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ABSTRACT
The interfaces exposed by commonly used cryptographic libraries
are clumsy, complicated, and assume an understanding of crypto-
graphic algorithms. The challenge is to design high-level abstrac-
tions that require minimum knowledge and effort to use while also
allowing maximum control when needed.

This paper proposes such high-level abstractions consisting of
simple cryptographic primitives and full declarative configuration.
These abstractions can be implemented on top of any cryptographic
library in any language. We have implemented these abstractions
in Python, and used them to write a wide variety of well-known
security protocols, including Signal, Kerberos, and TLS.

We show that programs using our abstractions are much smaller
and easier to write than using low-level libraries, where size of
security protocols implemented is reduced by about a third on
average. We show our implementation incurs a small overhead, less
than 5 microseconds for shared key operations and less than 341
microseconds (< 1%) for public key operations. We also show our
abstractions are safe against main types of cryptographic misuse
reported in the literature.

CCS CONCEPTS
• Security andprivacy→ Software security engineering;Cryp-
tography; • Software and its engineering → Very high level
languages;
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1 INTRODUCTION
Existing cryptographic libraries are difficult to use. They require
expertise that most developers lack, and place tedious burdens on
experienced developers. The danger posed by this difficulty in-
creases due to the proliferation of distributed computing, which
requires that more developers make more extensive use of crypto-
graphic libraries. The difficulty of using these libraries is not new
[4, 70], but the extent of the problem grows as computers become
more deeply embedded in our everyday lives. Mobile computing
and the Internet of Things (IoT) especially encourage the storage
and transmission of sensitive data. Consumers will expect such
data to be properly secured, requiring that developers make greater
use of cryptographic libraries.

A symptom that reveals the underlying problem with exist-
ing cryptographic libraries is the issue of cryptographic misuse—
improper use of cryptographic APIs leading to violations of security
requirements [35, pp. 73]. A string of papers, beginning in 2012,
have documented widespread cryptographic misuse in mobile ap-
plications [9, 24, 35, 37, 45, 47, 52, 75]. These works define specific
types of cryptographic misuse and build tools to detect them.

For example, Egele et al. [35] found that 88% of the 11,748 An-
droid apps analyzed by their tool, CryptoLint, contained at least one
cryptographic misuse. A similar study by Ma et al. [52] found that
99% of the 8,640 Android apps they analyzed contained at least one
cryptographic misuse. However, detecting misuse is not sufficient
to prevent all misuse.

At the same time, higher-level cryptographic libraries have been
developed, as discussed in Section 7, but they limit the choices that
experts can make in using and experimenting with different cryp-
tographic algorithms. What are the right high-level abstractions
that avoid different pitfalls?

This paper proposes SecAlgo, high-level abstractions for cryp-
tographic operations that aim to minimize the difficulty of using
cryptographic libraries in writing secure programs, for both non-
experts and experts. SecAlgo provides simplest cryptographic prim-
itives plus full declarative configurations. It can be implemented
on top of any cryptographic library in any language. We have im-
plemented SecAlgo in Python, and used it to write a variety of
well-known security protocols, including Signal [68], Kerberos [61],
and TLS [31].

We show that SecAlgo reduces programmer effort and increases
clarity of programs; implementation of the abstractions incurs min-
imum overhead; and the abstractions prevent significant types of
cryptographic misuse.
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Wefirst describe the need for better cryptographic abstractions in
Section 2. We define SecAlgo abstractions in Section 3, and describe
their implementation in Section 4. Section 5 shows application in
implementing security protocols. Section 6 presents experimental
results. Section 7 discusses related work and concludes. Appendix A
presents studies of types of cryptographic misuse prevented.

2 WHAT ARE THE RIGHT CRYPTOGRAPHIC
ABSTRACTIONS?

There are two reasons that better abstractions for cryptographic
operations are needed: (1) APIs for existing low-level cryptographic
libraries make it too difficult to properly use cryptographic primi-
tives and (2) existing high-level libraries with simplified interfaces
place too many restrictions on what experts can choose, because of
the limited expressive power of the abstractions used.

