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ABSTRACT
Relationship-based access control (ReBAC) provides a high level of
expressiveness and �exibility that promotes security and informa-
tion sharing. We formulate ReBAC as an object-oriented extension
of a�ribute-based access control (ABAC) in which relationships are
expressed using �elds that refer to other objects, and path expres-
sions are used to follow chains of relationships between objects.

ReBAC policy mining algorithms have potential to signi�cantly
reduce the cost of migration from legacy access control systems
to ReBAC, by partially automating the development of a ReBAC
policy from an existing access control policy and a�ribute data.
�is paper presents an algorithm for mining ReBAC policies from
access control lists (ACLs) and a�ribute data represented as an
object model, and an evaluation of the algorithm on four sample
policies and two large case studies. Our algorithm can be adapted
to mine ReBAC policies from access logs and object models. It is
the �rst algorithm for these problems.
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1 INTRODUCTION
�e term relationship-based access control (ReBAC) was introduced
to describe access control policies expressed in terms of interper-
sonal relationships in social network systems (SNSs). �e underly-
ing principle of expressing access control policies in terms of chains
of relationships between entities is equally applicable and bene�cial
in general computing systems: it increases expressiveness and o�en
allows more natural policies. �is paper presents ORAL (Object-
oriented Relationship-based Access-control Language), a ReBAC
language formulated as an object-oriented extension of ABAC. Re-
lationships are expressed using a�ributes that refer to other objects,
including subjects and resources, and path expressions are used to
follow chains of relationships between objects. In ORAL, a ReBAC
policy consists of a class model, an object model, and access control
rules. Section 6 compares ORAL with previous ReBAC models.
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�e cost of manually developing an initial high-level policy is
a barrier to adoption of high-level policy models. Policy mining
algorithms promise to drastically reduce this cost, by partially au-
tomating the process. �ere is a signi�cant amount of research
on role mining and some recent research on ABAC policy mining
[11, 13–15]. �ere is no prior work on mining of ReBAC policies
(or object-oriented ABAC policies with path expressions).

�is paper de�nes the ReBACpolicymining problem and presents
the �rst algorithm for mining ReBAC policies from ACLs and at-
tribute data represented as object models. It is easy to show that the
problem is NP-hard, based on the Xu and Stoller’s proof that ABAC
policy mining is NP-hard [15]. Since we desire an e�cient and
practical algorithm, our algorithm incorporates greedy heuristics
and is not guaranteed to generate an optimal policy. Our algorithm
has three phases. In the �rst phase, it iterates over tuples in the
subject-permission relation, uses selected tuples as seeds for con-
structing candidate rules, and a�empts to generalize each candidate
rule to cover additional tuples in the subject-permission relation
by replacing conditions on user a�ributes or resource a�ributes
with constraints that relate user a�ributes with resource a�ributes.
�e algorithm greedily selects the highest-quality generalization
according to a rule quality metric based primarily on the ratio of the
number of previously uncovered subject-permission tuples covered
by the rule to the rule’s WSC. �e �rst phase ends when the set of
candidate rules covers the entire subject-permission relation. �e
second phase a�empts to improve the policy by merging and sim-
plifying candidate rules. �e third phase selects the highest-quality
candidate rules for inclusion in the mined policy. �is high-level al-
gorithm structure is based on Xu and Stoller’s algorithm for mining
ABAC policies from ACLs [15], but there are also many di�erences
between the algorithms, as discussed in detail in Section 6.

Our algorithm can be adapted to mine ReBAC policies from
access logs and object models, in a similar way as Xu and Stoller’s
algorithm [15] was adapted to mine ABAC policies from access logs
and a�ribute data [13].

We evaluate our algorithm on four relatively small but non-trivial
sample policies and on two much larger and more complex case
studies developed by Decat, Bogaerts, Lagaisse, and Joosen based
on the access control requirements for So�ware-as-a-Service (SaaS)
applications o�ered real companies [7, 8]. We translate Decat et
al.’s detailed natural-language descriptions of the policies into class
models and ReBAC rules, omi�ing a few aspects le� for future work,
mainly temporal conditions, obligations, and policy administration.
To the best of our knowledge, these two case studies are the largest
rule-based policies (as measured by the number and complexity of
the rules) on which any policy mining algorithm has been evaluated.

Our evaluation methodology is to start with a ReBAC policy,
generate ACLs representing the subject-permission relation, run
our algorithm, and compare the ReBAC policy mined from ACLs
with the original ReBAC policy. For the four sample policies, the
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mined policy is identical to the original policy, except for one minor
syntactic variation in one conjunct of one condition of one rule
of one sample policy (the variant is semantically equivalent to
and equally simple as the original conjunct). For the e-document
case study, our algorithm achieves roughly 80% to 90% similarity
between the original andmined policies, depending on details of the
comparison metric. For the workforce management case study, the
mined policy is simpler than the original policy, and our algorithm
achieves roughly 70% to 90% similarity between the original and
mined policies, depending on the metric.

2 POLICY LANGUAGE
�is section presents our policy language, ORAL. It contains com-
mon ABAC constructs, similar to those in [15], plus path expres-
sions.

A ReBAC policy is a tuple π = 〈CM,OM,Act, Rules〉, where CM
is a class model, OM is an object model, Act is a set of actions, and
Rules is a set of rules.

