
Adaptive Runtime Verification

Ezio Bartocci2, Radu Grosu2, Atul Karmarkar1, Scott A. Smolka1, Scott D. Stoller1,
Erez Zadok1, and Justin Seyster1

1 Department of Computer Science, Stony Brook University, USA
2 Department of Computer Engineering, Vienna University of Technology

Abstract. We present Adaptive Runtime Verification (ARV), a new approach to
runtime verification in which overhead control, runtime verification with state es-
timation, and predictive analysis are synergistically combined. Overhead control
maintains the overhead of runtime verification at a specified target level, by en-
abling and disabling monitoring of events for each monitor instance as needed.
In ARV, predictive analysis based on a probabilistic model of the monitored sys-
tem is used to estimate how likely each monitor instance is to violate a given
temporal property in the near future, and these criticality levels are fed to the
overhead controllers, which allocate a larger fraction of the target overhead to
monitor instances with higher criticality, thereby increasing the probability of vi-
olation detection. Since overhead control causes the monitor to miss events, we
use Runtime Verification with State Estimation (RVSE) to estimate the probabil-
ity that a property is satisfied by an incompletely monitored run. A key aspect of
the ARV framework is a new algorithm for RVSE that performs the calculations
in advance, dramatically reducing the runtime overhead of RVSE, at the cost of
introducing some approximation error. We demonstrate the utility of ARV on a
significant case study involving runtime monitoring of concurrency errors in the
Linux kernel.

1 Introduction

In [11], we introduced the concept of runtime verification with state estimation (RVSE),
and showed how it can be used to estimate the probability that a temporal property is
satisfied by a partially or incompletely monitored program run. In such situations, there
may be gaps in observed program executions, making accurate estimation challenging.

Incomplete monitoring can arise from a variety of sources. For example, in real-
time embedded systems, the sensors might have intrinsically limited fidelity, or the
scheduler might skip monitoring of internal or external events due to an impending
deadline for a higher-priority task. Incomplete monitoring also arises from overhead
control frameworks, such as [5], which repeatedly disable and enable monitoring of
selected events, to maintain the overall overhead of runtime monitoring at a specified
target level. Regardless of the cause, simply ignoring the fact that unmonitored events
might have occurred gives poor results.

The main idea behind RVSE is to use a statistical model of the monitored system, in
the form of a Hidden Markov Model (HMM), to “fill in” gaps in event sequences. We
then use an extended version of the forward algorithm of [7] to calculate the probability

that the property is satisfied. The HMM can be learned automatically from training runs,
using standard algorithms [7].

When the cause of incomplete monitoring is overhead control, a delicate interplay
exists between RVSE and overhead control, due to the runtime overhead of RVSE itself:
the matrix-vector calculations performed by the RVSE algorithm to process an obser-
vation symbol—which can be a program event or a gap symbol paired with a discrete
probability distribution describing the length of the gap—are expensive. Note that we
did not consider this interplay in [11], because the RVSE calculations were performed
post-mortem in the experiments described there.

The relationship between RVSE and overhead control can be viewed as an accuracy-
overhead tradeoff: the more overhead RVSE consumes processing an observation sym-
bol, with the goal of performing more accurate state estimation, the more events are
missed (because less overhead is available). Paradoxically, these extra missed events
result in more gap symbols, making accurate state estimation all the more challenging.

This tension between accurate state estimation and overhead control can be un-
derstood in terms of Heisenberg’s uncertainty principle, which essentially states that
the more accurately one measures the position of an electron, the more its velocity is
perturbed, and vice versa. In the case of RVSE, we are estimating the position (state)
and velocity (execution time) of a “computation particle” (program counter) flowing
through an instrumented program.

With these concerns in mind, this paper presents Adaptive Runtime Verification
(ARV), a new approach to runtime verification in which overhead control, runtime ver-
ification with state estimation, and predictive analysis are synergistically combined. In
ARV, as depicted in Figure 1, each monitor instance3 has an associated criticality level,
which is a measure of how “close” the instance is to violating the property under investi-
gation. As criticality levels of monitor instances rise, so will the fraction of monitoring
resources allocated to these instances, thereby increasing the probability of violation
detection and concomitant adaptive responses to property violations.

The main contributions of this paper are:

– In ARV, the overhead-control subsystem and the RVSE-enabled monitoring sub-
system are coupled together in a feedback control loop: overhead control intro-
duces gaps in event sequences, whose resolution requires HMM-based state esti-
mation (RVSE); state estimation informs overhead control, closing the loop. Up-
to-date state estimates enable the overhead-control subsystem to make intelligent,
criticality-based decisions about how to allocate the available overhead among
monitor instances.

– A key aspect of the ARV framework is a new algorithm for RVSE that performs
the calculations offline (in advance), dramatically reducing the runtime overhead
of RVSE, at the cost of introducing some approximation error. We analyze the
cumulative approximation error incurred by this algorithm.