Difficult-to-use low-level cryptographic libraries.
The low-level APIs provided by cryptographic libraries require
many decisions, including ones that must be coordinated, some-
times repeatedly, in order to correctly use cryptographic primi-
tives. Making these decisions demands significant expertise and
tedious manual effort. Even experienced programmers are likely to
make mistakes. Such mistakes will compromise the security objec-
tive the programmer tries to achieve by using the cryptographic
primitives, as studied in the cryptographic misuse literature, e.g.,
[24, 35, 52, 75].

Proper use of low-level cryptographic APIs requires consider-
able security expertise. So one might think that we can address the
difficulty of using these APIs by providing clear, thorough documen-
tation and high-quality examples of proper use. However, it will not
suffice as a solution, because the real issue is the sheer number of
low-level decisions that must be made when using low-level APIs.

A right solution must directly address this complexity by pro-
tecting both non-experts and experts from mistakes caused by
carelessness, neglect, limited time and attention, exhaustion, and
other conditions that afflict humans confronted with unnecessary
complexity.

Unduly restrictive high-level cryptographic libraries.
There are now a number of higher-level cryptographic libraries,
Tink [5], Libsodium [38], Keyczar [78], and pyca/cryptography’s
Fernet API [71], that provide simplified interfaces to reduce the
tedious difficulty of using cryptographic functionality and assist
non-expert users to avoidmistakes. This is accomplished by offering
a limited set of abstractions for common operations and a restriction
on the choice of algorithms, key sizes, and other configuration
options.

However, expert users can find the limitations imposed by these
high-level libraries restrictive and confining. Experts may want
to use or test particular combinations of algorithms in security
protocols and secure applications. They may find it difficult or
impossible to do this when using existing high-level cryptographic
libraries.

This issue may force expert users to return to low-level crypto-
graphic libraries, because the large number of arguments, options,

and configurations made available by low-level cryptographic li-
braries affords expert users their desired flexibility and expressive
power.

SecAlgo: High-level abstractions with full range of control.
What’s needed is a way to abstract over cryptographic function-
alities that combines the desirable features of both low-level and
high-level cryptographic libraries while avoiding their drawbacks.
We want to provide a simple, safe interface for all users to eas-
ily use the cryptographic functionalities they need, while giving
expert users the expressive power to configure the cryptographic
functionalities they want.

SecAlgo provides such high-level abstractions, requiring mini-
mum, or zero, control by non-expert users, and allowing maximum,
or full, control by expert users. In SecAlgo, the abstractions for
determining what cryptographic operation to perform are pulled
apart from the abstractions used to determine how that operation
is performed.

• SecAlgo includes five primitive functions: keygen for key
generation, encrypt and decrypt for public key and shared
key encryption, and sign and verify for public key signing
and MAC creation. MAC is treated as a kind of signing, just
as in Bellare et al. [10]. Cryptographic hash functions are
also included as a degenerate form of signing (if no key
is supplied, sign returns a hash). These are all the basic
cryptographic operations that any application might require.
Every function except for keygen takes only the data and key
as arguments.
The user can optionally specify the encryption or signing
algorithm to use when generating the key, otherwise a safe
default algorithm is used. Non-expert users can use all the
functionalities they need in a safe and simple way.

• SecAlgo also provides a rich and expressive abstraction for
declarative configuration. Expert users can declaratively con-
figure all attributes used by all cryptographic algorithms to
exert fine-grained control over the behavior of SecAlgo’s
primitive functions. In this way, SecAlgo provides the flex-
ibility that expert users desire without reintroducing the
complexity of low-level cryptography libraries.

Other important cryptographic functionalities, such as key man-
agement functions, can be added to SecAlgo by building them on
top of the five primitive functions or by wrapping existing imple-
mentations of the functionalities in cryptographic libraries.

