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Abstract

Relationship-based access control (ReBAC) provides a high level of expressiveness and flexibility that

promotes security and information sharing. We formulate ReBAC as an object-oriented extension of

attribute-based access control (ABAC) in which relationships are expressed using fields that refer to

other objects, and path expressions are used to follow chains of relationships between objects.

ReBAC policy mining algorithms have potential to significantly reduce the cost of migration from

legacy access control systems to ReBAC, by partially automating the development of a ReBAC policy

from an existing access control policy and attribute data. This paper presents two algorithms for mining

ReBAC policies from access control lists (ACLs) and attribute data represented as an object model: a

greedy algorithm guided by heuristics, and a grammar-based evolutionary algorithm. An evaluation of

the algorithms on four sample policies and two large case studies demonstrates their effectiveness.

Keywords: access control policy mining; relationship-based access control; attribute-based access control;

evolutionary algorithms; access control policy development

1 Introduction

The term relationship-based access control (ReBAC) was introduced to describe access control policies ex-

pressed in terms of interpersonal relationships in social network systems (SNSs) [Gat07]. The underlying

principle of expressing access control policies in terms of chains of relationships between entities is equally

applicable and beneficial in general computing systems: it increases expressiveness and often allows more

natural policies. This paper presents ORAL (Object-oriented Relationship-based Access-control Language),

a ReBAC language formulated as an object-oriented extension of ABAC. Relationships are expressed using

attributes that refer to other objects, including subjects and resources, and path expressions are used to

follow chains of relationships between objects. In ORAL, a ReBAC policy consists of a class model, an

object model, and access control rules. Section 2 compares ORAL with previous ReBAC models.

High-level access control policy models such as ABAC and ReBAC are becoming increasingly important,

as policies become more dynamic and more complex. This is reflected in the widespread transition from

access control lists (ACLs) to role-based access control (RBAC), and more recently in the ongoing transition

from ACLs and RBAC to attribute-based access control (ABAC). In industry, more and more products

support ABAC, using a standardized ABAC language such as XACML [XAC] or a vendor-specific ABAC
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language. In government, the Federal Chief Information Officer Council called out ABAC as a recommended

access control model [Fed11, HFK+13]. ABAC allows “an unprecedented amount of flexibility and security

while promoting information sharing between diverse and often disparate organizations” [HFK+13]. ABAC

and ReBAC overcome some of the problems associated with RBAC, notably role explosion [HFK+13], which

makes RBAC policies large and hard to manage. High-level policy models allow concise policies and promise

long-term cost savings through reduced management effort.

The cost of manually developing an initial high-level policy is a barrier to adoption of high-level policy

models [HFK+13]. Policy mining algorithms promise to drastically reduce this cost, by partially automating

the process. Role mining, i.e., mining of RBAC policies, is an active research area (e.g., [KSS03, SS05,

VAW06, VAG07, GVA08, FP08, LVA08, CDPOV09, MCL+10, VAWG10, CDV12, VVAC12, XS12, FBB13,

XS13, MSVA16a, MSVA16b, SB17]) and a relatively small (about $70 million as of 2012) but rapidly growing

commercial market segment [HCBC12]. Role mining is supported by several commercial products, including

CA Technologies Identity Governance, Courion RoleCourier, IBM Tivoli Access Manager, Oracle Identity

Analytics, NEXIS contROLE, and Novell Access Governance Suite. Research on ABAC policy mining is in

the early stages, with initial work by Xu and Stoller [XS15, XS14b, XS14a] and Medvet, Bartoli, Carminati,

and Ferrari [MBCF15]. There is no prior work on mining of ReBAC policies (or object-oriented ABAC

policies with path expressions).

This paper defines the ReBAC policy mining problem and presents the first algorithms for mining ReBAC

policies from ACLs and attribute data represented as object models. It is easy to show that the problem is

NP-hard, based on Xu and Stoller’s proof that ABAC policy mining is NP-hard [XS15]. Since we desire an

efficient and practical algorithm, our algorithms are not guaranteed to generate an optimal policy.

Our greedy algorithm, based on Xu and Stoller’s algorithm for mining ABAC policies from ACLs [XS15],

has three phases. In the first phase, it iterates over tuples in the subject-permission relation, uses selected

tuples as seeds for constructing candidate rules, and attempts to generalize each candidate rule to cover

additional tuples in the subject-permission relation by replacing conditions on user attributes or resource

attributes with constraints that relate user attributes with resource attributes. The algorithm greedily

selects the highest-quality generalization according to a rule quality metric based primarily on the ratio of

the number of previously uncovered subject-permission tuples covered by the rule to the size of the rule. The

first phase ends when the set of candidate rules covers the entire subject-permission relation. The second

phase attempts to improve the policy by merging and simplifying candidate rules. The third phase selects

the highest-quality candidate rules for inclusion in the mined policy.

Our evolutionary algorithm, inspired by Medvet et al.’s evolutionary algorithm for mining ABAC policies,

uses grammar-based genetic programming [Whi95, MHW+10]. It has two phases. In the first phase, it

iterates over tuples in the subject-permission relation, and uses each of the selected tuples as the seed for

an evolutionary search that adds one new rule to the candidate policy. Each evolutionary search starts

with an initial population containing candidate rules created from a seed tuple in a similar way as in our

greedy algorithm along with numerous random variants of those rules together with some completely random

candidate rules, evolves the population by repeatedly applying genetic operators (mutations and crossover),

and then selects the highest quality rule in the population as the result of that evolutionary search. The

second phase attempts to improve the candidate rules by further mutating them.

We evaluate our algorithms on four relatively small but non-trivial sample policies and two larger and

more complex case studies, based on Software-as-a-Service (SaaS) applications offered by real companies

[DBLJ14a, DBLJ14b]. To the best of our knowledge, the latter are the largest rule-based policies (as

measured by the number and complexity of the rules) used in the evaluation of any policy mining algorithm

targeting a rule-based policy language.

Our evaluation methodology is to start with a ReBAC policy, generate ACLs representing the subject-

permission relation, run a policy mining algorithm on the generated ACLs (along with the class model and
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object model), and compare the ReBAC policy mined from ACLs with the original ReBAC policy. For the

four sample policies, both of our policy mining algorithms achieve optimal or nearly optimal results. For the

case studies, our greedy algorithm and evolutionary algorithm achieve 84% and 91% (respectively) average

syntactic similarity between the mined policy and a simplified but equivalent version of the original policy.

Experiments on object models of varying size for the two case studies show that both algorithms have good

performance and scale reasonably well: as a function of the number of subject-permission tuples, the running

time of the greedy algorithm is less than quadratic, and the running time of the evolutionary algorithm is

close to linear.

We conclude that both algorithms produce high-quality mined policies that, if used as a starting point

for development for a ReBAC policy, would save the policy developers a significant amount of effort.

This paper is a revised and greatly extended version of a SACMAT 2017 short paper [BSL17], which briefly

described an earlier version of our greedy algorithm and presented experimental results for it. The most

significant addition in this paper is our evolutionary algorithm, and the experimental results comparing the

effectiveness and performance of our two algorithms. Other notable additions are more detailed description

of our greedy algorithm, an example that illustrates the working of our greedy algorithm, and more detailed

descriptions of the sample policies and case studies.

2 Related Work

We discuss related work on policy models and related work on policy mining.

2.1 Policy Models

Entity-Based Access Control (EBAC) [BDLJ15] is the policy model most closely related to ours. EBAC

is quite similar to ORAL, except that it is based on entity-relationship models, instead of object-oriented

models, and hence lacks the concept of inheritance, which ORAL includes. EBAC’s expression language

includes quantifiers, and ORAL does not, although some conditions that require quantifiers in their language

can be expressed in ORAL using the built-in binary relations on sets, such as ⊇.

Several ReBAC models have been proposed, by Carminati, Ferrari, and Perego [CFP09], Fong [Fon11],

Cheng, Park, and Sandhu [CPS12], Hu, Ahn, and Jorgensen [HAJ13], Crampton and Sellwood [CS14], and

others. Some are designed specifically for OSNs, while others are designed for general use. Our model differs

from all of them because it is designed as a (nearly) minimal extension of a typical ABAC language, and

the extension is achieved by adopting an object-oriented model and incorporating standard object-oriented

concepts, notably path expressions, like in UML’s Object Constraint Language (OCL) (http://www.omg.

org/spec/OCL/). None of these ReBAC models are based on general object-oriented data models. None of

these ReBAC models can express constraints relating fields (a.k.a. attributes) of different entities, such as

the constraint subject.affiliation ∈ resource.patient.registrations in the ORAL rule in Equation (1). In this

regard, ORAL is significantly more expressive.

On the other hand, ORAL lacks some features found in some of these ReBAC models, such as transitive

closure (e.g., supervisor∗ refers to the subject’s supervisor, the subject’s supervisor’s supervisor, and so on),

negation (e.g., dept 6= CS), and graph patterns (which can specify more than a single path). Many realistic

applications do not require these language features; on the other hand, they are useful for some applications.

These features can easily be added to our policy language. However, developing policy mining algorithms

that fully exploit them may be difficult. That challenge is future work.

The languages in [Fon11, CPS12, BHFS12, CS14] allow every relation to be traversed in reverse. ORAL,

like EBAC and OCL, does not; instead, the policy designer explicitly enables reverse traversal where appro-
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priate by including a field in the reverse direction (this corresponds to using a bidirectional association in

the UML class model).

