevel set of the Lyapunov function that establishes the safety
of the BC. If the plant is near the boundary of the ellipsoid, the AC retains
control if reachability analysis shows that i) the plant will remain safe under the
control of the BC over a finite horizon and ii) the BC can guarantee to bring
the plant back into the ellipsoid, thus guaranteeing recoverability, at the end of
the finite horizon. The logic is designed to maximize the AC’s operating region.
Moreover, the plant is allowed to leave the ellipsoid as long as it is guaranteed
to be recoverable at the end of the finite horizon. Our Algorithm 1 also achieves
this objective. The recoverability test in step 4 checks if all the states reachable
under the AC’s control at the end of ∆t are recoverable. In other words, the plant
is allowed to cross the zero-level sets of the barrier certificates if it is guaranteed
to return into at least one of the zero-level sets at the end of ∆t.

Additionally, [9] relies on LMI, which is primarily intended for stability anal-
ysis of linear systems; nonlinear systems must be linearized for analysis. BaCs, on
the other hand, inherently encode the notion of safety for hybrid automata and
other nonlinear systems. Our approach enables us to go beyond simple single-
mode systems, like the inverted pendulum model of [9], and design Simplex
architectures for multi-mode hybrid systems. Specifically, we detail the relation-
ship between the reach-sets and the BaC-based recoverable regions.

We also make a simplifying assumption: the decision module can observe
the control input produced by the AC, and that the control input does not
change during the decision period, which is the same as the control period. This
assumption eliminates the need to abstract AC as a hybrid automaton.

The concept of Simplex is closely related to Run-Time Assurance (RTA).
BaCs were proposed for RTA of hybrid systems in [11], but the switching logic
was not described in detail. Moreover, the details of computing BaCs and case
studies were not presented. In [3], reachability analysis on hybrid systems is ap-
plied to produce a decision module that guarantees safety, which is completely
offline with assumptions about the maximum derivative of the states. By con-
trast, our online computation assumes that the current control input is known.

In [22], compositional barrier functions are used to guarantee the simulta-
neous satisfaction of composed objectives. They rely on a single controller and
an optimization-based approach to correct the controller in a minimally invasive



fashion when violations of safety are imminent. This approach is limited by the
single controller, and consequently less flexible compared to Simplex.

7 Conclusions and Future Work

We presented a Barrier-Certificates-based two-controller Simple Architecture for
hybrid systems. In addition to establishing safety of the plant under the baseline
controller, the zero-level sets of the BaCs also yield recoverable regions, where
the safety is guaranteed for infinite time. The switching logic of the architecture,
which samples the state of the plant under the advanced controller periodically
in discrete time, uses on-the-fly reachability computations to ensure that i) the
plant remains safe between successive samples and ii) every sample is recoverable.
Two case studies, a water-tank system and a stop-sign-obeying controller, were
presented to illustrate the implementation aspects of our approach.

We plan to extend our work along several directions. We will pursue the
computation of barrier certificates that guarantee optimal switching, which en-
sures that the operating region of the advanced controller is maximized. Our
approach will be applied to more complicated systems with nonlinearities and
exogenous inputs. Finally, we will extend our approach to compositions of barrier
certificates that simultaneously satisfy multiple composed safety constraints.
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