A class model is a set of class declarations. A class declaration is
a tuple 〈className, parent,�elds〉 where parent is a class name or
the empty string (indicating that the class does not have a parent),
and �elds is a set of �eld declarations. A �eld declaration is a
tuple 〈�eldName, type,multiplicity〉, where type is a class name or
Boolean, and multiplicity is optional, one, or many. �e multiplicity
speci�es how many values of the speci�ed type may be stored
in the �eld and is “one” (also denoted “1”, meaning exactly one),
“optional” (also denoted “?”, meaning zero or one), or “many” (also
denoted “*”, meaning any natural number). Boolean �elds always
have multiplicity 1. Every class implicitly contains a �eld ”id”
with type String. We keep the language minimal by not allowing
user-de�ned �elds with type string. However, their e�ect can be
achieved using a �eld that refers to an object having the desired
string as its id. �us, the set of types in a policy contains Boolean,
String, and the names of the declared classes. A reference type is
any class name (used as a type).

An object model is a set of objects whose types are consistent
with the class model and with unique values in the “id’s . An object
is a tuple 〈className,�eldVals〉, where �eldVals is a function that
maps the names of �elds of the speci�ed class, including the id
�eld and inherited �elds, to values consistent with the types and
multiplicities of the �elds. �e value of a �eld with multiplicity
many is a set. �e value of a �eld with multiplicity one or optional
is a single value; the special placeholder ⊥ is used when a �eld with
multiplicity optional lacks an actual value. For an object o = 〈c, f v〉,
let type(o) = c and fVal(o) = f v .

A condition is a set, interpreted as a conjunction, of atomic con-
ditions. We o�en refer to the atomic conditions as conjuncts. Infor-
mally, an atomic condition is a condition on the value of one �eld of
one object. An atomic condition is a tuple 〈p, op, val〉, where p is a
non-empty path, op is an operator, either “in” or “contains”, and val
is a constant value, either an atomic value or a set of atomic values.
Note that val cannot equal or contain the placeholder ⊥. A path is
a sequence of �eld names. In examples, we usually write conditions
with a logic-based syntax, for readability, using “∈” for “in” and “3”
for “contains”. For example, we may write 〈dept.id, in, {CompSci}〉
as dept.id ∈ {CompSci}. We may use “=” as syntactic sugar for “in”

when the constant is a singleton set; thus, the previous example
may be wri�en as dept.id=CompSci. Note that a condition may
contain multiple atomic conditions on the same path.

A constraint is a set, interpreted as a conjunction, of atomic con-
straints. Informally, an atomic constraint expresses a relationship
between the value of one �eld of one object (the subject issuing the
request) and the value of one �eld of another object (the requested
resource). An atomic constraint is a tuple 〈p1, op,p2〉, where p1
and p2 are paths (possibly the empty sequence), and op is one of
the following four operators: equal, in, contains, supseteq. �e
“contains” operator is the transpose of the “in” operator. Implic-
itly, the �rst path is relative to the requesting subject, and the
second path is relative to the requested resource. �e empty path
represents the subject or resource itself. In examples, we usually
write constraints with a logic-based syntax, for readability, using
“=” for “equal” and “⊇” for “supseteq”, and we pre�x the subject
path p1 and resource path p2 with “subject” and “resource”, respec-
tively. For example, 〈specialties, contains, topic〉 may be wri�en
as subject.specialties 3 resource.topic. Other relational operators,
such as ⊆, could also be added; we omit them for now, since they
are not needed for our case studies.

A rule is a tuple 〈subjectType, subjectCondition, resourceType,
resourceCondition, constraint, actions〉, where subjectType and re-
sourceType are class names, subjectCondition and resourceCondition
are conditions, constraint is a constraint, actions is a set of actions,
and the following well-formedness requirements are satis�ed. Im-
plicitly, the paths in subjectCondition and resourceCondition are
relative to the requesting subject and requested resource, respec-
tively. �e type of a path p (relative to a speci�ed class), denoted
type(p), is the type of the last �eld in the path. �e multiplicity of a
path p (relative to a speci�ed class), denoted multiplicity(p), is one
if all �elds on the path have multiplicity one, is many if any �eld
on the path has multiplicity many, and is optional otherwise.

Well-formedness requirements on rules are as follows. (1) All
paths are type-correct, assuming the subject and resource have type
subjectType and resourceType, respectively. (2) (a) �e two paths in
the constraint have the same type, and (b) this type is not String.
Part (a) re�ects the assumption that comparing objects of di�erent
types is either meaningless or useless (since it would be equivalent
to “false”). Part (b) prohibits constraints that compare identi�ers of
objects with di�erent types, which would be meaningless. It does
not reduce the expressiveness of the model, because a constraint
violating it, such as specialties.id 3 topic.id, can be wri�en more
simply as specialties 3 topic. (3) �e path in the condition does
not have reference type. �is re�ects the fact that our language
does not allow constants with reference type. (4) In conditions
with operator “in”, the path has multiplicity optional or one, and
the constant is a set. �is excludes sets of sets from the model. (5)
In conditions with operator “contains”, the path has multiplicity
many, and the constant is an atomic value. (6) In constraints with
operator “equal”, both paths have multiplicity optional or one. (7)
In constraints with operator “in”, the �rst path has multiplicity
optional or one, and the second path has multiplicity many. (8) In
constraints with operator “contains”, the �rst path has multiplicity
many, and the second path has multiplicity optional or one. (9) In
constraints with operator “supseteq”, both paths have multiplicity
many.
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In examples, we pre�x the path in the subject condition and
resource condition with “subject” and “resource”, respectively, for
readability. For example, our project management policy contains
the rule: A contractor working on a project can read and request
to work on a non-proprietary task of the project whose required
areas of expertise are among his/her areas of expertise. �is is ex-
pressed as 〈Contractor, true, Task, resource.isProprietary=false, sub-
ject.projects 3 resource.project∧ subject.expertise ⊇ resource.expertise,
{read, request}〉 .