– To compute the criticality levels of monitor instances, the ARV framework per-
forms reward-based reachability queries over the Discrete Time Markov Chain

3 A monitor instance is a runtime instance of a parameterized monitor. For example, our monitor
for concurrency errors in the Linux kernel is parameterized by the id (address) of the structure
being monitored.

Primary

Controller

Secondary

Controllers

Monitoring

Framework

Bound

Overhead

α: () α: () α: ()

Error Probability

...

...

Criticality

RVSE
Monitor
Instances

Monitored System

Crit:

Safe

Crit:

Safe

Crit:

Critical

EP:

Low

EP:

Med

EP:

Low

Ovhd: Low Ovhd: Low Ovhd: High

InterAspect

Fig. 1. The Adaptive Runtime Verification Framework

(DTMC) derived from the composition of the HMM model of the monitored pro-
gram and the monitor, represented as a Deterministic Finite State Machine (DFSM).
These queries determine the expected distance to the monitor’s error state. These
queries are also computed in advance, and the results are stored in a data structure.

– We demonstrate the utility of the ARV approach on a significant case study involv-
ing runtime monitoring of concurrency errors in the Linux kernel.

2 Background

Hidden Markov Models (HMMs). An HMM [7] is a tuple H = 〈S,A, V,B, π〉 con-
taining a set S of states, a transition probability distribution A, a set V of observation
symbols (also called “outputs”), an observation probability distribution B, and an ini-
tial state distribution π. The states and observations are indexed (i.e., numbered), so S
and V can be written as S = {s1, s2, . . . , sNs

} and V = {v1, . . . , vNo
}, where Ns is

the number of states, and No is the number of observation symbols. Let Pr(c1 | c2)
denote the probability that c1 holds, given that c2 holds. The transition probability
distribution A is an Ns × Ns matrix indexed by states in both dimensions, such that
Ai,j = Pr(state is sj at time t + 1 | state is si at time t). The observation probabil-
ity distribution B is an Ns × No matrix indexed by states and observations, such that
Bi,j = Pr(vj is observed at time t | state is si at time t). Following tradition, we de-
fine bi(vk) = Bi,k. Prior distribution πi is the probability that the initial state is si.

An example of an HMM is depicted in Figure 3 a). Each state is labeled with ob-
servation probabilities in that state; for example, P(LOCK)=0.99 in state s1 means

B1,LOCK = 0.99. Edges are labeled with transition probabilities; for example, 0.20 on
the edge from s2 to s3 means A2,3 = 0.20.

Learning HMMs. Given a set of traces of a system and a desired number of states of
the HMM, it is possible to learn an HMM model of the system using standard algo-
rithms [7]. The main idea behind these algorithms is to maximize the probability that
the HMM generates the given traces. In our experiments, we chose an HMM model
with three states, used the Baum-Welch learning algorithm [1], and provided the learn-
ing algorithm with 1,000 traces as input. Figure 3 a) depicts the transition and obser-
vation probability distributions of the resulting HMM model. The related case study
(Section 6) provides further details.

Deterministic Finite State Machines (DFSMs). We assume that the temporal property
φ to be monitored is expressed as a parametrized deterministic finite state machine.
A DFSM is a tuple M = 〈SM ,minit , V, δ, F 〉, where SM is the set of states, minit

in SM is the initial state, V is the alphabet (also called the set of input symbols), δ :
SM × V → SM is the transition function, and F is the set of accepting states (also
called “final states”). Note that δ is a total function. A trace O satisfies the property iff
it leaves M in an accepting state.

RVSE Algorithm. In [11], we extended the forward algorithm to estimate the probability
of having encountered an error (equivalent to be in an accepting state) in the case where
the observation sequence O contains the symbol gap(L) denoting a possible gap with
an unknown length. The length distribution L is a probability distribution on the natural
numbers: L(`) is the probability that the gap has length `.

The Hidden Markov Model H = 〈S,A, V,B, π〉 models the monitored system,
where S = {s1, . . . , sNs

} and V = {v1, . . . , vNo
}. Observation symbols of H are ob-

servable actions of the monitored system. H need not be an exact model of the system.
The property φ is represented by a DFSM M = 〈SM ,minit , V, δ, F 〉. For simplic-

ity, we take the alphabet of M to be the same as the set of observation symbols of H .
It is easy to allow the alphabet of M to be a subset of the observation symbols of H ,
by modifying the algorithm so that observations of symbols outside the alphabet of M
leave M in the same state.