Our access control model can be characterized as object-oriented ABAC. We prefer to characterize it as

ReBAC to emphasize the difference from typical ABAC languages such as XACML. In XACML, attributes

values are primitive values, such as numbers or strings, or collections thereof, not object references. Primitive

values can be (and often are) object identifiers, but they cannot be dereferenced, so policies that require

path expressions cannot be expressed. For example, XACML can express the condition user.dept=CS

but not user.dept.college=ENG. This limitation is typically circumvented by duplicating information, e.g.,

introducing an attribute user.college. This workaround is inefficient and increases the administrative burden,

because user.college must be updated whenever user.dept is updated; in our framework, user.dept.college

automatically has the correct value after user.dept is updated. Next Generation Access Control (NGAC) is

an ABAC standard being developed at NIST [FCHK16]. Its data model is richer than XACML’s, allowing

nested collections of entities, but it does not adopt a general object-oriented view in which subjects, resources,

and other types of objects are modeled in a uniform way, and it does not support general path expressions.

2.2 Policy Mining

There is no prior work on mining of ReBAC policies (or object-oriented ABAC policies with path expressions).

The most closely related prior work on policy mining is for ABAC policies without path expressions.

Xu and Stoller developed the first algorithms for mining ABAC policies, from attribute data plus ACLs

[XS15], roles [XS14b], or access logs [XS14a]. Our greedy algorithm is based on their algorithm for mining

ABAC policies from ACLs [XS15]. Adapting their algorithm to be suitable for ReBAC mining required many

changes, most notably generalization of loops over attributes to iterate over paths when generating conditions

and constraints; specifically, we introduce the idea of generating constraints based on paths between classes

in the graph representation of the class model. The technique for merging rules for sibling classes into a rule

for an ancestor class is also new. We also modified the algorithm to accommodate changes in the supported

relational operators: in conditions, we allow “in” and “contains”, instead of “equal” and “supseteq” in

[XS15]; in constraints, we allow “in” in addition to “equal”, “contains”, and “supseteq” allowed in [XS15].

Other algorithm differences include deferring removal of redundant rules (by modifying mergeRules not

to remove redundant rules, and removing redundant rules before final rule selection) and adding a third

component to the rule quality metric. We also introduce several techniques to limit and prioritize the paths

being considered, since naively considering all type-correct paths would make the algorithm prohibitively

expensive, even for small policies. For example, when generating constraints, we base them only on the

shortest and nearly-shortest paths between classes in the class model.

Medvet et al.’s evolutionary algorithm for ABAC policy mining [MBCF15] inspired our evolutionary

algorithm for ReBAC policy mining. Our algorithm, like theirs, has an evolutionary search phase using

the separate-and-conquer strategy, followed by an improvement phase. The separate-and-conquer strategy

[BLMT15], which in the context of policy mining means learning one rule at a time, instead of an entire policy

at once, is essential to obtain good results. We also adopt their fitness function, which, in turn, is based on

Xu and Stoller’s rule quality metric [XS15]. A key difference is that Medvet et al.’s algorithm uses an ad-hoc

application-specific genotype (i.e., representation of individuals) together with genetic operators specifically

designed to operate on that genotype. In contrast, we adopt the general and well-studied framework of

grammar-based genetic programming [Whi95, MHW+10]: we represent individuals as derivation trees, and

we use genetic operators that operate on derivation trees. We use the classical mutation and crossover

operators on derivation trees but also introduce a few more genetic operators specialized to the general

structure of our grammars (e.g., non-terminals for conditions and actions are treated differently), which

enable the evolutionary search to produce high-quality rules much more quickly. The operators are not
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specific to details of the predicate language, so our algorithm can easily be applied to extensions of the

policy language with additional datatypes and relational operators. Another difference from Medvet et

al.’s algorithm is that our algorithm uses a more complicated construction for the initial population of each

evolutionary search. These features enable our algorithm to achieve good results with reasonable computation

time, despite the significantly larger search space for ReBAC policies compared with ABAC policies. Also,

Medvet et al.’s algorithm was evaluated only on policies comparable in size to our four sample policies, not

on large policies comparable to our two case studies.

Cotrini et al.’s algorithm for mining ABAC rules from sparse logs [CWB15] is based on APRIORI-SD, a

machine-learning algorithm for subgroup discovery. “Sparse” means that only a small fraction of the possible

entitlements appear in the log. Therefore, the algorithm must extrapolate significantly to determine which

entitlements not in the log should be granted, and which should be denied. They formulate a novel heuristic

to identify suspected over-permissiveness of ABAC rules. Their algorithm searches for succinct rules that

have high confidence and are not overly permissive according to their heuristic.

3 Policy Language

This section presents our policy language, ORAL. It contains common ABAC constructs, similar to those in

[XS15], plus path expressions.

A ReBAC policy is a tuple π = 〈CM ,OM ,Act ,Rules〉, where CM is a class model, OM is an object

model, Act is a set of actions, and Rules is a set of rules.

A class model is a set of class declarations. A class declaration is a tuple 〈className, parent ,fields〉
where parent is a class name or the empty string (indicating that the class does not have a parent), and

fields is a set of field declarations. A field declaration is a tuple 〈fieldName, type,multiplicity〉, where type

is a class name or Boolean, and multiplicity is optional, one, or many. The multiplicity specifies how many

values of the specified type may be stored in the field and is “one” (also denoted “1”, meaning exactly one),

“optional” (also denoted “?”, meaning zero or one), or “many” (also denoted “*”, meaning any natural

number). Boolean fields always have multiplicity 1. Every class implicitly contains a field “id” with type

String. We keep the language minimal by not allowing user-defined fields with type string and by omitting

other base types (e.g., numbers); they could easily be added. However, their effect can be achieved using a

field that refers to an object having the desired string as its id. Thus, the set of types in a policy contains

Boolean, String, and the names of the declared classes. A reference type is any class name (used as a type).

An object model is a set of objects whose types are consistent with the class model and with unique values

in the id field. An object is a tuple 〈className,fieldVals〉, where fieldVals is a function that maps the names

of fields of the specified class, including the id field and inherited fields, to values consistent with the types

and multiplicities of the fields. The value of a field with multiplicity many is a set. The value of a field with

multiplicity one or optional is a single value; the special placeholder ⊥ is used when a field with multiplicity

optional lacks an actual value. Let type(o) denote the type of an object o.

A condition is a set, interpreted as a conjunction, of atomic conditions. We often refer to the atomic

conditions as conjuncts. An atomic condition is a tuple 〈p, op, val〉, where p is a non-empty path, op is an

operator, either “in” or “contains”, and val is a constant (specifically, a Boolean value or string) or a set of

constants. If val is a single constant, not a set, we say that it is atomic. Note that val cannot equal or contain

the placeholder ⊥. A path is a sequence of field names, written with “.” as a separator. For example, if dept

and id are field names, then dept.id is a path. For readability, we usually write conditions with a logic-based

syntax, using “∈” for “in” and “3” for “contains”. For example, we may write 〈dept.id, in, {CompSci}〉 as

dept.id ∈ {CompSci}. We may use “=” as syntactic sugar for “in” when the constant is a singleton set;

thus, the previous example may be written as dept.id=CompSci. A condition may contain multiple atomic
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conditions on the same path.

A constraint is a set, interpreted as a conjunction, of atomic constraints. Informally, an atomic constraint

expresses a relationship between the requesting subject and the requested resource, by relating the values

of paths starting from each of them. An atomic constraint is a tuple 〈p1, op, p2〉, where p1 and p2 are

paths (possibly the empty sequence), and op is one of the following four operators: equal, in, contains,

supseteq. The “contains” operator is the transpose of the “in” operator. Implicitly, the first path is relative

to the requesting subject, and the second path is relative to the requested resource. The empty path

represents the subject or resource itself. For readability, we usually write constraints with a logic-based

syntax, using “=” for “equal” and “⊇” for “supseteq”, and we prefix the subject path p1 and resource path

p2 with “subject” and “resource”, respectively. For example, 〈specialties, contains, topic〉 may be written as

subject.specialties 3 resource.topic.

A rule is a tuple 〈subjectType, subjectCondition, resourceType, resourceCondition, constraint , actions〉,
where subjectType and resourceType are class names, subjectCondition and resourceCondition are condi-

tions, constraint is a constraint, actions is a set of actions, and the following well-formedness requirements

are satisfied. Implicitly, the paths in subjectCondition and resourceCondition are relative to the requesting

subject and requested resource, respectively. The type of a path p (relative to a specified class), denoted

type(p), is the type of the last field in the path. The multiplicity of a path p (relative to a specified class),

denoted multiplicity(p), is one if all fields on the path have multiplicity one, is many if any field on the path

has multiplicity many, and is optional otherwise.

Examples. We give three example rules here. As additional examples, all of the sample policies and

case studies described in Section 7 are available on the web, in the ReBAC Miner release at http://www.

cs.stonybrook.edu/~stoller/software/. In examples, we prefix the path in the subject condition and

resource condition with “subject” and “resource”, respectively, for readability. Our electronic medical records

sample policy contains the rule: A physician can create a medical record associated with a consultation if

the physician is not a trainee, the consultation is with the physician, and the patient of the consultation is

registered at the hospital with which the physician is affiliated. This is expressed as

ρ = 〈Physician, subject.isTrainee=false,Consultation, true,

subject = resource.physician ∧ subject.affiliation ∈ resource.patient.registrations,

{createMedicalRecord}〉.