3 HIGH-LEVEL CRYPTOGRAPHIC
ABSTRACTIONS

The abstractions in SecAlgo are of two kinds: (1) high-level crypto-
graphic operations to provide confidentiality, integrity, and authen-
ticity, and (2) declarative configuration for all feasible combinations
of options. We describe language constructs for the first kind along
with their essential arguments; additional arguments can be speci-
fied either as optional arguments or using configuration. Properly
chosen configuration values—as determined by the current best
practices in security—are used as default.

SecAlgo abstractions aim to serve both experts and non-experts.
Experts can use optional arguments and configuration to call and



compose a wide range of cryptographic operations. Non-experts
can rely on the default arguments and configurations to use safe
cryptographic operations.

Abstractions for cryptographic operations.
SecAlgo has five basic cryptographic operations for writing security
protocols and secure applications: key generation, encryption, de-
cryption, signing, and verification. SecAlgo provides an abstraction
for each basic operation. The abstractions allow simplest use of
cryptographic algorithms—only the choice of shared vs. public key
algorithms needs to be made for key generation, and only the data
and key are needed for the other four operations.

All other choices are provided through declarative configura-
tions. Users can configure multiple interrelated arguments among
a set of choices for each argument, and the state configured at key
generation is maintained through subsequent, continued uses of
the other four operations. This contrasts with operations, such as
generating a random value, that return only a simple value to be
used subsequently.

We use a generic syntax in this section; each of the five operations
can be implemented in any programming language as a single API
function.

Key generation is of the following form, where type t is the
name of a particular cryptographic algorithm, such as AES or RSA,
or a generic shared or public.

keygen type t

It generates and returns a key or pair of keys suitable for the cryp-
tographic algorithm corresponding to type t .

• If t is the name of a specific shared-key (also called symmetric-
key) algorithm, such as AES, or is the generic shared, then
keygen returns a single value, a shared key. This key will
be labeled with the name of the algorithm, t . If the generic
shared type is used, then the key is labeled with the name of
the configured shared-key algorithm.

• If t is the name of a specific public-key (also called asymmetric-
key) algorithm, such as RSA, or is the generic public, then
keygen returns a pair of values, a private key and a public
key. Each key is labeled with the name of the algorithm,
t. The two components of the pair can be retrieved by us-
ing a simultaneous assignment (in languages that support
such assignments, such as Python) or by using two retrieval
operations.

The size of the key can be specified as an optional argument
to keygen, in an additional clause size s or otherwise declared as
part of the configuration; if the size is left unspecified the default is
used.

If t names a block cipher, such as AES, then a mode of opera-
tion [32]—an algorithm for repeatedly applying the block cipher to
encrypt an arbitrary size plaintext, such as Cipher Block Chaining
(CBC)—must also be specified. Like key size, the mode of operation
can be specified as an optional argument in an additional clause
mode m or declared as a part of the configuration. If left unspecified,
the default mode of operation is used.

Encryption anddecryption provide confidentiality, also known
as secrecy, and are of the forms below.

encrypt text txt key k

decrypt text txt key k

Function encrypt encrypts text txt using key k and returns the
resulting encrypted text. Function decrypt decrypts text txt using
key k and returns the resulting decrypted text. They call the appro-
priate low-level library functions as determined by the key type,
size, and mode.

Signing and verification provide authentication, integrity, and
non-repudiation, and are of the forms below.

sign text txt key k
verify text txt sig s key k
verify text txt key k

Function sign signs txt using key k . Signing has two modes: When
the mode is detached, sign returns just the signature; when the
mode is combined, sign returns the signed text. The mode of signing
is determined by configuration, described below. The first form of
function verify, for sign used in detached mode, verifies signature
s against txt using key k , and returns true if verification succeeds
and false otherwise. The second form of function verify, for sign
used in combined mode, verifies signed txt using key k and returns
the original text if verification succeeds and false otherwise.

Declarative configuration.
Configuration declaratively specifies values of parameters for cryp-
tographic operations, and is of the form below, where configuration
item item is assigned the value value .

configure item = value

Table 1 lists supported configuration items, their allowed values,
and default values.