The goal is to compute Pr(φ | O,H), i.e., the probability that the system’s behav-
ior satisfies φ, given observation sequence O and model H . Let Q = 〈q1, q2, . . . , qT 〉
denote the (unknown) state sequence that the system passed through, i.e., qt denotes
the state of the system when observation Ot is made. We extend the forward algo-
rithm [7] to compute αt(i,m) = Pr(O1, O2, . . . , Ot, qt = si,mt = m | H), i.e.,
the joint probability that the first t observations yield O1, O2, . . . , Ot and that qt is
si and that mt is m, given the model H . We refer to a pair (j, n) of an HMM state
and a DFSM state as a compound state, and we sometimes refer to αt as a proba-
bility distribution over compound states. The extended algorithm appears in Figure 2.
The desired probability Pr(φ | O,H) is the probability that the DFSM is in an ac-
cepting state after observation sequence O, which is psat(α|O|+1), where psat(α) =∑
j∈1..Ns,n∈F α(j, n) /

∑
j∈1..Ns,n∈SM

α(j, n). The probability of an error (i.e., a
violation of the property) is perr(α) = 1− psat(α).

pi(m,n) =
∑

v∈V s.t. δ(m,v)=n
bi(v) (1)

g0(i,m, j, n) = (i = j ∧m = n) ? 1 : 0 (2)

g`+1(i,m, j, n) =
∑

i′∈[1..Ns],m′∈SM

g`(i,m, i
′,m′)Ai′,jpj(m

′, n) (3)

α1(j, n) = (4){
(n = δ(minit , O1)) ?πjbj(O1) : 0 if O1 6= gap(L)
L(0)(n = minit ?πj : 0) +

∑
`>0,i∈[1..Ns]

L(`)πig`(i,minit , j, n) if O1 = gap(L)

for 1 ≤ j ≤ Ns and n ∈ SM

αt+1(j, n) =

∑

i∈[1..Ns]

m∈pred(n,Ot+1)

αt(i,m)Ai,j

 bj(Ot+1) if Ot+1 6= gap(L)

L(0)αt(j, n) +
∑
`>0

L(`)
∑

i∈[1..Ns]

m∈SM

αt(i,m)g`(i,m, j, n) if Ot+1 = gap(L)

for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns and n ∈ SM

(5)

Fig. 2. Forward algorithm for Runtime Verification with State Estimation. pred(n, v) is the set of
predecessors of n with respect to v in the DFSM, i.e., the set of states m such that M transitions
from m to n on input v.

3 The ARV Framework: Architecture and Principles

Figure 1 depicts the architecture of the ARV framework. ARV uses InterAspect [8],
an aspect-oriented program-instrumentation framework that we developed for the GCC
compiler collection, to insert code that intercepts monitored events and sends them
to the monitoring framework. The monitoring framework maintains a separate RVSE-
enabled monitor instance for each monitored object.

Each monitor instance uses the RVSE algorithm in Section 4 to compute its estimate
of the composite HMM-DFSM state; specifically, it keeps track of which pre-computed
probability distribution over compound states characterizes the current system state.

Each instance uses this probability distribution over compound states to compute
the its error probability (EP), i.e., the probability that a property violation has occurred,
as described in Section 4. Each instance also uses this probability distribution over com-
pound states to compute its criticality level, based on the expected number of transitions
before a violation occurs, using the predictive analysis of Section 5.

The overhead-control subsystem is structured, as in SMCO [5], as a cascade con-
troller comprising one primary controller and a number of secondary controllers, one
per monitor instance. The primary controller allocates monitoring resources (overhead),
and the secondary controllers enforce the overhead allocation by disabling monitoring

pLOCK = 3.8 ⋅10−21

pUNLOCK = 2.4 ⋅10−18

pPROT . = 0.99
pUNPROT .= 3.9 ⋅10−4

 s3

a)#HMM# b)#DFSMs#

2# 3#1#

4#

LOCK

LOCK
PROT.
UNPROT.

UNLOCK
PROT.
UNPROT.

LOCK

UNLOCK

LOCK
UNLOCK
PROT.
UNPROT.

PROT.

UNLOCK
UNPROT.

 s1 s2

0.79

2# 3#1#

4#

LOCK

PROT.
UNPROT. UNPROT.

PROT.
UNPROT.

LOCK

LOCK
UNLOCK
PROT.
UNPROT.

UNLOCK UNLOCK
PROT.

LOCK

UNLOCK

 3.56 ⋅10−11

 0.20

 3.9 ⋅10−12

pLOCK = 1.3 ⋅10−40

pUNLOCK = 0.99
pPROT . = 9.4 ⋅10−7

pUNPROT .= 9.2 ⋅10−4

pLOCK = 0.99
pUNLOCK = 2.1⋅10−41

pPROT . = 5.7 ⋅10−7

pUNPROT .= 1.2 ⋅10−3

 5.74 ⋅10−7

 0.99

 7.9 ⋅10−12

 0.99
 1.08 ⋅10−11

 0.99

 4.2 ⋅10−5

 9.46 ⋅10−7

Fig. 3. Left (a): An example of an HMM. Right (b): Two examples of DFSM. States with a double
border are accepting states.

when necessary. A key feature of ARV’s design is the ability to redistribute overhead
so that more critical monitor instances are allowed more monitoring overhead.

4 Pre-computation of RVSE Distributions

Performing the matrix calculations in the RVSE algorithm during monitoring incurs
very high overhead. This section describes how to dramatically reduce the overhead by
pre-computing compound-state probability distributions α and storing them in a rooted
graph. Each edge of the graph is labeled with an observation symbol. At run-time, the
algorithm maintains (for each monitor instance) a pointer curNode , indicating the node
associated with the current state. The probability distribution in the current state is given
by the matrix associated with curNode . Initially, curNode points to the root node. Upon
observing an observation symbol O, the algorithm finds the node n′ reachable from
curNode by an edge labeled with O, and then assigns n′ to curNode. Note that this
takes constant time, independent of the sizes of the HMM and the monitor.