For a rule ρ = 〈st , sc, rt , rc, c,A〉, let sType(ρ) = st , sCond(ρ) =
sc , rType(ρ) = rt , rCond(ρ) = rc , con(ρ) = c , and acts(ρ) = A.

An subject-permission tuple is a tuple 〈s, r ,a〉, where s and r
are objects, and a is an action. �is tuple means that subject s is
permi�ed to perform action a on resource r . A subject-permission
relation is a set of such tuples.

Given an class model, object model, object o, and path p, let
nav(o,p) be the result of navigating (a.k.a. following or derefer-
encing) path p starting from object o. �e class model and object
model are implicit arguments to this relation and the following re-
lations. We elide these arguments, because in our se�ing, they are
unchanging in the context of a given policy, so making them explicit
arguments would just add clu�er. �e result might be no value, rep-
resented by⊥, an atomic value, or a set. A set may be obtained if any
�eld along the path (not necessarily the last �eld) has multiplicity
many. �is is like the semantics of path navigation in UML’s Object
Constraint Language (OCL) (h�p://www.omg.org/spec/OCL/).

An object o satis�es an atomic condition c = 〈p, op, val〉, denoted
o |= c , if (op = in ∧ nav(o,p) ∈ val) ∨ (op = contains ∧ nav(o,p) 3
val). �e meaning of a condition c relative to a class C , denoted
[[c]]C is the set of instances of C (in the implicitly given object
model) that satisfy c . A condition c characterizes a set O of objects
of class C if O is the meaning of c relative to C .

Objects o1 and o2 satisfy an atomic constraint c = 〈p1, op,p2〉,
denoted 〈o1,o2〉 |= c , if (op = equal ∧ nav(o1,p1) = nav(o2,p2)) ∨
(op = in∧nav(o1,p1) ∈ nav(o2,p2))∨(op = contains∧nav(o1,p1) 3
nav(o2,p2)) ∨ (op = supseteq ∧ nav(o1,p1) ⊇ nav(o2,p2)).

A subject-permission tuple 〈s, r ,a〉 satis�es a rule ρ = 〈st , sc, rt ,
rc, c,A〉, denoted 〈s, r ,o〉 |= ρ, if type(s) = st ∧ s |= sc ∧ type(r ) =
rt ∧ r |= rc ∧ 〈s, r 〉 |= c ∧ a ∈ A.

�emeaning of a rule ρ, denoted [[ρ]], is the subject-permission
relation it induces, de�ned as [[ρ]] = {〈s, r ,a〉 ∈ OM × OM ×
Act | 〈s, r ,a〉 |= ρ}.

�e meaning of a ReBAC policy π , denoted [[π ]], is the subject-
permission relation it induces, de�ned as the union of the meanings
of its rules.

3 PROBLEM DEFINITION
An access control list (ACL) policy is a tuple 〈CM,OM,Act, SP0〉,
where CM is a class model, OM is an object model, Act is a set of
actions, and SP0 ⊆ OM ×OM ×Act is a subject-permission relation.
Conceptually, SP0 is the union of the resources’ access control lists.

An ReBAC policy π is consistent with an ACL policy 〈CM,OM,
Act, SP0〉 if they have the same class model, object model, and
actions and [[π ]] = SP0.

An ReBAC policy consistent with a given ACL policy can be
trivially constructed, by creating a separate rule corresponding to

each subject-permission tuple in the ACL policy, using a condition
“id=…” to identify the relevant subject and resource. Of course, such
a ReBAC policy is as verbose and hard to manage as the original
ACL policy. �erefore, we must decide: among ReBAC policies
consistent with a given ACL policy π0, which ones are preferable?
We adopt two criteria.

One criterion is that the “id’ �eld should be avoided when possi-
ble, because policies that use this �eld are (to that extent) identity-
based, not a�ribute-based or relationship-based. �erefore, our
de�nition of ReBAC policy mining requires that these a�ributes
are used only when necessary, i.e., only when every ReBAC policy
consistent with π0 contains rules that use them.

�e other criterion is to maximize a policy quality metric. A
policy quality metric is a function Qpol from ReBAC policies to a
totally-ordered set, such as the natural numbers. �e ordering is
chosen so that small values indicate high quality; this is natural for
metrics based on policy size. For generality, we parameterize the
policy mining problem by the policy quality metric.

�e ReBAC policy mining problem is: given an ACL policy π0 =
〈CM,OM,Act, SP0〉 and a policy quality metricQpol, �nd a set Rules
of rules such that the ReBAC policy π = 〈CM,OM,Act, Rules〉 is
consistent with π0, uses the “id” �eld only when necessary, and has
the best quality, according to Qpol, among such policies.

�e policy quality metric that our algorithm aims to optimize
is weighted structural complexity (WSC), a generalization of policy
size �rst introduced for RBAC policies [12] and later extended to
ABAC [15]. Minimizing policy size is consistent with prior work on
ABAC mining and role mining and with usability studies showing
that more concise access control policies are more manageable [1].
Informally, the WSC of a ReBAC policy is a weighted sum of the
numbers of elements of each kind in the policy. Formally, the WSC
of a ReBAC policy π , denoted WSC(π ), is the sum of the WSC of
its rules, de�ned bo�om-up as follows. �e WSC of an atomic
condition 〈p, op, val〉 is |p | + |val |, where |p | is the length of path p,
and |val | is 1 if val is an atomic value and is the cardinality of val if
val is a set. �eWSC of an atomic constraint 〈p1, op,p2〉 is |p1 |+ |p2 |.
�e WSC of a condition c , denoted WSCcndn(c), is the sum of the
WSC of the constituent atomic conditions. �eWSC of a constraint
c , denoted WSCcnst(c), is the sum of the WSC of the constituent
atomic constraints. �eWSC of a rule is WSC(〈st , sc, rt , rc, c,A〉) =
w1WSCcndn(sc) +w1WSCcndn(rc) +w2WSCcnst(c) +w3 |A|, where
|A| is the cardinality of set A, and thewi are user-speci�ed weights.