Declarative configuration allows security experts to exert con-
trol over the operation of high-level cryptographic abstractions
in a clear and simple way. Proper default configuration values—
ones that capture the best practices as determined by security
experts—are defined. This relieves developers of the burden of
making choices about security algorithms, key sizes, modes, etc. for
which they lack the relevant expertise or which are unnecessarily
tedious to decide and code at a low level.

Configurations can be declared to apply globally, for particular
sets of processes or communication channels, for particular scopes
such as a method scope, or specified as optional arguments to indi-
vidual operations. Configurations declared for an enclosed scope
override those declared for an enclosing scope.

4 IMPLEMENTATION
We have developed a prototype implementation of SecAlgo as a
Python module—a library of Python functions, one for each of the
five basic operations described in the previous section.

SecAlgo is implemented on top of PyCrypto [49] for shared-key
encryption using block ciphers (AES and Triple DES) in classical
modes (CBC, CTR, CFB, OFB), message authentication code creation
(HMAC), public key encryption (RSA), and public key digital sign-
ing (RSA, DSA). SecAlgo also provides support for Diffie-Hellman
key pair generation using pre-established Diffie-Hellman param-
eters defined in [41, 46], but not yet abstraction for shared secret
computation.

In addition, SecAlgo utilizes PyNaCl [72], PyCryptodome [36],
and pyca/cryptography [71] (sometimes called cryptography.io [1])



Item Allowed values Default value References
key_type shared, public shared

key_type_shared AES, Blowfish, 3DES, Salsa20, ChaCha20 AES AES [63], Blowfish [73], 3DES [67],
Salsa20 [14], ChaCha20 [13]

key_type_public RSA, DSA, ECDSA RSA RSA [56], DSA, ECDSA [64]
key_size_shared positive integer* 256**
key_size_public positive integer* 2048**
block_cipher_mode CBC, CTR, CFB, EAX, GCM, CCM, SIV, OCB GCM CBC, CTR, CFB [32], EAX [11], GCM [34],

CCM [33], SIV [39], OCB [43]
sign_hash SHA224, SHA256, SHA384, SHA512 SHA256 [65]
sign_mode detached, combined detached

backend_library PyCrypto, PyNaCl, PyCryptodome,
pyca/cryptography

PyCrypto PyCrypto [49], PyNaCl [72], Py-
Cryptodome [36], pyca/cryptography [71]

Table 1: Configuration items, allowed values, and the default value. * for key size indicates that allowed values depend on the
algorithm and backend library selected. ** for key size indicates the default value that follows the NIST advice [66].

for authenticated encryption modes for block ciphers (CCM [33],
EAX [11], GCM [34], SIV [39], OCB [43]), safe stream ciphers
(Salsa20 [14], ChaCha20 [13]), key derivation functions (HKDF [42]),
elliptic curve digital signing [15], and elliptic curve Diffie-Hellman
shared secret computation [12].

Some of these features (authenticated encryption modes, stream
ciphers, elliptic curve digital signing) fall under our five abstrac-
tions. For the other operations, SecAlgo provides a high-level wrap-
per API around a fixed library implementation with a fixed set
of parameters—choice of library implementation or configuration
is currently not provided for these operations. Choice of RSA as
the default for public key encryption and signing is due to current
incomplete support of elliptic curve cryptography. This will be
updated in future work.

Key generation.
Implementation of keygen uses functions in the low-level crypto-
graphic libraries based on the type, size, and mode of operation
specified.

To use only safe algorithms and implementations, SecAlgo checks
all arguments of keygen against whitelists for approved combina-
tions of algorithm types, key sizes, modes of operation, and hash
functions. If the check fails, then keygen terminates and reports an
error.

SecAlgo also makes sure that all key material—the bytes that
form the shared secret for shared keys, or the modulus and ex-
ponents that form the public and private parts of the key pairs
for RSA—is generated through calls to cryptographically strong
pseudo-random number generators, which are usually provided by
low-level cryptographic libraries and operating systems.