In general, an unbounded number of probability distributions may be reachable,
in which case the graph would be infinite. We introduce an approximation in order
to ensure termination. Specifically, we introduce a binary relation closeEnough on
compound-state probability distributions, and during the graph construction, we iden-
tify nodes that are close enough.

α0 = the probability distribution with α0(j,minit) = π0(j), and α0(j, n) = 0 for n 6= minit

workset = {α0}
nodes = {α0}
while workset 6= ∅
α = workset .removeOne();
for each observation symbol O in V
α′ = normalize(successor(α,O))
if dead(α′)

continue
endif
if α′ ∈ nodes

add an exact edge labeled with O from α to α′

else if there exists α′′ in nodes such that closeEnough(α′, α′′)
add an approximate edge labeled with O from α to α′

else
add α′ to nodes and workset
add an exact edge labeled with O from α to α′

endif
endfor

endwhile

Fig. 4. Pseudo-code for graph construction

Pseudo-code for the graph construction appears in Figure 4. successor(α,O) is the
probability distribution obtained using the forward algorithm—specifically, equation
(5)—to update compound-state probability distribution α based on observation of ob-
servation symbol O. Note that each edge is marked as exact or approximate, indicating
whether it introduces any inaccuracy. normalize(α) is the probability distribution ob-
tained by computing

∑
j,n α(j, n) and then dividing every entry in α by this sum; the

resulting matrix α′ satisfies
∑
j,n α

′(j, n) = 1. Normalization has two benefits. First,
it helps reduce the number of nodes, because normalized matrices are more likely to
be equal or close-enough than un-normalized matrices. Second, normalization helps
reduce the inaccuracy caused by the use of limited-precision numerical calculations
in the implementation (cf. [7, Section V.A]), which uses the term “scaling” instead of
“normalization”). Normalization is compatible with our original RVSE algorithm—in
particular, it does not affect the value calculated for Pr(φ | O,H)—and it provides the
second benefit described above in that algorithm, too, so we assume hereafter that the
original RVSE algorithm is extended to normalize each matrix αt.

A state s of a DFSM is dead if it is non-accepting and all of its outgoing transitions
lead to s. A probability distribution is dead if the probabilities of compound states
containing dead states of the DFSM sum to 1. The algorithm does not bother to compute
successors of dead probability distributions, which always have error probability 1.

We define the close-enough relation by: closeEnough(α, α′) iff ||α− α′||sum ≤ ε,
where ε is an implicit parameter of the construction, and ||α||sum =

∑
i,j |α(i, j)|. Note

that, if we regard α as a vector, as is traditional in HMM theory, then this norm is the
vector 1-norm.

Termination. We prove termination of the graph construction using the pigeonhole prin-
ciple. Consider the space of Ns × Nm matrices with entries in the range [0..1], where
Nm = |Sm|. Partition this space into cells (hypercubes) with edge length ε/NsNm. If
two matrices α and α′ are in the same cell, then the absolute value of the largest element
in α−α′ is at most ε/NsNm, and ||α−α′||sum is at most the number of elements times
the largest element, so ||α− α′||sum ≤ NsNmε/NsNm, hence ||α− α′||sum ≤ ε. The
contrapositive of this conclusion is: if two matrices satisfy ||α− α′||sum > ε, then they
are in different cells. Therefore, the number of nodes in the graph is bounded by the
number of cells in this grid, which is (NsNm/ε)NsNm . Note that this termination proof
applies even if normalization is omitted from the algorithm.

Cumulative Inaccuracy. Use of the closeEnough relation during graph construction
introduces inaccuracy. We characterize the inaccuracy by bounding the difference be-
tween the probability distribution matrix associated with curNode and the probabil-
ity distribution matrix that would be computed by the original RVSE algorithm. Let
α′1, α

′
2, . . . , α

′
t be the sequence of matrices labeling the nodes visited in the graph, for

a given observation sequence O. Let α1, α2, . . . , αt be sequence of matrices calculated
by the RVSE algorithm for the same observation sequence O. The cumulative inac-
curacy is expressed as a bound err t on ||αt − α′t||sum. First, we consider inaccuracy
assuming that the original and new RVSE algorithms do not normalize the probability
distributions (recall that normalization is not needed to ensure soundness or termina-
tion), and we show that the cumulative inaccuracy does not increase along an exact
edge and increases by at most ε along an approximate edge.

We define err t inductively. The base case is err0 = 0. For the induction case, we
suppose ||α′t−αt||sum ≤ err t and define err t+1 so that ||α′t+1−αt+1||sum ≤ err t+1.