4 ALGORITHM
�is section presents our algorithm. It is based on the ABAC policy
mining algorithm in [15]. �e main di�erences are summarized in
Section 6.

Top-level pseudocode appears in Figure 1. It re�ects the high-
level structure described in Section 1. We refer to the tuples selected
in the �rst statement of the �rst while loop as seeds. �e top-level
pseudocode is explained by embedded comments. It calls several
functions, described next. Function names hyperlink to pseudocode
for the function, if it is included in the paper, otherwise to the
description of the function.

http://www.omg.org/spec/OCL/
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// Phase 1: Create a set Rules of candidate rules that covers SP0.
Rules = ∅
// uncovSP contains tuples in SP0 that are not covered by Rules
uncovSP = SP0.copy()
while ¬uncovSP .isEmpty()
// Select an uncovered tuple as a “seed”.
〈s, r ,a〉 = some tuple in uncovSP
cc = candidateConstraint(s, r )
// ss contains subjects with permission 〈r ,a〉 and that have
// the same candidate constraint for r as s
ss = {s ′ ∈ OM | type(s ′) = type(s) ∧ 〈s ′, r ,a〉 ∈ SP0

∧ candidateConstraint(s ′, r ) = cc}
addCandidateRule(type(s), ss, type(r ), {r }, cc, {a}, uncovSP, Rules)
// sa is set of actions that s can perform on r
sa = {a′ ∈ Act | 〈s, r ,a′〉 ∈ SP0}
addCandidateRule(type(s), {s}, type(r ), {r }, cc, sa, uncovSP, Rules)

end while
// Phase 2: Combine rules using least upper bound and inheritance.
// Also, simplify them and remove redundant rules.
mergeRulesLUBandSimplify(Rules)
mergeRulesInheritance(Rules)
mergeRulesLUBandSimplify(Rules)
// Remove redundant rules
while Rules contains rules ρ and ρ ′ such that [[ρ]] ⊆ [[ρ ′]]
Rules.remove(ρ)

end while
// Phase 3: Select high quality rules into Rules′.
Rules′ = ∅
Repeatedly move highest-quality rule from Rules to Rules′ until∑

ρ ∈Rules′ [[ρ]] ⊇ SP0, using SP0 \ [[Rules′]] as second argument
to Qrul, and discarding a rule if it does not cover any tuples in
SP0 currently uncovered by Rules′.

return Rules′

// Repeatedly merge rules using least upper bound and
// simplify them, until this has no e�ect
function mergeRulesLUBandSimplify(Rules)
mergeRulesLUB(Rules)
while simplifyRules(Rules) && mergeRulesLUB(Rules)
skip

end while

Figure 1: Policy mining algorithm.

�e workset uncovSP in Figure 1 is a priority queue sorted in
descending lexicographic order by the quality Qsp of the subject-
permission tuple. Informally, Qsp(〈s, r ,a〉) is a triple whose �rst
two components are the frequency of permission 〈r ,a〉 and subject
s , respectively, i.e., their numbers of occurrences in SP0, and whose
third component (included as a tie-breaker to ensure a total order)
is the string representation of the tuple.

freq(〈r ,a〉) = |{〈s ′, r ′,a′〉 ∈ SP0 | r ′ = r ∧ a′ = a}|
freq(s) = |{〈s ′, r ′,a′〉 ∈ SP0 | s ′ = s}|

Qsp(〈s, r ,a〉) = 〈freq(〈r ,a〉), freq(s), toString(〈s, r, a〉)〉

function candidateConstraint(s, r )
// cc is the set of type-correct candidate constraints
cc = ∅
for T in (reach(type(s)) ∩ reach(type(r )))
// add candidate constraints where the paths have type T
for p1 in paths(type(s),T )
for p2 in paths(type(r ),T )
cc .add(〈p1, opFromMul(multiplicity(p1),multiplicity(p2)),p2〉)

end for
end for

end for
return {c ∈ cc | 〈s, r 〉 |= c}

Figure 2: Compute candidate constraints for subject s and
resource r

�e function candidateConstraint(s, r ) in Figure 2 returns a set
containing all the atomic constraints that hold between resource
r and subject s . It �rst computes a set cc of candidate constraints
using type-correct shortest paths to each type T reachable from
both type(s) and type(r ) in the graph graph(CM), which has a
vertex for each class, and an edge from c1 to c2 if c1 has a �eld
with type c2. It then selects and returns the candidate constraints
satis�ed by 〈s, r 〉. �is algorithm infers only constraints where
the paths have reference types. It could easily be extended to
infer constraints where the paths have type Boolean, but such
constraints do not arise in our current case studies. It uses the
following auxiliary functions. reach(T ) returns the set of classes
reachable fromT in graph(CM), including their superclasses. func-
tion paths(T ,T ′) returns the set of shortest paths from T to T ′

in graph(CM). function opFromMul(m,m′) returns the relational
operator suitable for le� and right operands with multiplicitym
andm′, respectively, de�ned by the following case statement on
〈m,m′〉: 〈many,many〉 ⇒ supseteq | 〈many, 〉 ⇒ contains |
〈 ,many〉 ⇒ in | 〈 , 〉 ⇒ equal.