(1)

Our healthcare sample policy contains the rule: A doctor can read an item in a HR for a patient treated by one

of the teams of which he/she is a member, if the topics of the item are among his/her specialties. This is ex-

pressed as 〈Doctor, true, HealthRecordItem, true, subject.teams contains resource.record.patient.treatingTeam

∧ subject.specialties ⊇ resource.topics, {read}〉, where HealthRecordItem.record is the health record con-

taining the HR item. Our e-document case study involves a large bank whose policy contains the rule:

A project member can read all sent documents regarding the project. This is expressed as 〈Employee,

subject.employer.id = LargeBank, Document, true, subject.workOn.relatedDoc 3 resource, {read}〉, where

Employee.workOn is the set of projects the employee is working on, and Project.relatedDoc is the set of

documents related to the project.

Well-formedness requirements on rules are as follows. (1) All paths are type-correct, assuming the subject

and resource have type subjectType and resourceType, respectively. (2) (a) The two paths in the constraint

have the same type, and (b) this type is not String. Part (a) reflects the assumption that comparing objects

of different types is either meaningless or useless (since it would be equivalent to “false”). Part (b) prohibits

constraints that compare identifiers of objects with different types, which would be meaningless. It does not

reduce the expressiveness of the model, because a constraint violating it, such as specialties.id 3 topic.id, can
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be written more simply as specialties 3 topic. (3) The path in the condition does not have reference type.

This reflects the fact that our language does not allow constants with reference type. (4) In conditions with

operator “in”, the path has multiplicity optional or one, and the value is a set of constants. This excludes

sets of sets from the model. (5) In conditions with operator “contains”, the path has multiplicity many, and

the value is atomic. (6) In constraints with operator “equal”, both paths have multiplicity optional or one.

(7) In constraints with operator “in”, the first path has multiplicity optional or one, and the second path

has multiplicity many. (8) In constraints with operator “contains”, the first path has multiplicity many, and

the second path has multiplicity optional or one. (9) In constraints with operator “supseteq”, both paths

have multiplicity many.

Any class can be used as a subject type, resource type, or both. For example, one rule could allow doctors

to read medical records, and another rule could allow department heads to assign doctors to workgroups.

For a rule ρ = 〈st, sc, rt, rc, c, A〉, let sType(ρ) = st, sCond(ρ) = sc, rType(ρ) = rt, rCond(ρ) = rc,

con(ρ) = c, and acts(ρ) = A.

A permission is a pair 〈r, a〉, where r is an object, and a is an action; it represents authorization to

perform action a on resource r. A subject-permission tuple is a tuple 〈s, r, a〉, where s is an object, and

〈r, a〉 is a permission; it means that subject s has permission 〈r, a〉. A subject-permission relation is a set of

subject-permission tuples.

Given a class model, object model, object o, and path p, let nav(o, p) be the result of navigating (a.k.a.

following or dereferencing) path p starting from object o. The class model and object model are implicit

arguments to this relation and the following relations. We elide these arguments, because in our setting,

they are unchanging in the context of a given policy. The result of navigating might be no value, represented

by the placeholder ⊥, an atomic value, or a set. A set may be obtained if any field along the path (not

necessarily the last field) has multiplicity many. This is like the semantics of path navigation in UML’s

Object Constraint Language (OCL) (http://www.omg.org/spec/OCL/).

An object o satisfies an atomic condition c = 〈p, op, val〉, denoted o |= c, if (op = in ∧ nav(o, p) ∈
val) ∨ (op = contains ∧ nav(o, p) 3 val). The meaning of a condition c relative to a class C, denoted [[c]]C is

the set of instances of C (in the implicitly given object model) that satisfy c. A condition c characterizes a

set O of objects of class C if O is the meaning of c relative to C.

Objects o1 and o2 satisfy an atomic constraint c = 〈p1, op, p2〉, denoted 〈o1, o2〉 |= c, if (op = equal ∧
nav(o1, p1) = nav(o2, p2))∨(op = in∧nav(o1, p1) ∈ nav(o2, p2))∨(op = contains∧nav(o1, p1) 3 nav(o2, p2))∨
(op = supseteq ∧ nav(o1, p1) ⊇ nav(o2, p2)).

A subject-permission tuple 〈s, r, a〉 satisfies a rule ρ = 〈st, sc, rt, rc, c, A〉, denoted 〈s, r, a〉 |= ρ, if

type(s) = st ∧ s |= sc ∧ type(r) = rt ∧ r |= rc ∧ 〈s, r〉 |= c ∧ a ∈ A.

The meaning of a rule ρ, denoted [[ρ]], is the subject-permission relation it induces, defined as [[ρ]] =

{〈s, r, a〉 ∈ OM ×OM ×Act | 〈s, r, a〉 |= ρ}.
The meaning of a ReBAC policy π, denoted [[π]], is the subject-permission relation it induces, defined as

the union of the meanings of its rules.

4 Problem Definition

An access control list (ACL) policy is a tuple 〈CM ,OM ,Act ,SP0〉, where CM is a class model, OM is

an object model, Act is a set of actions, and SP0 ⊆ OM × OM × Act is a subject-permission relation.

Conceptually, SP0 is the union of the resources’ access control lists.

An ReBAC policy π is consistent with an ACL policy 〈CM ,OM , Act , SP0〉 if they have the same class

model, object model, and actions and [[π]] = SP0.

An ReBAC policy consistent with a given ACL policy can be trivially constructed, by creating a separate
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rule corresponding to each subject-permission tuple in the ACL policy, using a condition “id=...” to identify

the relevant subject and resource. Of course, such a ReBAC policy is as verbose and hard to manage as the

original ACL policy. Therefore, we must decide: among ReBAC policies consistent with a given ACL policy

π0, which ones are preferable? We adopt two criteria.

One criterion is that the “id’ field should be avoided when possible, because policies that use this field

are (to that extent) identity-based, not attribute-based or relationship-based. Therefore, our definition of

ReBAC policy mining requires that these attributes are used only when necessary, i.e., only when every

ReBAC policy consistent with π0 contains rules that use them.

The other criterion is to maximize a policy quality metric. A policy quality metric is a function Qpol from

ReBAC policies to a totally-ordered set, such as the natural numbers. The ordering is chosen so that small

values indicate high quality; this is natural for metrics based on policy size. For generality, we parameterize

the policy mining problem by the policy quality metric.

The ReBAC policy mining problem is: given an ACL policy π0 = 〈CM ,OM , Act ,SP0〉 and a policy

quality metric Qpol, find a set Rules of rules such that the ReBAC policy π = 〈CM ,OM ,Act ,Rules〉 is

consistent with π0, uses the “id” field only when necessary, and has the best quality, according to Qpol,

among such policies.

The policy quality metric that our algorithm aims to optimize is weighted structural complexity (WSC),

a generalization of policy size first introduced for RBAC policies [MCL+10] and later extended to ABAC

[XS15]. Minimizing policy size is consistent with prior work on ABAC mining and role mining and with

usability studies showing that more concise access control policies are more manageable [BM13]. Informally,

the WSC of a ReBAC policy is a weighted sum of the numbers of elements of each kind in the policy.

Formally, the WSC of a ReBAC policy π, denoted WSC(π), is the sum of the WSC of its rules, defined

bottom-up as follows. The WSC of an atomic condition 〈p, op, val〉 is |p| + |val |, where |p| is the length of

path p, and |val | is 1 if val is an atomic value and is the cardinality of val if val is a set. The WSC of

an atomic constraint 〈p1, op, p2〉 is |p1| + |p2|. The WSC of a condition c, denoted WSCcnd(c), is the sum

of the WSC of the constituent atomic conditions. The WSC of a constraint c, denoted WSCcns(c), is the

sum of the WSC of the constituent atomic constraints. The WSC of a rule is WSC(〈st, sc, rt, rc, c, A〉) =

w1WSCcnd(sc) + w1WSCcnd(rc) + w2WSCcns(c) + w3|A|, where |A| is the cardinality of set A, and the wi
are user-specified weights.

5 Greedy Algorithm

This section presents our greedy algorithm. It is based on the ABAC policy mining algorithm in [XS15].

The main differences are summarized in Section 2.

Top-level pseudocode appears in Figure 1. It reflects the high-level structure described in Section 1. We

refer to the tuples selected in the first statement of the first while loop as seeds. The top-level pseudocode

is explained by embedded comments. It calls several functions, described next. For some functions, we give

a description in the text and pseudocode; for others, we give only a description, to save space. Function

names hyperlink to pseudocode for the function, if it is included in the paper, otherwise to the description

of the function.