If the transition from α′t to α′t+1 traverses an exact edge, then the inaccuracy remains
unchanged: err t+1 = err t. To prove this, we show that the following inequality holds:
||successor(α′t, Ot+1) − successor(αt, Ot+1)||sum ≤ err t. To prove this, we expand
the definition of successor and simplify. There are two cases, depending on whether
Ot+1 is a gap. If Ot+1 is not a gap,

∑
j∈[1..Ns],n∈SM

|successor(α′t, Ot+1)− successor(αt, Ot+1)|
=

∑
j∈[1..Ns],n∈SM

∑
i∈[1..Ns],m∈pred(n,Ot+1)

|α′t(i,m)− αt(i,m)|Ai,jbj(Ot+1)

// M is deterministic, so each m is predecessor of at most one n for given Ot+1,
// so for any f ,

∑
n∈SM ,m∈pred(n,Ot+1)

f(m) ≤
∑
m∈SM

f(m).
≤

∑
j∈[1..Ns],i∈[1..Ns],m∈SM

|α′t(i,m)− αt(i,m)|Ai,jbj(Ot+1)

A is stochastic, i.e.,
∑
j∈SM

Ai,j = 1, and bj(Ot+1) ≤ 1

≤
∑
i∈[1..Ns],m∈SM

|α′t(i,m)− αt(i,m)|
≤ err t

If Ot+1 is a gap,∑
j∈[1..Ns],n∈SM

|successor(α′t, Ot+1)− successor(αt, Ot+1)|
=

∑
j∈[1..Ns],n∈SM

L(0)|α′t(j, n)− αt(j, n)|
+
∑
`>0 L(`)

∑
i∈[1..Ns],m∈pred(n,Ot+1)

|α′t(i,m)− αt(i,m)|g`(i,m, j, n)
// definition of err t

≤ L(0)err t
+
∑
`>0 L(`)

∑
i∈[1..Ns],m∈pred(n,Ot+1)

|α′t(i,m)− αt(i,m)|
∑
j∈[1..Ns],n∈SM

g`(i,m, j, n)

// g`(i,m, ·, ·) is stochastic, i.e.,
∑
j∈[1..Ns],n∈SM

g`(i,m, j, n) = 1, and def. of err t
≤ L(0)err t +

∑
`>0 L(`)err t

//
∑
`≥0 L(`) = 1

≤ err t

If the transition from α′t to α′t+1 traverses an approximate edge, then, by definition
of closeEnough, the traversal may add ε to the cumulative inaccuracy, so err t+1 =
err t+ ε. Note that the same argument used in the case of an exact edge implies that the
inaccuracy in err t is not amplified by traversal of an approximate edge.

Now we consider the effect of normalization on cumulative inaccuracy. We show
that normalization does not increase the inaccuracy. Let α̂′t and α̂t be the probability
distributions computed in step t before normalization; thus, α′t = normalize(α̂′t) and
αt = normalize(α̂t). Note that

∑
j,n α̂

′
t(j, n) and

∑
j,n α̂t(j, n) are at most 1; this

is a property of the forward algorithm (cf. [7, Section V.A]). Also, every element of
α̂′t, α̂t α

′
t, and αt is between 0 and 1. Thus, normalization moves each element of α̂′t

and α̂t to the right on the number line, closer to 1, or leaves it unchanged. For con-
creteness, suppose

∑
j,n α̂

′
t(j, n) <

∑
j,n α̂t(j, n); a completely symmetric argument

applies when the inequality points the other way. This inequality implies that, on aver-
age, elements of α̂′t are to the left of elements of α̂t. It also implies that, on average,
normalization moves elements of α̂′t farther (to the right) than it moves elements of α̂t.
These observations together imply that, on average, corresponding elements of α̂′t and
α̂t are closer to each other after normalization than before normalization, and hence
that ||α′t − αt||sum ≤ ||α̂′t − α̂t||sum. Note that elements of α̂′t cannot move so much
farther to the right than elements of α̂t that they end up being farther, on average, from
the corresponding elements of α̂t, because both matrices end up with the same average
value for the elements (namely, 1/NsNm).

Stricter Close-Enough Relation To improve the accuracy of the algorithm, a slightly
stricter close-enough relation is used in our experiments: closeEnough(α, α′) holds iff
||α− α′||sum ≤ ε ∧ (pdead(α) = 0⇔ pdead(α

′) = 0), where pdead(α) is the sum of
the elements of α corresponding to compound states containing a dead state of M . It is
easy to show that the algorithm still terminates, and that the above bound on cumulative
inaccuracy still holds.

5 Predictive Analysis of Criticality Levels

Criticality Level. We define the criticality level of a monitor instance to be the inverse
of the expected distance (number of steps) to a violation of the property of interest. To

compute this expected distance for each compound state, we compute a Discrete Time
Markov Chain (DTMC) by composing the HMM model H of the monitored program
with the DFSMM for the property. We then add a reward state structure to it, assigning
a cost of 1 to each compound state. We use PRISM [6] to compute, as a reward-based
reachability query, the expected number of steps for each compound state to reach com-
pound states containing dead states of M . Note that these queries are issued in advance
of the actual runtime monitoring, with the results stored in a table for efficient access.