SecAlgo stores key material in a structure that also contains
labels for algorithm type (value of key_type), key size (value of
key_size_shared or key_size_public), block cipher mode of opera-
tion (value of block_cipher_mode), public vs. private part of the key
pair if key_type is public, mode of signing (value of sign_mode), and
the name of the hash function used by MAC and signing algorithms
(value of sign_hash). The implementation uses Python’s dict to
hold the key material and labels.

Encrypt, decrypt, sign, and verify.
For encryption, decryption, signing, and verification, SecAlgo man-
ages tedious low-level details so that they remain hidden.

First, SecAlgo verifies that the input data is in a proper rep-
resentation for submission to the cryptographic functions of the
low-level cryptographic library. This includes making sure the
input data is of the correct type and, if required by the encryption
algorithm and mode of operation, of the proper size.

For example, PyCrypto requires that plaintexts are bytes-like
objects [49] (a bytes-like object is one that supports the Buffer
Protocol, such as bytes, bytearray, or memoryview). If the input data
is not of a compatible type and can not be safely converted to the
required type, then an error is signaled to the user.

Additionally, shared-key block algorithms have a block size–a
fixed number of bytes to which the algorithm can be applied. Some
modes of operation (such as CBC) require that every block of plain-
text input must be of the block size. When using these modes for
messages whose length is not divisible by the block size, SecAlgo
automatically pads the data using a method that is safe for the en-
cryption algorithm. For example, when using a block cipher in CBC
mode, SecAlgo applies the PKCS7 [40] padding algorithm, which
appends N bytes of value N to pad the plaintext to a multiple of
the block size, where:

N = block_size − (plaintext_lenдth % block_size)

Any padding is stripped from the decrypted data before it is re-
turned. To avoid leaking information used by padding oracle attacks,
SecAlgo does not report when padding errors cause decryption fail-
ure.

Also, SecAlgo generates and handles any auxiliary values used by
the selected algorithm or mode of operation: initialization vectors,
counters, and nonces. For example, Counter (CTR) mode encryption
uses a counter, which can be any function that produces a sequence
of block-size bytes values guaranteed not to repeat for a large
number of iterations. SecAlgo follows a standard method [32] to
generate the initial counter value by using a random value for the
top-half of the counter and setting the bottom-half to 0. The random
top-half value of the counter is prepended to the ciphertext.



For public key encryption, SecAlgo uses a straightforward hybrid
encryption [25] scheme to encrypt arbitrary amounts of plaintext
data. A single call to a public key encryption method can only
encrypt a number of bytes that is less than the public key size. Sec-
Algo first checks the size of the plaintext to determinewhether it can
be encrypted directly using the public key algorithm, given the key
size. If not, SecAlgo generates a 256-bit shared key and encrypts the
data usingAES in GCMmode. The new shared key is then encrypted
with the public key algorithm. The public–key–encrypted AES key
is prepended to the AES–in–GCM–mode–encrypted data, and this
concatenation is returned.

The sign and verify functions are straightforward implementa-
tions of the behavior described in Section 3 using cryptographic
functions specified by the configuration.

SecAlgo relies on the implementations in backend libraries to
provide protection against side-channel attacks, such as timing
channel mitigations built into some cryptographic libraries. Provid-
ing additional rigorous protection is future work.

5 APPLICATION: IMPLEMENTING SECURITY
PROTOCOLS

To demonstrate the effectiveness of SecAlgo, we implemented a
collection of well-known security protocols, such as Needham-
Schroeder and others in the SPORE repository [77], as well as
significant parts of more substantial protocols: TLS version 1.2 [31],
Kerberos version 5 [61], and the Signal protocol [57, 68] (including
its components the Double Ratchet protocol [79] and the Extended
Triple Diffie-Hellman (X3DH) protocol [58]). Table 2 lists 10 of the
protocols we implemented.