The workset uncovSP in Figure 1 is a priority queue sorted in descending lexicographic order by the

quality Qsp of the subject-permission tuple. Informally, Qsp(〈s, r, a〉) is a triple whose first two components

are the frequency of permission 〈r, a〉 and subject s, respectively, i.e., their numbers of occurrences in SP0,

and whose third component (included as a tie-breaker to ensure a total order) is the string representation of

the tuple.

freq(〈r, a〉) = |{〈s′, r′, a′〉 ∈ SP0 | r′ = r ∧ a′ = a}|
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// Phase 1: Create a set Rules of candidate rules that covers SP0.
Rules = ∅
// uncovSP contains tuples in SP0 that are not covered by Rules
uncovSP = SP0.copy()
while ¬uncovSP .isEmpty()

// Use highest-quality uncovered tuple as a “seed” for rule creation.
〈s, r, a〉 = highest-quality tuple in uncovSP according to Qsp

cc = candidateConstraint(s, r)
// ss contains subjects with permission 〈r, a〉 and that have
// the same candidate constraint for r as s
ss = {s′ ∈ OM | type(s′) = type(s) ∧ 〈s′, r, a〉 ∈ SP0

∧ candidateConstraint(s′, r) = cc}
addCandidateRule(type(s), ss, type(r), {r}, cc, {a}, uncovSP ,Rules)
// sa is set of actions that s can perform on r
sa = {a′ | 〈s, r, a′〉 ∈ SP0}
addCandidateRule(type(s), {s}, type(r), {r}, cc, sa, uncovSP ,Rules)

end while
// Phase 2: Combine rules using least upper bound and inheritance.
// Also, simplify them and remove redundant rules.
mergeRulesAndSimplify(Rules)
mergeRulesInheritance(Rules)
mergeRulesAndSimplify(Rules)
// Remove redundant rules
while Rules contains rules ρ and ρ′ such that [[ρ]] ⊆ [[ρ′]]

Rules.remove(ρ)
end while
// Phase 3: Select high quality rules into Rules ′.
Rules ′ = ∅
Repeatedly move highest-quality rule from Rules to Rules ′ until

∑
ρ∈Rules′ [[ρ]] ⊇ SP0,

using SP0 \
[[

Rules ′
]]

as second argument to Qrul, and discarding a rule if it does not
cover any tuples in SP0 currently uncovered by Rules ′.
return Rules ′

Figure 1: Greedy algorithm for ReBAC policy mining. Inputs: subject-permission relation SP0, class model
CM , and object model OM . Output: set of rules Rules ′. The algorithm also has numerical parameters
MCSE, MSPL, MRPL, SPED, RPED, and MTPL that limit the considered rules, as described in the text.

freq(s) = |{〈s′, r′, a′〉 ∈ SP0 | s′ = s}|
Qsp(〈s, r, a〉) = 〈freq(〈r, a〉), freq(s), toString(〈s, r , a〉)〉

The function candidateConstraint(s, r) in Figure 2 returns a set containing all the atomic constraints

that hold between resource r and subject s and satisfy path length constraints described below. It first

computes a set cc of candidate constraints using type-correct short paths to each type T reachable from

both type(s) and type(r) in graph(CM ), which is defined to be a graph with a vertex for each class, and

an edge from class c1 to class c2 if c1 has a field with type c2. It then selects and returns the candidate

constraints satisfied by 〈s, r〉. This algorithm infers only constraints where the paths have reference types.

It could easily be extended to infer constraints where the paths have type Boolean, but such constraints

do not arise in our case studies. It uses the following auxiliary functions. The function reach(T ) returns

the set of classes reachable from T in graph(CM ), including their superclasses. The function paths(T, T ′, L)

returns all paths from T to T ′ in graph(CM ) whose length is at most L more than the length of the shortest
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function candidateConstraint(s, r)
// cc is the set of type-correct candidate constraints
cc = ∅
for T in (reach(type(s)) ∩ reach(type(r)))

// add candidate constraints where the paths have type T
for p1 in paths(type(s), T,SPED)

for p2 in paths(type(r), T,RPED) such that |p1|+ |p2| ≤ MTPL
cc.add(〈p1, opFromMul(multiplicity(p1),multiplicity(p2)), p2〉)

end for
end for

end for
return {c ∈ cc | 〈s, r〉 |= c}

Figure 2: Compute candidate constraints for subject s and resource r

function addCandidateRule(st, ss, rt, sr, cc, sa, uncovSP ,Rules)
// Construct a rule ρ that covers subject-permission tuples {〈s, r, a〉 ∈ SP0 | s ∈ ss ∧ r ∈ sr ∧ a ∈ sa}.
sc = computeCondition(ss, st,MSPL);
rc = computeCondition(sr, rt,MRPL)
ρ = 〈st, sc, rt, rc, ∅, sa〉
ρ′ = generalizeRule(ρ, cc, uncovSP ,Rules)
Rules.add(ρ′)
uncovSP .removeAll([[ρ′]])

Figure 3: Compute a candidate rule and add it to Rules

path from T to T ′. This reflects our observation that paths in constraints in case studies are the shortest

paths between the relevant types or slightly longer. SPED (mnemonic for “subject path extra distance”)

and RPED (mnemonic for “resource path extra distance”) are parameters of the algorithm. We also observe

that the subject path and resource path typically do not both have the maximum allowed length in the same

constraint, so we introduce a parameter MTPL (mnemonic for “maximum total path length”) that limits

the sum of the lengths of these paths in a constraint.

The function opFromMul(m,m′) returns the relational operator suitable for left and right operands with

multiplicity m and m′, respectively.

opFromMul(m,m′) = (〈m,m′〉=〈many,many〉 ? supseteq : (m=many ? contains : (m′=many ? in : equal)))

The function addCandidateRule(st, ss, rt, sr, cc, sa, uncovSP ,Rules) in Figure 3 calls computeCondition

to compute conditions sc and rc that characterizes ss and sr, respectively. MSPL and MRPL are the maxi-

mum path length for paths in the subject condition and resource condition, respectively; they are parameters

of the algorithm. addCandidateRule then constructs a rule ρ = 〈st, sc, rt, rc, ∅, sa〉, calls generalizeRule

to generalize ρ to ρ′ and adds ρ′ to candidate rule set Rules. The details of the functions called by

addCandidateRule are described next.

The function computeCondition(O,C,L) in Figure 4 computes a condition C that characterizes the set

O of objects of type C using paths of length at most L. A path with multiplicity optional or one appears

in at most one conjunct, of the form 〈p, in, V 〉 where V is the collected values of o.p for o in O. A path

with multiplicity many may appear in multiple conjuncts, of the form 〈p, contains, val〉 where val is in the

intersection of the values of o.p for o in O. First, paths not containing the id field are considered. If

the resulting condition does not characterize O, then (by construction) it is an over-approximation, and a
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function computeCondition(O,C,L)
// First try to characterize set O without using “id” field.
c = new Set()
for each path p s.t. (p is type-correct starting from C) ∧ |p| ≤ L ∧ (p does not contain “id”)

vals = {nav(o, p) | o ∈ O}
if ⊥ 6∈ vals
if multiplicity(p) ∈ {optional, one}
c.add(〈p, in, vals〉)

else // multiplicity(p) = many
I = intersection of the sets in vals
for val in I
c.add(〈p, contains, val〉)

end for
end if

end if
end for
if [[c]]C 6= O

// “id” field is needed to characterize O.
c.add(〈id, in, {nav(o, id | o ∈ O}〉)

end if
return c

Figure 4: Compute a condition that characterizes set O of objects of type C, using paths of length at most
L.

conjunct using the “id” field is added to ensure that the resulting condition characterizes O. The condition

returned by computeCondition might not be minimum-sized among conditions that characterize O: possibly

some conjuncts can be deleted without changing the condition’s meaning. We defer minimization of the

condition until after the call to generalizeRule (described below), because minimizing the condition before

that would reduce opportunities to find constraints in generalizeRule.

A rule ρ is valid, denoted valid(ρ), if [[ρ]] ⊆ SP0.

The function generalizeRule(ρ, cc, uncovSP ,Rules) in Figure 5 attempts to generalize rule ρ by adding

some atomic constraints in cc to ρ and eliminating the conjuncts of the subject condition and resource

condition that use the same paths as those constraints. A rule obtained in this way is called a generalization

of ρ. It is more general in the sense that it refers to relationships instead of specific values. The meaning

of a generalization of ρ is a superset of the meaning of ρ. In more detail, generalizeRule tries to generalize

ρ using each constraint in cc separately, discards the invalid generalizations, sorts the valid generalizations

in descending order of the number of covered entitlements in uncovSP , recursively tries to further generalize

each of them using constraints from cc that produced valid generalizations later in the sort order, and then

returns the highest-quality rule among them (rule quality is defined below); if no generalizations of ρ are

valid, it simply returns ρ. When trying to add an atomic constraint c in cc to a rule ρ, generalizeRule first

tries removing the conjuncts of the subject condition and resource condition that use the same paths as c.

If the resulting rule is invalid, it attempts a more conservative generalization by removing only the conjunct

in the subject condition that uses the same path as c. If that rule is also invalid, it instead removes only the

conjunct in the resource condition that uses the same path as c. If that rule is also invalid, then there is no

valid generalization of ρ using c.

A rule quality metric is a function Qrul(ρ,SP) that maps a rule ρ to a totally-ordered set, with the order

chosen such that larger values indicate higher quality. The second argument SP is a set of subject-permission

tuples. Based on our primary goal of minimizing the mined policy’s WSC, a secondary preference for rules
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with more atomic constraints, and a tertiary preference for rules with shorter paths in atomic constraints,

we define

Qrul(ρ,SP) = 〈| [[ρ]] ∩ SP |/WSC(ρ), |con(ρ)|, 1/TCPL(ρ)〉

where TCPL(ρ) (“total constraint path length”) is the sum of the lengths of the paths used in the atomic

constraints of ρ.

The preference for more atomic constraints is a heuristic, based on the observation that rules with more

atomic constraints tend to be more general than other rules with the same | [[ρ]] ∩ SP |/WSC(ρ) (such rules

typically have more conjuncts) and hence lead to lower WSC for the policy. In generalizeRule, uncovSP is

the second argument to Qrul, so [[ρ]] ∩ SP is the set of subject-permission tuples in SP0 that are covered by

ρ and not covered by existing rules.