Discrete-Time Markov Chain (DTMC). A Discrete-Time Markov Chain (DTMC) [6]
is a tuple D = (SD, s̃0,P), where SD is a finite set of states, s̃0 ∈ SD is the initial
state, and P : SD × SD → [0, 1] is the transition probability function. P(s̃1, s̃2) is the
probability of making a transition from s̃1 to s̃2.

Reward Structures. DTMCs can be extended with a reward (or cost) structure [6]. A
state reward function ρ is a function from states of the DTMC to non-negative real
numbers, specifying the reward (or cost, depending on the interpretation of the value in
the application of interest) for each state; specifically, ρ(s̃) is the reward acquired if the
DTMC is in state s̃ for 1 time-step.

Composition of an HMM with a DFSM. Given an HMM H = 〈S,A, V,B, π〉 and a
DFSM M = 〈SM ,minit , V, δ, F 〉, their composition is a DTMC D = (SD, s̃0,P),
where SD = (S × SM) ∪ {s̃0}, s̃0 is the initial state, and the transition probability
function P is defined by:

– P(s̃0, (si,minit)) = π, with 1 ≤ i ≤ |S|,
– P((si1 ,mj1), (si2 ,mj2)) = Ai1,i2

∑
∀vk∈V :δ(mi1

,vk)=mi2
bi1(vk).

We extend D with the state reward function such that ρ(s̃) = 1 for all s̃ ∈ SD. With
this reward function, we can calculate the expected number of steps until a particular
state of the DTMC occurs.

Computing the Expected Distance. The expected distance ExpDist(s̃, T) of a state s̃
of the DTMC to reach a set of states T ⊆ SD is defined as the expected cumulative
reward and is computed as follows:

ExpDist(s̃, T) =

∞ if PReach(s̃, T) < 1
0 if s̃ ∈ T
ρ(s̃) +

∑
s̃′∈SD

P(s̃, s̃′) · ExpDist(s̃′, T) otherwise

where PReach(s̃, T) is the probability to eventually reach a state in T starting from
s̃. For further details on quantitative reachability analysis for DTMCs, see [6]. The
expected distance for a monitor instance with compound-state probability distribution
α is then defined by ExpDist(α, T) =

∑
i,j α(i, j) · ExpDist((si,mj), T).

6 Case Study

We evaluate our system by designing a monitor for the lock discipline property and ap-
plying it to the Btrfs file system. This property is implicitly parameterized by a struct
type S that has a lock member, protected fields, and unprotected fields. Informally, the
property requires that all accesses to protected fields occur while the lock is held.

The DFSM MLD(t, o) for the lock discipline property is parameterized by a thread
t and an object o, where o is a particular struct with type S. There are four kinds of
events: LOCK(t, o) (thread t acquires the lock associated with object o), UNLOCK(t, o)
(thread t releases the lock associated with object o), PROT(t, o) (thread t accesses a
protected field of object o), and UNPROT(t, o) (thread t accesses an unprotected field
of object o). The DFSMMLD(t, o) is shown in the lower part of Figure 3(b); the param-
eters t and o are elided to avoid clutter. It requires that thread t’s accesses to protected
fields occur while thread t holds the lock associated with object o, except for accesses
to protected fields before the first time t acquires that lock (such accesses are assumed
to be part of initialization of o).

7 Implementation

Implementing the case study requires a gap-aware monitor and instrumentation that
can intercept monitored events. Both these subsystems must integrate with our over-
head control mechanism. The monitor must be able to recognize potential gaps caused
by overhead control decisions, and the instrumentation must provide a means for the
controller to disable monitoring by halting the interception of events. In addition, our
implementation adapts to RVSE’s criticality estimates by allocating hardware debug-
ging resources to exhaustively monitor a small number of risky objects. This section
discusses the implementation of these systems.

7.1 Gaps

On updating a monitor instance, the monitor processes a gap event before processing
the current intercepted event if monitoring was disabled since the last time the monitor
instance was updated. The gap event indicates that the monitor may have missed one or
more events for the given instance during the time that monitoring was disabled.

The monitor determines whether a gap event is necessary by comparing the time
of the last update to the monitor instance’s state, which is stored along with the state,
with the last time that monitoring was disabled for the current thread. For efficiency, we
measure time using a counter incremented each time monitoring is disabled—a logical
clock—rather than a real-time clock.

7.2 Instrumentation

For our case study, we monitor the lock discipline property for the btrfs space info

struct in the Linux Btrfs file system. Each btrfs space info object has a spinlock,
eight fields protected by the spinlock, and five fields not protected by the spinlock.

Using a custom GCC plug-in, we instrument every function that operates on a
btrfs space info object, either by accessing one of its fields or by acquiring or re-
leasing its spinlock. The instrumented function first has its function body duplicated so
that there is an active path and an inactive path. Only the active path is instrumented for
full monitoring. This allows monitoring to be efficiently enabled or disabled at the gran-
ularity of a function execution. Selecting the inactive path effectively disables monitor-
ing. When a duplicated function executes, it first calls a distributor function that calls
the overhead control system to decide which path to take. We enable and disable mon-
itoring at the granularity of function executions, because deciding to enable or disable
monitoring at the granularity of individual events would incur too much overhead.