We extend this function to also produce non-shortest paths.
�ese extensions are not re�ected in the pseudo-code. Speci�-
cally, we extend paths(T ,T ′) to return paths with length at most
dist(T ,T ′) + SPED and dist(T ,T ′) + RPED when T = type(s) and
T = type(r ), respectively, where dist(T ,T ′) is the length of short-
est paths from T to T ′ in graph(CM), and SPED (mnemonic for
“subject path extra distance”) and RPED (mnemonic for “resource
path extra distance”) are parameters of the algorithm. In order
to limit the overall complexity of a candidate constraint, we also
introduce a parameter MTPL (mnemonic for “maximum total path
length”) that limits the sum of the path lengths in a constraint;
speci�cally, in the inner loop, a candidate constraint is constructed
only if |p1 | + |p2 | ≤ MTPL.

�e function addCandidateRule(st , ss, rt , sr, cc, sa, uncovSP, Rules)
in Figure 3 calls computeCondition to compute conditions sc and
rc that characterizes ss and sr, respectively. MSPL and MRPL are
the maximum path length for paths in the subject condition and re-
source condition, respectively; they are parameters of the algorithm.
addCandidateRule then constructs a rule ρ = 〈st , sc, rt , rc, ∅, sa〉,
calls generalizeRule to generalize ρ to ρ ′ and adds ρ ′ to candidate
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function addCandidateRule(st , ss, rt , sr, cc, sa, uncovSP, Rules)
// Construct a rule ρ that covers subject-permission tuples
// {〈s, r ,a〉 | s ∈ ss ∧ r ∈ sr ∧ a ∈ sa}.
sc = computeCondition(ss, st ,MSPL);
rc = computeCondition(sr, rt ,MRPL)
ρ = 〈st , sc, rt , rc, ∅, sa〉
ρ ′ = generalizeRule(ρ, cc, uncovSP, Rules)
Rules.add(ρ ′)
uncovSP .removeAll([[ρ ′]])

Figure 3: Compute a candidate rule and add it to Rules

rule set Rules. �e details of the functions called by addCandidateRule
are described next.

�e function computeCondition(O,C,L) computes a condition
C that characterizes the set O of objects of type C using paths
of length at most L. A path with multiplicity optional or one ap-
pears in at most one conjunct, of the form 〈p, in,V 〉 where V is
the collected values of o.p for o in O . A path with multiplicity
may appear in multiple conjuncts, of the form 〈p, contains, val〉
where val is in the intersection of the values of o.p for o in O . First,
paths not containing the id �eld are considered. If the resulting
condition does not characterize O , then (by construction) it is an
over-approximation, and a conjunct using the “id” �eld is added
to ensure that the resulting condition characterizes O . �e condi-
tion returned by computeCondition might not be minimum-sized
among conditions that characterizeO : possibly some conjuncts can
be deleted without changing the condition’s meaning. We defer
minimization of the condition until a�er the call to generalizeRule
(described below), because minimizing the condition before that
would reduce opportunities to �nd constraints in generalizeRule.

A rule ρ ′ is valid if [[ρ ′]] ⊆ SP0.
�e function generalizeRule(ρ, cc, uncovSP, Rules) a�empts to

generalize rule ρ by adding some of the atomic constraints in cc
to ρ and eliminating the conjuncts of the subject condition and
resource condition that use the same paths as those constraints. A
rule obtained in this way is called a generalization of ρ. It is more
general in the sense that it refers to relationships instead of speci�c
values. �e meaning of a generalization of ρ is a superset of the
meaning of ρ. In more detail, generalizeRule sorts cc in the order
described below, tries to add the constraints in every subsequence
of cc to ρ, and if any of the resulting generalized rules is valid,
it returns the highest-quality rule among them according to the
rule quality metric described below, otherwise it returns ρ. When
trying to add a constraint c in cc to a rule ρ, generalizeRule �rst
tries removing the conjuncts of the subject condition and resource
condition that use the same paths as c . If the resulting rule is invalid,
it a�empts a more conservative generalization by removing only
the conjunct in the subject condition that uses the same path as c .
If that rule is also invalid, it instead removes only the conjunct in
the resource condition that uses the same path as c . If that rule is
also valid, then there is no valid generalization of ρ using c .

generalizeRule sorts cc because the order in which candidate
constraints are considered can a�ect the resulting generalized rule.
For example, suppose adding candidate constraint c1 keeps the rule
valid and removes a conjunct in the subject condition, and that

adding candidate constraint c2 removes a conjunct in the subject
condition and a conjunct in the resource condition, and yields a
higher-quality resulting rule if the resulting rule is valid. Suppose,
further, that adding c2 keeps the rule valid only if c1 has already
been added. In this case, the highest-quality generalization will be
created only if c1 is considered before c2. To sort cc, we temporarily
add each constraint c in cc to ρ (in the same way as described above)
and, if this leads to a valid generalization of ρ, compute the number
of subject-permission tuples in uncovSP covered by the resulting
rule, and then sort cc in descending order by these values. If adding
c does not lead to a valid generalization of ρ, c is useless and can
be removed from cc.

A rule quality metric is a functionQrul(ρ, SP) that maps a rule ρ to
a totally-ordered set, with the order chosen such that larger values
indicate higher quality. �e second argument SP is a set of subject-
permission tuples. Based on our primary goal of minimizing the
mined policy’s WSC, a secondary preference for rules with more
constraints, and a tertiary preference for rules with shorter paths
in constraints, we de�ne

Qrul(ρ, SP) = 〈| [[ρ]] ∩ SP |/WSC(ρ), |con(ρ)|, 1/TCPL(ρ)〉

where TCPL(ρ) (“total constraint path length”) is the sum of the
lengths of the paths used in the constraints of ρ.