We implemented these protocols using SecAlgo plus the DistAlgo
language [48, 50, 51], an extension of Python that provides high-
level primitives for creating distributed processes, passingmessages,
and synchronization. The combination of SecAlgo with DistAlgo
enables us to write clear, high-level implementations of security
protocols.

The top part of Figure 1 shows the Denning-Sacco key distribu-
tion protocol [29] (a variation on the Needham-Schroeder public
key authentication protocol [59]). There are three parties, an initia-
tor (A), a responder (B), and a trusted authentication server (AS).
The goal is to securely establish a new shared key (CK) known only
to A and B. A acquires certificates containing its own public key
(CA) and B’s public key (CB). These certificates are passed by A to
B in message 3. With the keys contained in these certificates, A and
B use public key cryptography to protect the confidentiality and
integrity of the new shared key, and to authenticate each other.

A simplified version of the Denning-Sacco protocol [19] is shown
in the bottom part of Figure 1. It assumes that A and B both already
possess the other’s public key. As a result, A does not need to get
certificates containing those public keys from AS, which eliminates
AS and the first two messages. The simplified protocol also does
away with the timestamp (T) associated with the new shared key.
The simplified protocol extends the original protocol to include
sending an encrypted application message.

Figure 2 shows the simplified Denning-Sacco protocol in Sec-
Algo plus DistAlgo. On line 10, message 1 of the simplified protocol
is sent, and on lines 23-24 that message is received, the encrypted

(1) A → AS : A,B
(2) AS → A : CA,CB
(3) A → B : CA,CB, {{CK ,T }SA }PB

Where:
• A and B are users, and AS is a centralized key distri-
bution facility called an Authentication Server.

• T is a timestamp
• PX and SX denote user X ’s public key and secret (sig-
nature) key respectively

• CA = {A, PA,T }SAS and CB = {B, PB ,T }SAS
• The key CK is then used for encrypting messages
transmitted between A and B.

(1) A → B : {{CK}SA }PB
(2) B → A : {msд}CK

Figure 1: Top: Denning-Sacco public key distribution proto-
col [29, p. 535]. Bottom: Simplified Denning-Sacco key dis-
tribution protocol [19].

shared key and signature are decrypted, and then the signature
on the shared key is verified. Lines 11-12 and 25 illustrate the use
of the new shared key to transmit encrypted messages readable
only by A and B. A message (m) is encrypted and sent on line 25,
received on line 11, and decrypted on line 12.

1 from secalgo import *
2 configure(sign_mode = 'combined ')
3
4 class RoleA (process ): # type A process
5 def setup(skA , B, pkB): # take in params
6 pass
7
8 def run():
9 k = keygen('shared ') # new shared key
10 send((1, encrypt(sign(k, skA), pkB)), to=B)
11 await(some(received ((2, enc_m), from_=_B)))
12 m = decrypt(enc_m , k)
13 output('Decrypted secret:', m)
14
15 class RoleB (process ): # type B process
16 def setup(skB , pkA): # take in params
17 self.m = 'secret ' # set secret msg
18
19 def run():
20 await(False)
21
22 def receive(msg=(1, enc_k), from_=A):
23 k = verify(decrypt(enc_k , skB), pkA)
24 if k: # k is not false
25 send((2, encrypt(m, k)), to=A)
26
27 def main ():
28 skA ,pkA = keygen('public ') # prv ,pub key of A
29 skB ,pkB = keygen('public ') # prv ,pub key of B
30 B = new(RoleB , (skB , pkA)) # create B
31 A = new(RoleA , (skA ,B,pkB))# create A
32 start(B)
33 start(A)

Figure 2: Simplified Denning-Sacco key distribution proto-
col.



Each role in a protocol can be defined as a distinct process class.
By extending process, a process in DistAlgo can send messages
(lines 10 and 25), handle received messages (line 22), and await for
synchronization conditions to become true (line 11).

This example illustrates several important features of SecAlgo:

(1) Functions encrypt and decrypt can transparently provide
both shared-key and public-key cryptographic operations
as determined by the key type (shared-key on lines 12 and
25; public-key on lines 10 and 23).