The pseudocode for generalizeRule in Figure 5 uses the following auxiliary functions. sPath(c) and

rPath(c) are the subject path and resource path, respectively, used in atomic constraint c. rm(c, p) is the

condition obtained by removing the atomic condition on path p (if any) from condition c. a[i..] denotes

the suffix of array a starting at index i. The loop over i in generalizeRule considers all possibilities for the

first atomic constraint in cc that gets added to the constraint of ρ. The function calls itself recursively to

determine the subsequent atomic constraints in cc that get added to the constraint.

The function mergeRulesAndSimplify(Rules) repeatedly calls mergeRules and simplifyRules until they

have no effect.

The function mergeRules(Rules) attempts to improve the quality of Rules by merging pairs of rules that

have the same subject type, resource type, and constraint by taking the least upper bound of their subject

conditions, the least upper bound of their resource conditions, and the union of their sets of actions. The

least upper bound of conditions c1 and c2, denoted c1 t c2, is

{〈p, in, val〉 | (∃val1, val2 : 〈p, in, val1〉 ∈ c1 ∧ 〈p, in, val2〉 ∈ c2
∧ val = val1 ∪ val2)}

∪ {〈p, contains, val〉 | 〈p, contains, val〉 ∈ c1
∧ 〈p, contains, val〉 ∈ c2)}.

Note that the meaning of the merged rule ρmrg is a superset of the meanings of the rules ρ1 and ρ2 being

merged. If the merged rule ρmrg is valid, then it replaces ρ1 and ρ2 in Rules. Rule pairs are considered for

merging in descending lexicographic order of rule pair quality, where the quality of a rule pair 〈ρ1, ρ2〉 is

〈max(q1, q2),min(q1, q2)〉 where qi = Qrul(ρi,SP0). mergeRules(Rules) updates its argument Rules in place,

and it returns a Boolean indicating whether any rules were merged.

The function simplifyRules(Rules) attempts to simplify all of the rules in Rules. It updates its argument

Rules in place, replacing rules in Rules with simplified versions when simplification succeeds. It returns a

Boolean indicating whether any rules were simplified. It attempts to simplify each rule in the following ways.

(1) It eliminates conjuncts from the subject and resource conditions when this preserves validity. Re-

moving one conjunct might prevent removal of another conjunct, so it searches for a set of removable

conjuncts that maximizes the quality of the resulting rule. To limit the cost, we introduce a parameter

MCSE (mnemonic for “maximum conjuncts to simplify exhaustively”). If the number of conjuncts is at

most MCSE, the algorithm tries removing every subset of conjuncts. If the number of conjuncts exceeds

MCSE, the algorithm sorts the conjuncts in descending lexicographic order by Qac (quality metric for

atomic conditions) and then attempts to remove them linearly in the sorted order, where Qac(〈p, op, val〉) =

〈|val |, |p|, isId(p), toString(p)〉, where |val | is 1 if val is atomic and is the cardinality of val is a set, and isId(p)

is 1 if p is “id” and is 0 otherwise. The last component of Qac is included as a tie-breaker to ensure a total

order. (2) It eliminates atomic constraints when this preserves validity. It searches for the set of atomic con-

straints to remove that maximizes the quality of the resulting rule, while preserving validity. (3) It eliminates
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function generalizeRule(ρ, cc, uncovSP ,Rules)
// split ρ into its components, for convenience.
〈subType, subCond , resType, resCond , constr , acts〉 = ρ
// ρbest is highest-quality generalization of ρ
ρbest = ρ
// try to create generalizations of ρ using each constraint in cc. save them in results.
results = new Vector()
for c in cc

// try to generalize ρ by adding constraint c and eliminating the conjuncts for both
// paths used in c.
ρ′ = 〈subType, rm(subCond , sPath(c)), resType, rm(resCond , rPath(c)), constr ∪ {c}, acts〉
// if the paths in c appear in the conditions in ρ and hence have been eliminated in ρ′,
// and ρ′ is valid, then add 〈c, ρ′〉 to results.
if sPath(c) appears in subCond ∧ rPath(c) appears in resCond ∧ valid(ρ′)

results.add(〈c, ρ′〉)
else

// try to generalize ρ by adding constraint c and eliminating the conjunct for the subject path in c.
ρ′ = 〈subType, rm(subCond , sPath(c)), resType, resCond , constr ∪ {c}, acts〉
if sPath(c) appears in subCond ∧ valid(ρ′)

results.add(〈c, ρ′〉)
else

// try to generalize ρ by adding constraint c and eliminating the conjunct for the resource path in c.
ρ′ = 〈subType, subCond , resType, rm(resCond , rPath(c)), constr ∪ {c}, acts〉
if rPath(c) appears in resCond ∧ valid(ρ′)

results.add(〈c, ρ′〉)
end if

end if
end if

end for
sort results in descending order by Q(〈c, ρ′〉) = number of tuples in uncovSP covered by ρ′

cc’ = sequence containing the first components of the tuples in results
gen = sequence containing the second components of the tuples in results
for i = 1 to results.length

// try to further generalize gen[i]
ρ′′ = generalizeRule(gen[i], cc′[i+1 ..], uncovSP ,Rules)

if Qrul(ρ
′′, uncovSP) > Qrul(ρbest, uncovSP)

ρbest = ρ′′

end if
end for
return ρbest

Figure 5: Generalize rule ρ.

overlapping actions between rules. Specifically, an action a in a rule ρ is removed if there is another rule ρ′

in the policy such that sCond(ρ′) ⊆ sCond(ρ) ∧ rCond(ρ′) ⊆ rCond(ρ) ∧ con(ρ′) ⊆ con(ρ) ∧ a ∈ acts(ρ′). (4)

It eliminates actions when this preserves the meaning of the policy. In other words, it removes an action

a in rule ρ if all the subject-permission tuples covered by a in ρ are covered by other rules in the policy.

Note that (3) is a special case of (4), listed separately to ensure that this special case takes precedence.

(5) If the subject condition contains an atomic condition of the form p = c, and the constraint contains an

atomic constraint of the form p = p′, then replace that atomic constraint with the atomic condition p′ = c
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in the resource condition (note that this is a form of constant propagation); and similarly for the symmetric

situation in which the resource condition contains such an atomic condition, etc. (6) Remove cycles in the

paths in the conditions and constraint, if the resulting rule is valid and the resulting policy still covers all of

SP0. A cycle is a path that navigates from some class C back to class C. For example, for the class model

in Figure 6, the path “physician.consultations.patient” contains the cycle “physician.consultations”, which

navigates from Consultation back to Consultation.

The function mergeRulesInheritance(Rules) attempts to merge a set of rules if their subject types or

resource types have a common superclass and all the other components of the rule are the same. In this case,

it replaces that set of rules with a single rule whose subject type or resource type is the most general superclass

for which the resulting rule is valid, if any. For example, rules 〈st1, sc, rt, rc, c, A〉 and 〈st2, sc, rt, rc, c, A〉
are replaced with ρmrg = 〈st′, sc, rt, rc, c, A〉 if ρmrg is valid, and st′ is a superclass of st1 and st2, and these

conditions do not hold for any superclass of st′.

Optimization. Our implementation includes two optimizations not reflected in the pseudocode. (1) Mean-

ings of atomic conditions, conjunctions of atomic conditions, atomic constraints, conjunctions of atomic con-

straints, and rules are cached are re-used. (2) The first loop in Figure 1 processes seed tuples in batches of

1000, and calls mergeRules on the rules generated from each batch of seed tuples before adding the resulting

rules to Rules. This reduces the size of Rules at the end of that loop. This reduces the overall running time,

because mergeRules is quadratic in the number of rules.

5.1 Example

Physician

isTrainee: Boolean

supervisor
0..1

affiliation

Hospital

1

Consultation

Patient

MedicalRecord

consultations*

patient1

physician

1

registrations

*

consents
*

records

*

consultation 1

Category

specializations *
categories

*

consultations
*

Figure 6: Class model for Electronic Medical Records (EMR) policy.

We illustrate the algorithm on a fragment our Electronic Medical Record (EMR) sample policy, a ReBAC

policy based on the EBAC policy in [BDLJ15]. It controls access by physicians and patients to electronic

medical records, based on institutional affiliations, patient-physician consultations (each EMR is associated

with a consultation), supervisor relationships among physicians, etc. The class model is in Figure 6. We

developed a pseudorandom algorithm that creates object models of varying size for this policy; the algorithm

has a size parameter N , and the numbers of physicians, patients, consultations, medical records, and hospitals

are proportional to N . We generated a object model with N = 15 for this example. When describing the
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execution of the algorithm, we refer to objects by the value of the “id” field. We use id’s such as phy0, phy1,

. . . for instances of Physician; consult0, consult1, . . . for instances of Consultation; and so on.

The policy contains 6 rules. To keep this example small, we consider here only one rule, namely, the rule

in Equation 1.

Our algorithm selects subject-permission tuple 〈phy0, consult8, createMedicalRecord〉 as the first seed,

and then calls candidateConstraint to compute the set cc of atomic constraints that hold between phy0 and

consult8. cc includes c1, c2, and c3 where

c1 = subject = resource.physician

c2 = subject.affiliation ∈ resource.patient.registrations

c3 = subject.affiliation ∈ resource.patient.consents.affiliation.