�e preference for more constraints is a heuristic, based on
the observation that rules with more constraints tend to be more
general than other rules with the same | [[ρ]] ∩ SP |/WSC(ρ) (such
rules typically have more conjuncts) and hence lead to lower WSC
for the policy. In generalizeRule, uncovSP is the second argument
to Qrul, so [[ρ]] ∩ SP is the set of subject-permission tuples in SP0
that are covered by ρ and not covered by existing rules.

�e function mergeRulesLUB(Rules) a�empts to improve the
quality of Rules by merging pairs of rules that have the same subject
type, resource type, and constraint by taking the least upper bound
of their subject conditions, the least upper bound of their resource
conditions, and the union of their sets of actions. �e least upper
bound of conditions c1 and c2, denoted c1 t c2, is

{〈p, in, val〉 | (∃val1, val2. 〈p, in, val1〉 ∈ c1 ∧ 〈p, in, val2〉 ∈ c2
∧ val = val1 ∪ val2)}

∪ {〈p, contains, val〉 | 〈p, contains, val〉 ∈ c1
∧ 〈p, contains, val〉 ∈ c2)}.

Note that the meaning of the merged rule ρmrg is a superset of the
meanings of the rules ρ1 and ρ2 being merged. If the merged rule
ρmrg is valid, then it replaces ρ1 and ρ2 in Rules. mergeRulesLUB(Rules)
updates its argument Rules in place, and it returns a Boolean indi-
cating whether any rules were merged.

�e function simplifyRules(Rules) a�empts to simplify all of the
rules in Rules. It updates its argument Rules in place, replacing rules
in Rules with simpli�ed versions when simpli�cation succeeds. It
returns a Boolean indicating whether any rules were simpli�ed. It
a�empts to simplify each rule in the following ways.

(1) It eliminates conjuncts from the subject and resource con-
ditions when this preserves validity. Since removing one con-
junct might prevent removal of another conjunct, it searches for
a set of conjuncts that maximizes the quality of the resulting rule.
To limit the cost, we introduce a parameter MCSE (mnemonic
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for “maximum conjuncts to simplify exhaustively”). If the num-
ber of conjuncts is at most MCSE, the algorithm tries removing
every subset of conjuncts. If the number of conjuncts exceeds
MCSE, the algorithm sorts the conjuncts in descending lexico-
graphic order by Qac (quality metric for atomic conditions) and
then a�empts to remove them linearly in the sorted order, where
Qac(〈p, op, val〉) = 〈|val |, |p |, isId(p), toString(p)〉, where |val | is 1
if val is an atomic value and is the cardinality if val is a set, and
isId(p) is 1 if p is “id” and is 0 otherwise. �e last component ofQac
is included as a tie-breaker to ensure a total order. (2) It eliminates
atomic constraints when this preserves validity. It searches for
the set of atomic constraints to remove that maximizes the quality
of the resulting rule, while preserving validity. (3) It eliminates
overlapping actions between rules. Speci�cally, an action a in a
rule ρ is removed if there is another rule ρ ′ in the policy such
that sCond(ρ ′) ⊆ sCond(ρ) ∧ rCond(ρ ′) ⊆ rCond(ρ) ∧ con(ρ ′) ⊆
con(ρ) ∧ a ∈ acts(ρ ′). (4) It eliminates actions when this preserves
the meaning of the policy. In other words, it removes an action
a in rule ρ if all the subject-permission tuple covered by a in ρ
are covered by other rules in the policy. Note that (3) is a special
case of (4), listed separately to ensure that this special case takes
precedence.

�e function mergeRulesInheritance(Rules) a�empts to merge a
set of rules if their subject types or resource types have a common
superclass and all the other components of the rule are the same. In
this case, it replaces that set of rules with a single rule whose subject
type or resource type is the most general superclass for which
the merged rule is valid. For example, rules 〈st1, sc, rt , rc, c,A〉
and 〈st2, sc, rt , rc, c,A〉 are replaced with ρmrg = 〈st ′, sc, rt , rc, c,A〉
if ρmrg is valid, and st ′ is a superclass of st1 and st2, and these
conditions do not hold for any superclass of st ′.

4.1 Sample Policies and Case Studies
We developed six ReBAC policies: four sample policies, which have
non-trivial and realistic rules, but are smaller and not directly based
on the policy of a particular organization, and two large case stud-
ies, based on the policies of real (but anonymous) companies, as
described by Decat et al. [7, 8]. Each policy has handwri�en class
model and rules, and a pseudorandom synthetic object model gen-
erated by a policy-speci�c algorithm. Each object model generation
algorithm is parameterized by a size parameter N .

�e Electronic Medical Record (EMR) sample policy, based on the
EBAC policy in [2], controls access by physicians and patients to
electronic medical records. �e numbers of physicians, patients,
medical records, and hospitals are proportional to N . A sample
rule is “A physician at a facility can view a medical record for a
consultation with any physician at that facility by a patient still reg-
istered at the facility”, expressed as 〈 Physician, true, MedicalRecord,
true, subject.a�liation = resource.consultation.physician.a�liation
∧ subject.a�liation ∈ resource.consultation.patient.registrations,
{view}〉.

�e healthcare sample policy, based on the ABAC policy in [15],
controls access by nurses, doctors, patients, and agents (e.g., a pa-
tient’s spouse) to electronic health records (HRs) and HR items
(i.e., entries in health records). �e numbers of wards, teams,
doctors, nurses, teams, patients, and agents are proportional to

N . A sample rule is “A doctor can read an item in a HR for a
patient treated by one of the teams of which he/she is a mem-
ber, if the topics of the item are among his/her specialties”, ex-
pressed as 〈Doctor, true, HealthRecordItem, true, subject.teams
contains resource.record.patient.treatingTeam ∧ subject.specialties
⊇ resource.topics, {read}〉, where HealthRecordItem.record is the
health record containing the HR item.