(2) Functions encrypt, decrypt, sign, and verify compose smooth-
ly at a high level needing no extra effort (lines 10 and 23).

(3) The return behavior of sign is controlled by the configuration
statement on line 2, where sign_mode is set to combined . As
a result, on line 10, sign returns a pair of k and the signature
over k . On line 23, verify takes that pair as first argument,
and so returns k itself, if verification succeeds (and False
otherwise). On Line 24, we test the return from verify to
ensure that the verification succeeded before using the key
k to encrypt the secret in message 2.
If sign_mode had been set todetached on Line 2, the following
changes to the program are required:
Line 10 is replaced with:

send((1, encrypt((k, sign(k, skA)), pkB)), to=B)

where the key k is included separately in the body of
message 1 because sign will return only the signature.
Lines 23-24 are replaced with:

k, sig = decrypt(enc_k, skB)
if verify(k, sig, pkA):

where the key k and the signature siд must first be re-
trieved from the encrypted text before they can be passed
to verify.

(4) The developer is relieved of any extra tasks associated with
using cryptographic operations. There is no need to gener-
ate an IV or a counter, or to pad plaintexts, for those algo-
rithms that require it. All those tasks are managed in the
background.

This last point demonstrates how SecAlgo simplifies decision-making
about cryptographic operations. Even for the simplified Denning-
Sacco protocol:

• The protocol contains three calls to keygen, two calls each to
encrypt and decrypt, and one call each to sign and verify.

• Those three calls to keygen contain between 9 and 18 de-
cisions regarding operation, algorithm, key size, mode of
operation, padding, decisions with 66 possible outcomes.

These decision points are all occasions for a programmer, even an
experienced one, to make mistakes. SecAlgo defaults ensure that
all those decisions are made safely.

6 EXPERIMENTAL EVALUATION
We show that SecAlgo allows secure programs to be written much
more easily than using lower-level libraries and incurs a minimum
overhead. We also show in Appendix A that SecAlgo prevents seven
main types of cryptographic misuse that are prevalent in mobile
applications.

We compare measurements of programs that directly use Sec-
Algo with those that use the following lower-level libraries upon
which SecAlgo is built:

• PyCrypto: The most widely-used general-purpose cryptog-
raphy library for Python [1, Table 1].

• pyca/cryptography: The second-most widely-used general
purpose cryptography library for Python [1, Table 1].

• PyCryptodome: A fork of PyCrypto extended to include
newer cryptographic operations; still not in wide use [1,
Table 1].

• PyNaCl: The best available Python interface for Curve 25519
elliptic curve cryptography [1].

The last three libraries provide additional operations not available
in PyCrypto.

6.1 Code size and programming effort
SecAlgo has been used to implement over 20 security protocols, in-
cluding those listed in Table 2. We compare implementations in Sec-
Algowith alternative implementations that use the lower-level cryp-
tographic libraries PyCrypto, pyca/cryptography, PyCryptodome,
and PyNaCl directly, andwith abstract specificationswritten for pro-
tocol verification tools. We also compare with implementations in
Java, C#, and Python for NS-SK, the corrected Needham–Schroeder
shared key protocol.

Protocol Description
NS-SK Corrected Needham-Schroeder protocol for key distri-

bution by key server via shared key encryption [59]
NS-PK Corrected Needham-Schroeder protocol for mutual au-

thentication via public key encryption [59, 60]
DS Denning-Sacco protocol for key distribution by key

server and mutual authentication via public key encryp-
tion [29]

DS Simp Simplified Denning-Sacco protocol for key distribution
and mutual authentication via public key encryption
[19]

DHKE-1 Diffie-Hellman key exchange protocol with mutual au-
thentication via public key signatures [74]

SDH Signed Diffie-Hellman key exchange protocol [23]
X3DH Extended Triple Diffie-Hellman key exchange with mu-

tual authentication via elliptic curve public key signa-
tures [58]

DR Double Ratchet (aka Axolotl) encrypted message ex-
change protocol via shared key authenticated encryp-
tion [79]

Signal Signal: A ratcheting forward secrecy protocol for syn-
chronous and asynchronous messaging environments
[57, 68]

KRB-5 Kerberos, version 5, protocol for key distribution by
key server and mutual authentication via shared key
encryption [61]

TLS-1.2 Transport Layer Security (Handshake), version 1.2, for
key exchange and mutual authentication via public key
encryption [31]

Table 2: Well-known security protocols.