The first call to addCandidateRule calls computeCondition to compute a condition sc that characterizes the

set of subjects with permission 〈createMedicalRecord, consult8〉 and the same candidate constraint as phy0

for consult8. Condition sc contains the conjunct subject.isTrainee = false along with conjuncts, such as sub-

ject.consultations.physician.id = phy0, later removed by simplification. The second call to computeCondition

returns a condition rc that characterizes {consult8}; it contains conjuncts such as resource.physician.id =

phy0, which is later removed by generalizeRule, and resource.physician.affiliation.id = hosp1, which is later

removed by simplification.

addCandidateRule creates rule ρ1 = 〈Physician, sc,MedicalRecord, rc, ∅, {createMedicalRecord}〉 and

then calls generalizeRule, which sorts cc and then attempts to add the atomic constraints in it to ρ1,

removing conjuncts for some of the paths used in them. In one of the recursive calls, the current rule ρ2
contains c1 and c2. Adding c3 (which uses the same subject path as c2) to this rule worsens rule quality,

so generalizeRule returns ρ2. To see the importance of sorting cc, note that, if the algorithm had added

c1 and c3 before trying to add c2, then generalizeRule would return a rule containing c1 and c3, worsening

overall policy quality. The second call to addCandidateRule generates the same candidate rule as the first

call, because createMedicalRecord is the only action phy0 can perform on consult8. The algorithm generates

other candidate rules from other seeds, and then calls mergeRules, which merges ρ1 with rules created from

permissions of other physicians to create medical records associated with other consultations. The merged

rule is simplified by simplifyRules to produce the desired rule ρ.

6 Evolutionary Algorithm

Our grammatical evolution algorithm uses the Context-Free Grammar Genetic Programming (CFGGP)

approach, in which individuals (which in our context are ReBAC rules) are represented directly as derivation

trees of a context-free grammar (CFG). This is simpler than alternative approaches in which derivation trees

are encoded as, e.g., binary strings.

Classical CFGGP uses two genetic operators to evolve derivation trees: (1) a mutation operator that

randomly selects a non-terminal in the derivation tree being evolved, and replaces the existing subtree

rooted at that non-terminal with a new subtree randomly generated starting from that non-terminal, and

(2) a cross-over operator that randomly selects a non-terminal that appears in both of the derivation trees

being evolved (called “parents”), and swaps the subtrees rooted at that non-terminal.

Our algorithm uses these two classical CFGGP genetic operators (with slight variations, to reflect the

focus of the evolutionary search on rules that cover a given seed tuple). However, we found that the algorithm,

with these genetic operators alone, gave poor results, because some mutations that are especially useful in

our setting had very low probability. We solved this problem by introducing additional mutation operators.
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For example, we introduced a double mutation operator, that mutates two out of the three predicates (the

subject condition, resource condition, and constraint) in a rule. This enables the operator to have an effect

similar to generalizeRule, which changes at least one condition and the constraint. The same effect can be

achieved by two separate mutations to the same rule, but the probability of achieving it that way is much

lower. Although these new mutation operators are specialized to ReBAC policy mining, they are independent

of details of our policy language and hence should be equally applicable and effective to extensions of the

policy language with additional primitive datatypes (numbers, sequences, etc.) and relational operators

(numeric inequality, prefix-of, etc.).

As sketched in Section 1, our evolutionary algorithm has two phases: phase 1 constructs a candidate

policy, and phase 2 tries to improve the candidate rules by further mutating them. The improvement phase

might seem redundant, because it uses essentially the same mutations as the first phase. The key difference

is that, in phase 1, the benefit of a mutation is evaluated by its effect on rule quality, and in phase 2, it is

evaluated in the context of the entire candidate policy by its effect on policy quality. For example, consider a

mutation that transforms a candidate rule ρ into ρ′, such that ρ′ covers fewer subject-permission tuples, has

lower WSC, and has lower rule quality. If this mutation occurs in phase 1, ρ′ might survive, but it is likely

to be discarded, due to its lower rule quality. If this mutation occurs in phase 2, and if the tuples covered

by ρ and not by ρ′ are also covered by other rules in the candidate policy, ρ′ will definitely replace ρ in the

candidate policy, because this change reduces the policy’s WSC and does not change the policy’s meaning.

Grammar generation is performed before the main part of the evolutionary algorithm, to specialize the

generic grammar of ORAL to a specific input. The language of the generated grammar contains rules

satisfying the restrictions: (1) constants are limited to those appearing in the object model, (2) class names

and field names are limited to those appearing in the class model, (3) paths in conditions and constraints are

type-correct, based on the class model, and satisfy the same length limits as in the greedy algorithm, and

(4) actions are limited to those appearing in the given subject-permission relation. The grammar generation

algorithm pre-computes all atomic conditions and atomic constraints satisfying these restrictions. For a

type t, let {ct,1, ct,2, . . . , ct,nt} denote the set of atomic conditions on objects of type t that satisfy these

restrictions.

The starting non-terminalNrule has alternatives corresponding to rules with different subject and resource

types. Specifically, each alternative for Nrule is a rule with two non-terminals: a non-terminal Nrule(t1 ,t2 )

that generates all components of a rule with subject type t1 and resource type t2 except for the action

set component (which is independent of the types), and a non-terminal Nact that generates subsets of the

actions that appear in SP0. Each alternative for Nrule(t1 ,t2 ) contains non-terminals Ncond(t1 ) and Ncond(t2 )

to generate the subject condition and resource condition, respectively, and a non-terminal Ncons(t1 ,t2 ) to

generate the constraint. The non-terminal Ncond(t) generates conditions on objects of type t. Specifically,

it generates a sequence of non-terminals Nt,1, Nt,2, . . . , Nt,nt
, where each Nt,i can generate either atomic

condition ct,i or the empty string; this allows the condition to contain an arbitrary subset of the atomic

conditions on objects of type t. The non-terminal Ncons(t1 ,t2 ) generates constraints relating objects of types

t1 and t2; the productions for it are defined in a similar way as the productions for conditions.

Pseudocode for the main part of our evolutionary algorithm appears in Figure 7. All random choices follow

a uniform distribution, unless a different probability distribution is specified. In our experiments, values of

the numerical parameters are: popSize=200, nGenerationsSearch=2000, nTournament=15, nGenerationsIm-

prove = 1000. These values, and other numerical parameter values mentioned below, were selected based on

tuning experiments, described in Section 8.

Function initialPopulation(〈s, r, a〉,Rules, uncovSP) creates an initial population for the evolutionary

search for a high-quality rule that covers the seed 〈s, r, a〉 and other tuples. It is implicitly parameterized by

the desired population size popSize. Half of the desired rules are generated using method 1; the other half

are generated using method 2.
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// Phase 1: Construct candidate policy, using evolutionary search to find one rule at a time.
Rules = ∅
uncovSP = SP0.copy()
while ¬uncovSP .isEmpty()
〈s, r, a〉 = highest-quality tuple in uncovSP using Qsp metric // seed for this iteration
pop = initialPopulation(〈s, r, a〉,Rules, uncovSP)
for gen = 1 to nGenerationsSearch

op = an operator selected from searchOps using probability distribution searchOpDist
S = set of nTournament rules randomly selected from pop
if op is a mutation

pop.add(the rule generated by applying op to the highest-quality rule in S)
else // op is a cross-over

pop.add(the two rules generated by applying op to the two highest-quality rules in S)
end if
remove the lowest-quality rules in pop until |pop| = popSize

end for
ρ = the highest-quality rule in pop
if valid(ρ)

Rules.add(ρ)
uncovSP.removeAll([[ρ]])

end if
end while
// Phase 2: Improve the candidate rules by further mutating them.
for each ρ in Rules
for gen = 1 to nGenerationsImprove
if gen = nGenerationsImprove/2 ∧ (all attempted improvements to ρ failed)
break

end if
op = an operator selected from improveOps using probability distribution improveOpDist
ρ′ = the rule generated by applying op to ρ
if wellFormed(ρ′) ∧ valid(ρ′) ∧ ID(ρ′) ≤ ID(ρ)

redundant = {ρ0 ∈ Rules | [[ρ0]] ⊆ [[ρ′]]}
if (Rules ∪ {ρ′} \ redundant) covers SP0 and has lower WSC than Rules

Rules.removeAll(redundant)
Rules.add(ρ′)

end if
end if

end for
end for
mergeRulesAndSimplify2(Rules)
return Rules

Figure 7: Evolutionary algorithm for ReBAC policy mining. Inputs: subject-permission relation SP0, class
model CM , and object model OM . Output: set of rules Rules. The algorithm also has numerical paramters
that determine population size, number of generations, etc., as described in the text.

Method 1 (candidate rules generated as in greedy algorithm plus random variants): Generate candidate

rules from seed, uncovSP , and Rules in the same way as the two calls to addCandidateRule in Figure 1 and

add them to the initial population; this ensures that it contains at least 1 valid rule that covers at least

one uncovered tuple. To generate the remaining rules, repeatedly randomly select a rule currently in the

initial population, remove randomly selected atomic conditions from the subject condition until the number
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of remaining atomic conditions equals a target number randomly selected in the interval 1..7, do the same for

the resource condition, remove randomly selected atomic constraints until the number of remaining atomic

constraints equals a target number randomly selected in the interval 1..3, and add the resulting rule to the

initial population.