Every btrfs space info operation in the active path is instrumented to call the
monitor, which updates the appropriate monitor instance, based on the thread and the
btrfs space info object involved. For fast lookup, all monitor instances associated
with a thread are stored in a hash table local to that thread and indexed by object address.

7.3 Hardware Supervision

Our system prioritizes monitoring of objects with high criticality by placing them under
hardware supervision. Specifically, we use debug registers to monitor every operation
on these objects even when other monitoring is disabled (i.e., when the inactive path is
taken). The debug registers cause the CPU to raise a debug exception whenever an ob-
ject under hardware supervision is accessed, allowing the monitor to observe the access.
Note that this allows monitoring to be enabled and disabled on a per-object basis, for
a limited number of objects, in contrast to the per-function-execution basis described
above. The overhead remaining after monitoring the hardware supervised objects is
distributed to the other objects in the system using the normal overhead control policy.

Our current implementation keeps track of the most critical object in each thread.
Each thread can have its own debug register values, making it possible to exhaustively
track events for one monitor instance in each thread for any number of threads.

Because an x86 debug register can at most watch one 64-bit memory location, we
need a small amount of additional instrumentation to monitor all 13 fields in a super-
vised btrfs space info object. Our plug-in instruments every btrfs space info

field access in the inactive path with an additional read to a dummy field in the same ob-
ject. Setting the debug register to watch the dummy field of a supervised object causes
the program to raise a debug exception whenever any field of that object is accessed
from the inactive path. The debug exception handler calls the monitor to update the
monitor instance for the supervised object.

For btrfs space info spinlock acquire and release operations, we instrument the
inactive path with a simple check to determine if the spinlock belongs to one of the few
supervised objects that should be updated even though monitoring is disabled. We could
use debug registers to remove the need for this check, but we found that overhead from
checking directly was very low, because lock operations occur infrequently compared
to field accesses.

7.4 Training

We collected data from completely monitored runs to train the HMM and learn the
gap length distribution. During training runs for a given overhead level, the distributor
makes monitoring decisions as if overhead control were in effect but does not enforce
those decisions; instead, it always takes the active path. As a result, the system knows
which events would have been missed by taking the inactive path. Based on this infor-
mation, for each event that would have triggered processing of a gap event, we compute
the actual number of events missed for the corresponding monitor instance. The gap
length distribution for the given overhead level is the distribution of those numbers.

Our case study uses a simple overhead-control mechanism in which the target “over-
head level” is specified by the fraction f of function executions to be monitored. For
each function execution, the distributor flips a biased coin, which says “yes” with prob-
ability f , to decide whether to monitor the current function execution. We tested three
different sampling probabilities: 50%, 75%, 85%, and 95%. For each sampling prob-
ability, we precomputed the RVSE distributions with ε = 0.1, thereby obtaining four
RVSE graphs having 12,177, 33,234, 30,645 and 11,622 nodes, respectively.

7.5 Evaluation

We used two different tests to measure how well our prioritization mechanism improved
ARV’s effectiveness. The first test runs with an unmodified version of Btrfs, which does
not contain any lock discipline violations, in order to test how well prioritization avoids
false alarms. The second test runs on a version of Btrfs with an erroneous access that
we inserted, to test if prioritization improves our chances of detecting it. For both of
these tests, we run Racer [12], a workload designed specifically to stress file system
concurrency, on top of a Btrfs-formatted file system, and we report results that are
averaged over multiple runs.

We tested three configurations: 1) hardware supervision disabled, 2) randomly as-
signed hardware supervision, and 3) adaptive hardware supervision that prioritizes crit-
ical objects, as described above. Most threads in the Racer workload had two associated
monitor instances. At any time, our prioritization chose one of those from each thread
to supervise.

The table below shows the results for these tests. Each row in the table is for
one of the three sampling probabilities. For our false alarm test, the columns labeled
FalseAlarm in the table show how many monitor instances had an error probability
higher than 0.8 at the end of the run. Because the run had no errors, lower numbers are
better in this test. For our error detection test, we checked the corresponding monitor
instance immediately after our synthetic error triggered; the columns labeled ErrDet in
the table show the percentage of the times that we found that monitor instance to have
an error probability higher than 0.8, indicating it correctly inferred a likely error. For
this test, higher numbers are better. All results are averaged over multiple runs.