�e project management sample policy, based on the ABAC policy
in [15], controls access by department managers, project leaders,
employees, contractors, auditors, accountants, and planners to bud-
gets, schedules, and tasks associated with projects. �e numbers of
departments, projects, tasks, and users of each type are proportional
to N . A sample rule appears in Section 2.

�e university sample policy, based on the ABAC policy in [15],
controls access by students, instructors, teaching assistants (TAs),
department chairs, and sta� in the registrar’s o�ce and admissions
o�ce to applications (for admission), gradebooks, transcripts, and
course schedules. �e numbers of departments, students, faculty,
and applicants for admission are proportional to N .

�e e-document case study, based on [7], is for a SaaS multi-
tenant e-document processing application. �e application allows
tenants to distribute documents to their customers, either digitally
or physically (by printing them and employing postal mail). �e
overall policy contains rules governing document access and ad-
ministrative operations by employees of the e-document company,
such as helpdesk operators and application administrators. It also
contains speci�c policies for some sample tenants. �e numbers
of employees of each tenant, registered users of each customer
organization, and documents are proportional to N .

�e workforce management case study, based on [8], is for a
SaaS workforce management application provided by a company
called eWorkforce which handles the work�ow planning and supply
management for product or service appointments (e.g., install or
repair jobs). Tenants (i.e., eWorkforce customers) can create tasks
on behalf of their customers. Technicians working for eWorkforce,
one of its workforce suppliers, or one of the subcontractors of one of
the workforce supplies receive work orders to work on those tasks,
and an appointment is scheduled if appropriate. �e numbers of
helpdesk suppliers, workforce providers, sub-contractors, helpdesk
operators, contracts, work orders, etc., are proportional to N .

�e algorithm parameters are set as follows in our experiments.
For all policies, MCSE = 5. For EMR, MSPL = 3, MRPL = 4,
SPED = 0, RPED = 1, and MTPL = 4. For healthcare, project
management, and university, MSPL = 3, MRPL = 3, SPED = 0,
RPED = 0, and MTPL = 4. For e-document, MSPL = 4, MRPL = 4,
SPED = 0, RPED = 0, and MTPL = 4. For workforce management,
MSPL = 3, MRPL = 3, SPED = 0, RPED = 2, and MTPL = 5.

5 EVALUATION
To evaluate the e�ectiveness of our algorithm, we start with a
ReBAC policy, generate ACLs representing the subject-permission
relation, run our algorithm on the ACLs along with the class model
and object model, and compare the mined ReBAC policy with the
original ReBAC policy. If the mined policy is similar to the original
policy, the algorithm succeeded in discovering the rules that are
implicit in the ACLs.
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We compare the mined policy with the original policy and with
a simpli�ed version of the original policy, obtained by applying
simplifyRules. When the algorithm fails to produce high-level rules,
the mined policy di�ers from both the original and simpli�ed origi-
nal. When it produces high-level rules that have similar or lower
WSC than the original handwri�en rules, but express some aspects
in a di�erent high-level way, the mined policy di�ers from the
original but agrees with the simpli�ed original. �us, comparison
with the simpli�ed original policy is a more robust measure of the
algorithm’s ability to discover high-level rules.

5.1 Policy Similarity Metrics
Both of our policy similarity metrics are normalized to range from
0 (completely di�erent) to 1 (identical).

Syntactic Similarity. Syntactic similarity measures the fraction
of atomic conditions, atomic constraints, and actions that rules or
policies have in common. �e Jaccard similarity of sets is J (S1, S2) =
|S1∩S2 | / |S1∪S2 |. �e syntactic similarity of rules ρ1 = 〈st1, sc1, rt1,
rc1, c1,A1〉 and ρ2 = 〈st2, sc2, rt2, rc2, c2,A2〉 is 0 if st1 , st2 ∨
rt1 , rt2 and is the average of J (sc1, sc2), J (rc1, rc2), J (c1, c2) and
J (A1,A2) otherwise. �e syntactic similarity of rule sets Rules1 and
Rules2 is the average, over rules ρ in Rules1, of the syntactic simi-
larity between ρ and the most similar rule in Rules2. �e syntactic
similarity of policies π1 and π2 is the maximum of the syntactic
similarities of the sets of rules in the policies, considered in both
orders.

Semantic Similarity. Semantic similarity measures the fraction
of granted entitlements that rules or policies have in common.
�e semantic similarity of rules ρ1 and ρ2 is J ([[ρ1]] , [[ρ2]]). We
extend this to per-rule semantic similarity of policies in exactly the
same way that syntactic similarity of rules is extended to syntactic
similarity of policies. Note that this metric measures similarity
of the meanings of the rules in the policies, not similarity of the
overall meanings of the policies.

5.2 Policy Similarity Results
Figure 4 shows the sizes of the policies and the results of policy
similarity measurements. Each data point is the average over 30
pseudo-random object models. We set all weightswi in the de�ni-
tion of WSC to 1.

For the healthcare policy, project management policy, and univer-
sity policy, the original, simpli�ed original, and mined policies are
identical. For the EMR policy, the original and simpli�ed original
policies are identical, and the mined policy has perfect per-rule
semantic similarity with them and nearly perfect (0.98) average
syntactic similarity with them.

�e e-document case study is the most di�cult for our algorithm.
�e algorithm does well on 37 of the 39 input rules, achieving
an average syntactic similarity of 0.90 and an average semantic
similarity of 0.92 with the simpli�ed original policy. �e mined
policy’s WSC is signi�cantly higher than the WSC of the original
policy, mostly due to the algorithm’s di�culty with two rules.