Method 2 (random candidate rules): Each rule has subject type type(s) or one of its ancestors, resource

type type(r) or one of its ancestors, subject condition and resource condition selected as described below,

randomly selected constraint consistent with the selected subject type and resource type, and action set

{a}. If type(s) has an ancestor, then the probability of using type(s) as the subject type is 0.8, and the

probability of using an ancestor (selected uniformly at random among the ancestors) is 0.2; similarly for

the resource type. To generate the subject condition and resource condition, we randomly select among the

following three cases, and then select randomly select a condition within the selected case: no condition (i.e.,

the condition is always true), a condition on a single-valued path, and an arbitrary condition.

Rule quality is measured using the same fitness function f as [MBCF15] (our definition is slightly

simplified but equivalent): f(ρ) = 〈FAR(ρ),FRR(ρ), ID(ρ),WSC(ρ)〉, where the false acceptance rate is

FAR(ρ) = | [[ρ]] \ uncovSP |, the false rejection rate is FRR(ρ) = |uncovSP \ [[ρ]] |, and ID(ρ) equals 2 if the

subject condition and resource condition both contain an atomic condition with path “id”, equals 1 if exactly

one of them does, and equals 0 if neither of them does. The fitness ordering is lexicographic order on these

tuples, where smaller is better.

The set of genetic operators used in the search phase, denoted searchOps, contains: (1) single muta-

tion: first, randomly select whether to mutate the subject condition, resource condition, or constraint, then

randomly select a non-terminal N in that part of the derivation tree, and then randomly re-generate the

subtree rooted at N ; (2) double mutation: same as single mutation, except, in the first step, choose two out

of the three possibilities, and then perform the remaining steps for both of them; (3) action mutation: in the

action set component of the rule, randomly add or remove actions that subject s can perform on r according

to SP0, subject to the restriction that we never remove action a, where 〈s, r, a〉 is the seed tuple for this

search; (4) simplify mutation: remove one randomly selected atomic condition (from the subject condition

or resource condition) or atomic constraint; (5) crossover: randomly select a non-terminal N in the subtree

for the subject condition, resource condition, or constraint in one parent, find the same non-terminal in the

other parent (if it does not appear, select a different non-terminal in the first parent), and swap the subtrees

rooted at those two occurrences of N .

We describe the genetic operators as if they directly manipulate abstract syntax trees, because this allows

a higher-level and more intuitive presentation. However, the genetic operators actually manipulate derivation

trees of the generated grammar.

searchOpDist specifies the probability of selecting each genetic operator in searchOps. First, it selects

the type of genetic operator, selecting mutation with probability 0.9, or crossover with probability 0.1. If

mutation is selected, the probability of selecting each of the four types of mutation is proportional to its

weight, where single mutation, action mutation, and simplify mutation each have weight 1, and double

mutation has weight 0.7.

The set of genetic operators used in the improvement phase, denoted improveOps, contains: (1) single

mutation; (2) double mutation; (3) type+single mutation: randomly select whether to replace the subject

type, resource type, or both with their parent types (if those parents exist), apply a single mutation, check

whether the resulting rule is well-formed (because the unchanged condition or constraint might be inconsis-

tent with the changed type), and if not, discard it; (4) type+double mutation: same as type+single mutation,

except with a double mutation instead of a single mutation.

improveOpDist specifies the probability of selecting each genetic operator in improveOps. The probabil-

ities are: single mutation, 0.09; double mutation, 0.81; type+single mutation, 0.01; type+double mutation,

0.09.
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Function mergeRulesAndSimplify2 is the same as mergeRulesAndSimplify except that it incorporates one

additional simplification: replace the subject type or resource type with a child of that type, if the policy

still covers SP0.

7 Sample Policies and Case Studies

We developed four sample policies, which have non-trivial and realistic rules, but are relatively small. We

also translated two large case studies into ORAL. They were developed by Decat, Bogaerts, Lagaisse, and

Joosen based on the access control requirements for Software-as-a-Service (SaaS) applications offered by real

companies [DBLJ14a, DBLJ14b]. We translate their detailed natural-language descriptions of the policies

into class models and ReBAC rules, omitting a few aspects left for future work, mainly temporal conditions,

obligations, and policy administration.

Each policy has handwritten class model and rules, and a synthetic object model generated by a policy-

specific pseudorandom algorithm designed to produce realistic object models, by creating objects and se-

lecting their attribute values using appropriate probability distributions (e.g., normal, uniform, and Zipf

distributions). The object model generation algorithm for each policy is parameterized by a size parameter

N ; for most classes, the number of instances is selected from a normal distribution whose mean is linear in

N . Figure 1 shows several metrics of the size of the rules, class model, and object model in each policy.

Policy #rules #cond/rule #constr/rule #classes N #obj #field/obj |SP0|
EMR 6 0.17 1.3 6 15 344 3.5 708
healthcare 9 0 1.1 12 5 737 3.5 2207
project mgmt. 13 0.08 1.2 15 5 181 2.7 322
university 10 0.40 0.70 10 5 731 2.2 2439
e-document 39 2.3 0.59 16 125 421 5.9 2687
workforce mgmt. 27 1.7 0.63 29 10 411 3.7 1739

Table 1: Policy sizes. #cond/rule and #constr/rule are the average numbers of conditions per rule and
constraints per rule, respectively. For the given value of N , #obj is the average number of objects in the
object model, and #field/obj is the average number of fields (including “id” field) per object in the object
model. Averages are over 30 pseudorandom object models for each policy.

The Electronic Medical Record (EMR) sample policy is described in Section 5.1.

The healthcare sample policy, based on the ABAC policy in [XS15], controls access by nurses, doctors,

patients, and agents (e.g., a patient’s spouse) to electronic health records (HRs) and HR items (i.e., entries in

health records). The numbers of wards, teams, doctors, nurses, teams, patients, and agents are proportional

to N .

The project management sample policy, based on the ABAC policy in [XS15], controls access by depart-

ment managers, project leaders, employees, contractors, auditors, accountants, and planners to budgets,

schedules, and tasks associated with projects. The numbers of departments, projects, tasks, and users of

each type are proportional to N .

The university sample policy, based on the ABAC policy in [XS15], controls access by students, instruc-

tors, teaching assistants (TAs), department chairs, and staff in the registrar’s office and admissions office to

applications (for admission), gradebooks, transcripts, and course schedules. The numbers of departments,

students, faculty, and applicants for admission are proportional to N .

Rewriting the preceding three policies in ReBAC allows numerous aspects to be expressed more naturally

than in ABAC. This is reflected in rules that use paths with length greater than one, not counting occurrences

of “id”. For example, consider the constraint “subject.teams contains resource.record.patient.treatingTeam”
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in the above example rule from the healthcare policy. In the ReBAC policy, “treatingTeam” is, naturally,

an attribute of Patient. In the original ABAC policy, there is no way to navigate from the HR item to the

patient; to circumvent this limitation, a patient’s “treatingTeam” attribute is (unnaturally) duplicated in

each HR item in each HR for that patient.

The e-document case study, based on [DBLJ14a], is for a SaaS multi-tenant e-document processing

application. The application allows tenants to distribute documents to their customers, either digitally or

physically (by printing and mailing them). The overall policy contains rules governing document access

and administrative operations by employees of the e-document company, such as helpdesk operators and

application administrators. It also contains specific policies for some sample tenants. One sample tenant

is a large bank, which controls permissions to send and read documents based on (1) employee attributes

such as department and projects, (2) document attributes such as document type, related project (if any),

and presence of confidential or personal information, and (3) the bank customer to which the document is

being sent. Some tenants have semi-autonomous sub-organizations, modeled as sub-tenants, each with its

own specialized policy rules. The numbers of employees of each tenant, registered users of each customer

organization, and documents are proportional to N .

The workforce management case study, based on [DBLJ14b], is for a SaaS workforce management appli-

cation provided by a company, pseudonymously called eWorkforce, that handles the workflow planning and

supply management for product or service appointments (e.g., install or repair jobs). Tenants (i.e., eWork-

force customers) can create tasks on behalf of their customers. Technicians working for eWorkforce, its

workforce suppliers, or subcontractors of its workforce suppliers receive work orders to work on those tasks,

and appointments are scheduled if appropriate. Warehouse operators receive requests for required supplies.

The overall policy contains rules governing the employees of eWorkforce, as well as specific policies for some

sample tenants, including PowerProtection (a provider of power protection equipment and installation and

maintenance services) and TelCo (a telecommunications provider, including installation and repair services).

Permissions to view, assign, and complete tasks are based on each subject’s position, the assignment of tasks

to technicians, the set of technicians each manager supervises, the contract (between eWorkforce and a ten-

ant) that each work order is associated with, the assignment of contracts to departments within eWorkforce,

etc. The numbers of helpdesk suppliers, workforce providers, subcontractors, helpdesk operators, contracts,

work orders, etc., are proportional to N .

The algorithm parameters are set as follows in our experiments. For all policies, MCSE = 5. For EMR,

MSPL = 3, MRPL = 4, SPED = 0, RPED = 1, and MTPL = 4. For healthcare, project management, and

university, MSPL = 3, MRPL = 3, SPED = 0, RPED = 0, and MTPL = 4. For e-document, MSPL = 4,

MRPL = 4, SPED = 0, RPED = 0, and MTPL = 4. For workforce management, MSPL = 3, MRPL = 3,

SPED = 0, RPED = 2, and MTPL = 5. The parameter values are similar across policies, though they vary

by 1 or 2. A reasonable parameter value selection strategy is to start with values similar to these, perhaps

on the lower end, and increase them slightly if the mined policy is unsatisfactory.