In all cases, hardware supervision improved the false alarm rate and the error de-
tection rate. For the 75% and 85% sampling profiles, adaptive prioritization provides
greater improvement than simply choosing objects at random for supervision. With
50% sampling, adaptive sampling does worse than random, however. In future work,

Sampling No Supervision Random Supervision Adaptive Supervision
Probability FalseAlarm ErrDet FalseAlarm ErrDet FalseAlarm ErrDet
50% 30.3 23.0% 11.7 57.4% 12 50.1%
75% 47 31.2% 36 69.3% 17 79.4%
85% 5502 34.1% 5606 72.3% 5449 85.1%

we intend to improve our criticality metric so that it performs better at lower overheads.
The table also shows that ARV takes advantage of increased sampling rates, success-
fully detecting more errors in the error detection test. We are currently investigating
why performance in the false alarm test declines with higher sampling rates.

8 Related Work

In [2], the authors propose a method for the automatic synthesis and adaptation of in-
variants from the observed behavior of an application. Their overall goal is adaptive
application monitoring, with a focus on interacting software components. In contrast
to our approach, where we learn HMMs, the invariants learned are captured as finite
automata (FA). These FA are necessarily much larger than their corresponding HMMs.
Moreover, error uncertainty, due to inherently limited training during learning, must be
dealt with at runtime, by modifying the FA as needed. They also do not address the
problem of using the synthesized FA for adaptive-control purposes.

A main aspect of our work is our approximation of the RVSE forward algorithm
for state estimation, which pre-computes compound-state probability distributions and
stores them in a graph. In the context of the runtime monitoring of HMMs, the authors
of [10] propose a complementary method for accelerating the estimation of the cur-
rent (hidden) state: Particle filters [4]. This sequential Monte-Carlo estimation method
is particularly useful when the number of states of the HMM is very large, in particu-
lar, much larger than the number of particles (i.e., samples) necessary for obtaining a
sufficiently accurate approximation. This, however, is typically not the case in our set-
ting, where the HMMs are relatively small. Consequently, the Particle filtering method
would have introduced at least as much overhead as the forward algorithm, and would
have therefore also required a priori (and therefore approximate) state estimation.

The runtime verification of HMMs is explored in [9, 3], where highly accurate de-
terministic and randomized methods are presented. In contrast, we are considering the
runtime verification of actual programs, while using probabilistic models of program
behavior in the form of HMMs to fill in gaps in execution sequences.

9 Conclusions

We have presented Adaptive Runtime Verification, a new approach approach to runtime
verification that synergistically combines overhead control, runtime verification with
state estimation, and predictive analysis of monitor criticality levels. We have demon-
strated the utility of the ARV framework through a significant case study involving the
monitoring of concurrency errors in the Linux kernel.

Future work will involve extending the ARV framework with a recovery mechanism
that will come into play when a property violation is detected or imminent. We will also
consider additional case studies, including those that use SMCO [5] for their overhead
control. Fully integrating SMCO will require a new method to compute the probability
distribution on the length of gaps introduced by SMCO for any given target overhead.

Acknowledgements. We thank the anonymous reviewers for their valuable comments.
Research supported in part by AFOSR Grant FA9550-09-1-0481, NSF Grants CCF-
1018459, CCF-0926190, and CNS-0831298, and ONR Grant N00014-07-1-0928.

References

1. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical
Statistics 41(1), 164–171 (1970)

2. Denaro, G., Mariani, L., Pezze, M., Tosi, D.: Adaptive runtime verification for autonomic
communication infrastructures. In: Proc. of the International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM). vol. 2, pp. 553–557. IEEE Com-
puter Society (2005)

3. Gondi, K., Patel, Y., Sistla, A.P.: Monitoring the full range of omega-regular properties of
stochastic systems. In: Proceedings of the 10th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’09). pp. 105–119. Savannah, GA,
USA (2009)

4. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. In: IEEE Proceedings on Radar and Signal Processing. vol. 140, pp. 107–
127. IEEE (1993)

5. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S.A., Stoller, S.D., Zadok,
E.: Software monitoring with controllable overhead. International Journal on Software Tools
for Technology Transfer (STTT) 14(3), 327–347 (2012)

6. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Formal Methods
for Performance Evaluation. Lecture Notes in Computer Science, vol. 4486, pp. 220–270.
Springer (2007)

7. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

8. Seyster, J., Dixit, K., Huang, X., Grosu, R., Havelund, K., Smolka, S.A., Stoller, S.D., Zadok,
E.: InterAspect: Aspect-oriented instrumentation with GCC. Formal Methods in System De-
sign (2012), to appear

9. Sistla, A.P., Srinivas, A.R.: Monitoring temporal properties of stochastic systems. In: Pro-
ceedings of the Ninth International Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI’08). pp. 185–212. San Francisco, CA, USA (2008)

10. Sistla, A., Zefran, M., Feng, Y.: Monitorability of stochastic dynamical systems. In: Proc.
23rd International Conference on Computer Aided Verification (CAV 2011). Lecture Notes
in Computer Science, vol. 6806, pp. 720–736. Springer (2011)

11. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A., Zadok, E.:
Runtime verification with state estimation. In: Proc. 2nd International Conference on Run-
time Verification (RV’11). San Fransisco, CA (September 2011), (Won best paper award)

12. Subrata Modak: Linux Test Project (LTP) (2009), http://ltp.sourceforge.net/