For the workforce management case study, the algorithm achieves
an average syntactic similarity of 0.74 and an average semantic
similarity of 0.93 with the simpli�ed original policy. �e mined

policy’s WSC is lower than theWSC of the original policy, although
higher than the WSC of the simpli�ed original policy.

5.3 Performance Results
Figure 5 shows the running time as a function of ACL policy size
|SP0 | on an Intel i7-6700HQ CPU for both case studies and some
sample policies. Each data point is the average over 10 pseudo-
random object models. Error bars show 95% con�dence intervals
using Student’s t-distribution. �e running times on these policies
are low-order polynomials in |SP0 |: the slopes of the best-�t lines
on a log-log plot of the data are 1.4 for workforce management, 1.5
for e-document, 2.7 for project management, and 3.2 for healthcare.

�e results for the two case studies are encouraging indicators
of the algorithm’s scalability: the algorithm can mine dozens of
complex rules from ACLs with several thousand entries in sev-
eral minutes, and the running time grows roughly proportional to
|SP0 | ×

√
|SP0 |.

6 RELATEDWORK
6.1 Policy Models
Entity-Based Access Control (EBAC) [2] is the policy model most
closely related to ours. EBAC is quite similar to ORAL, except that
it is based on entity-relationship models, instead of object-oriented
models, and hence lacks the concept of inheritance, which ORAL
includes. EBAC’s expression language includes quanti�ers, and
ORAL does not, although some conditions that require quanti�ers
in their language can be expressed in ORAL using the built-in binary
relations on sets, such as ⊇.

Several ReBAC models have been proposed, by Carminati, Fer-
rari, and Perego [4], Fong [9], Cheng, Park, and Sandhu [5], Hu,
Ahn, and Jorgensen [10], Crampton and Sellwood [6], and others.
Some are designed speci�cally for OSNs, while others are designed
for general use. Our model di�ers from all of them because it is
designed as a (nearly) minimal extension of a typical ABAC lan-
guage, and the extension is achieved by adopting an object-oriented
model and incorporating standard object-oriented concepts, notably
path expressions, like in UML’s Object Constraint Language (OCL)
(h�p://www.omg.org/spec/OCL/). None of these ReBACmodels are
based on general object-oriented data models. None of these ReBAC
models can express constraints between �elds (a.k.a. a�ributes)
of di�erent entities, such as the constraint “subject.expertise ⊇
resource.expertise” in the sample rule in Section 2. In this regard,
ORAL is signi�cantly more expressive.

On the other hand, ORAL lacks some features found in these
ReBAC models. For example, all of the languages cited above in-
clude some form of transitive closure, and ORAL does not. �e
languages in [2, 3, 5, 9] include some form of negation, and ORAL
does not, although some conditions expressed with negation in
other frameworks can be expressed in ORAL using atomic condi-
tions of the form 〈p, in, ∅〉. �e modal-logic-based policy languages
in [3, 9] include formulas that specify graph pa�erns, not merely
paths. Many realistic applications do not require these language
features, but they are useful for some applications. �ese features
can easily be added to our policy language. However, developing
policy mining algorithms that fully exploit them may be di�cult.
We leave that challenge for future work.

http://www.omg.org/spec/OCL/
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Policy #rules N #obj #�eld |SP0 | WSC Mined vs Orig Mined vs. SimpOrig
Orig. SimpOrig Mined SynSim SemSim SynSim SemSim

EMR 6 15 344 854 708 49 49 49 0.98 1 0.98 1
healthcare 9 5 737 1806 2207 54 54 54 1 1 1 1
project mgmt. 13 5 181 300 322 76 76 76 1 1 1 1
university 10 5 731 908 2439 54 54 54 1 1 1 1
e-document 39 125 421 2045 2687 359 250 463 0.85 0.79 0.90 0.92
workforce mgmt. 27 10 411 1123 1739 262 208 223 0.68 0.92 0.74 0.93

Figure 4: Policy sizes and policy similarities. For the given value of N , #obj is the average number of objects in the object
model, #�eld is the average sum of the number of instances of each class times the number of �elds in that class, SynSim is
syntactic similarity, and SemSim is per-rule semantic similarity.
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Figure 5: Running time, in minutes, as a function of
|SP0 | for project management (gray), healthcare (orange), e-
document (blue), and workforce management (green).

�e languages in [3, 5, 6, 9] allow every relation to be traversed
in reverse. ORAL, like EBAC and OCL, does not; instead, the policy
designer explicitly enables reverse traversal where appropriate by
including a �eld in the reverse direction (this corresponds to using
a bidirectional association in the UML class model).

6.2 Policy Mining
�e most closely related prior work on policy mining is for ABAC
policies without path expressions. Xu and Stoller developed the �rst
algorithms for mining ABAC policies, from a�ribute data plus ACLs
[15], roles [14], or access logs [13]. Our algorithm is based on their
algorithm for mining ABAC policies from ACLs [15]. Adapting
their algorithm to be suitable for ReBAC mining required many
changes, most notably generalization of loops over a�ributes to
iterate over paths when generating conditions and constraints;
speci�cally, we introduce the idea of generating constraints based
on shortest paths and nearly-shortest paths between classes in the
graph representation of the class model. �e technique for merging
rules for sibling classes into a rule for an ancestor class is also new.
We also modi�ed the algorithm to accommodate changes in the
supported relational operators: in conditions, we allow “in” and
“contains”, instead of “equal” and “supseteq” in [15]; in constraints,
we allow “in” in addition to “equal”, “contains”, and “supseteq”
allowed in [15]. We also introduced several techniques to limit and
prioritize the paths being considered.
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