8 Evaluation

To evaluate the effectiveness of our algorithms, we start with a ReBAC policy, generate ACLs representing

the subject-permission relation, run our algorithms on the ACLs along with the class model and object

model, and compare the mined ReBAC policy with the policy produced by applying simplifyRules to the

original policy; we refer to the latter as the simplified original policy. If the mined policy is similar to the

simplified original policy, the policy mining algorithm succeeded in discovering the rules that are implicit

in the ACLs. Comparison with the simplified original policy is a more robust measure of the algorithm’s

ability to discover high-level rules than comparison with the original policy, because the original policy is
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not always the simplest. For our four sample policies, the simplified original policy is identical to the original

policy; for the two large case studies, the simplified original policy has lower WSC than the original policy.

Our algorithm is implemented in Java. Experiments were run using Java 8 on Windows 10 on an Intel i7-

6770HQ CPU. The code and data are available at http://www.cs.stonybrook.edu/~stoller/software/.

8.1 Policy Similarity Metrics

Both of our policy similarity metrics are normalized to range from 0 (completely different) to 1 (identical).

Syntactic Similarity. Syntactic similarity measures the fraction of types, atomic conditions, atomic con-

straints, and actions that rules or policies have in common. The Jaccard similarity of sets is J(S1, S2) = |S1∩
S2| / |S1∪S2|. The syntactic similarity of rules ρ1 = 〈st1, sc1, rt1, rc1, c1, A1〉 and ρ2 = 〈st2, sc2, rt2, rc2, c2, A2〉
is the average of J({st1}, {st2}), J(sc1, sc2), J({rt1}, {rt2}), J(rc1, rc2), J(c1, c2) and J(A1, A2). The syn-

tactic similarity of rule sets Rules1 and Rules2, SynSim(Rules1, Rules2), is the average, over rules ρ in

Rules1, of the syntactic similarity between ρ and the most similar rule in Rules2.

Semantic Similarity. Semantic similarity measures the similarity of the meanings of rules. The semantic

similarity of rules ρ1 and ρ2 is J([[ρ1]] , [[ρ2]]). We extend this to rule-wise semantic similarity of policies

RSemSim(Rules1, Rules2) exactly the same way that syntactic similarity of rules is extended to syntactic

similarity of policies. Note that this metric measures similarity of the meanings of the rules in the policies,

not similarity of the overall meanings of the policies. This metric is slightly more abstract than syntactic

similarity, because it ignores syntactic differences that do not affect the meaning of a rule, such as including

a conjunct that is unnecessary because it is implied by another conjunct or a constraint.

Parameter Tuning. Our evolutionary algorithm has several parameters (population size, number of gen-

erations, etc.). The parameters and their values used in our experiments are presented in Section 6. We

determined those values through a series of experiments, in which we started with initial guesses at good

values of the parameters, varied one parameter, selected the value that gave the best average policy similarity

results, and then proceeded to vary the next parameter (in a somewhat arbitrary order, except that we vary

parameters used in initialization before parameters used in phase 1 before parameters used in phase 2). After

varying each parameter once, we varied some parameters again, and found little change in the results, so we

did not bother with an exhaustive optimization process that would consider all combinations of values of all

parameters.

8.2 Policy Similarity Results

Figure 2 shows the results of policy similarity measurements. The policy size parameter N has the values

shown in Figure 1. We set all weights wi in the definition of WSC to 1.

For the four sample policies, for both of our policy mining algorithms, the mined policy is identical to

the simplified original policy, except for one minor syntactic variation in one conjunct of one condition of

one rule of the EMR policy (the variant is semantically equivalent to the original conjunct; this is reflected

in the perfect rule-wise semantic similarity). For the two large case studies, the evolutionary algorithm does

better than the greedy algorithm: for e-document, the syntactic similarity and rule-wise semantic similarity

are 4% and 14% higher, respectively (but the running time is longer, as discussed below); for workforce

management, they are 11% and 6% higher, respectively.

The e-document case study is the most difficult for our algorithms. Both algorithms do well on 37 of

the 39 input rules. The greedy algorithm fails to discover the conditions and constraints needed for the
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Policy Syntactic Similarity Rule-wise Semantic Sim. WSC
Evol. Greedy Evol. Greedy SimpOrig Evol. Greedy

µ σ µ σ µ σ µ σ µ µ µ
EMR 0.99 0.01 0.99 0.01 1.00 0.00 1.00 0.00 49 49 50
healthcare 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 54 54 54
project mgmt. 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 76 76 76
university 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 54 54 54
e-document 0.90 0.03 0.86 0.02 0.86 0.08 0.72 0.07 250 326 416
workforce mgmt. 0.92 0.02 0.81 0.02 0.96 0.02 0.90 0.03 208 185 229

Table 2: Policy similarity results. Evol. and Greedy refer to the rules mined by the evolutionary algorithm
and greedy algorithm, respectively. SimpOrig refers to the simplified original rules. When computing policy
similarity, the first argument to SynSim and RSemSim is the mined rules, and the second argument is the
simplified original rules. µ is the mean over 30 pseudorandom object models, and σ is the standard deviation.
Similarity results for the evolutionary algorithm are emphasized with bold font, since they are as good as or
better than the results for the greedy algorithm in all cases.

remaining two rules, producing instead rules that identify several employees individually by enumerating

their id’s. One of these rules is challenging because its subject condition, resource condition, and constraint

are each non-trivial, and the resource condition (resource.type.id in {Invoice,SalesOffer,Contract}) involves

a three-element set. The evolutionary algorithm does better on these rules, discovering them in most but

not all object models. The significantly higher WSC of the mined policies produced by both algorithms,

relative to the simplified original rules, is due to their difficulty with these two rules. The relatively large gap

between the syntactic similarity and rule-wise semantic similarity for the greedy algorithm on this policy is

also due to its difficulty with the aforementioned rule, and reflects the fact that relatively small syntactic

differences (e.g., changing one constant in one condition) can cause a relatively large change in the meaning

of a rule.

For the workforce management case study, the evolutionary algorithm produces policies that have even

lower WSC (about 11% lower) than the simplified original policy, and hence do not have perfect similarity.

The greedy algorithm produces policies with somewhat higher WSC (about 10% higher) than the simplified

original policy. The relatively large gap between the syntactic similarity and rule-wise semantic similarity

for the greedy algorithm on this policy is due to the heuristic that prefers constraints over conditions. This

heuristic typically helps increase the generality of rules, but is not helpful for some rules in this policy. The

evolutionary algorithm does not incorporate this heuristic and achieves higher syntactic similarity.

To evaluate the benefit of our specialized genetic operators, we ran a variant of our algorithm modified to

use only the two classic genetic operators (single mutation and crossover), on the two case studies, using the

same 30 pseudo-random object models for each policy. Eliminating the specialized genetic operators reduces

the average policy similarity slightly for the e-document case study (from 0.90 to 0.89 for syntactic similarity,

and from 0.86 to 0.84 for rule-wise semantic similarity) and significantly for the workforce management case

study (from 0.92 to 0.82 for syntactic similarity, and from 0.96 to 0.79 for rule-wise semantic similarity).

8.3 Performance Results

Figure 8 shows the running time of both algorithms on the case studies as a function of ACL policy size

|SP0|. Each data point is the average over 10 pseudo-random object models. Error bars (too small to see in

some cases) show 95% confidence intervals using Student’s t-distribution. We see that the algorithms have

similar performance on both case studies. The slopes of the best-fit lines on a log-log plot of the data are: for

e-document, 1.5 for the greedy algorithm, and 1.1 for the evolutionary algorithm; for workforce management,
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Figure 8: Running time of both algorithms on the case studies, as a function of the number of subject-
permission tuples.

1.9 for the greedy algorithm, and 0.9 for the evolutionary algorithm. This is an encouraging indicator of the

algorithms’ scalability: they can mine dozens of complex rules from ACLs with several thousand entries in

minutes, and the growth in running time, as a function of the number of ACL entries, is less than quadratic

for the greedy algorithm, and is close to linear for the evolutionary algorithm.

9 Conclusions and Future Work

A long-standing trend in research on access control policy mining is to handle increasingly expressive policy

languages, starting with flat RBAC [KSS03], advancing to RBAC with role hierarchy [SS05], followed by

RBAC with extensions such as temporal constraints [MSAV13] and parameterized roles [XS13], and then

ABAC [XS15]. This paper continues that trend. We introduced ORAL, an ReBAC policy language formu-

lated as an object-oriented extension of ABAC, defined the ReBAC policy mining problem, and presented

the first two algorithms for that problem. Our evaluation on four sample policies and two larger and more

complex case studies, based on SaaS applications offered by real companies, demonstrate the effectiveness of

our algorithms.

There are many interesting directions for future work on access control policy mining. One obvious direc-

tion is policy mining for ReBAC languages with additional features: additional data types and corresponding

relational operators (e.g., integers with inequalities), negation, temporal or spatial constraints, actions in-

volving multiple resources, etc. Another practical direction for future work is mining ReBAC policies from

incomplete data (e.g., access logs instead of ACLs) or noisy data (e.g., extraneous permissions, or incorrect

attribute values). Yet another direction is to explore incremental approaches to policy mining to support

policy evolution.
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