Protocols SecAlgo+DistAlgo PyCrypto+DistAlgo Scyther AVISPA ProVerif Tamarin CryptoVerif
NS-PK 47 96 36 55 107 109 116
NS-SK 46 68 41 82 94
DS 50 102 96 120
DS Simp 26 69
DHKE-1 63 113 41
SDH 39 73 35 41 48 89
X3DH 140 151
DR 182 199
Signal 321 349
KRB-5 171 213 94 137 186
TLS (v. 1.2) 430 (v. 1.2) 478 (v. 1.0) 53 (v. 1.0) 107 (v. 1.3) 397 (v. 1.0) 128

Table 3: LOC of protocol implementations (executable on distributed machines) in SecAlgo+Distalgo and PyCrypto+DistAlgo,
and of abstract specifications in the languages and tools: Scyther [27], AVISPA [8], ProVerif [21], Tamarin [54], and Cryp-
toVerif CryptoVerifSource. Our implementations of X3DH, DR, and Signal include 58 lines of Python code taken directly from
the specification [79]. Empty entry means we did not find a corresponding specification.

Table 3 gives the LOC (number of lines of code without com-
ments) for the protocols listed in Table 2. We use LOC as an indirect
measure of programming effort and program clarity. This is com-
mon practice in programming language literature.

Ease of programming using SecAlgo.
The simplified function calls, automated generation of auxiliary
values, declarative configuration, and carefully selected default
options in the implementation of SecAlgo result in a reduction of
the number of lines required to invoke cryptographic operations,
and a simplification of those lines, when compared to other libraries.

For example, to encrypt a string pt using AES in CBC mode with
a 32-byte key using PyCrypto, one must do the following:

k = Random.new().read(32)
iv = Random.new().read(AES.blocksize)
cipher = AES.new(k, AES.MODE_CBC, iv)
ct = iv + cipher.encrypt(pad(pickle.dumps(pt)))

We can perform the same operation in SecAlgo as follows, where
key = is optional as in Python:

k = keygen('shared')
ct = encrypt(pt, key = k)

We see a similar reduction in the number and complexity of lines
of code for the other cryptographic operations supported by Sec-
Algo. In addition, we can alter the algorithm, keysize, and mode by
declaring a new configuration, without having to alter either the
call to keygen or the call to encrypt.

Our experience is that writing protocols using SecAlgo plus
DistAlgo is much easier than using other languages and libraries.
For simpler protocols like the first 6 in Table 2, we were able to
implement them in SecAlgo plus DistAlgo, with LOC shown in
column 2 of Table 3, by simply following their protocol narrations.

Seven relatively simple protocols, not listed in Table 2, were
written by undergraduates and high-school students who, despite
having had no or little familiarity with Python and being entirely
new to SecAlgo and cryptography (as well as to DistAlgo and dis-
tributed programming), were able to complete the implementation
in a couple of weeks with minimal assistance.

For X3DH, DR, and Signal protocols, we were able to easily use
the core protocol specification from [79], which uses pseudocode
that is simply Python code. We then added implementations of the
lower-level cryptographic functions, which they call “external func-
tions”, using other libraries for elliptic curve cryptography (Curve
25519 for both signing and Diffie-Hellman) and key derivation
(HKDF).

Comparison with using PyCrypto.
We also implemented the protocols in Table 2 using PyCrypto (and
PyNaCl for X3DH, DR, and Signal) plus DistAlgo. Column 3 of
Table 3 shows the LOC of these implementations. Executing these
programs produces the same calls to the underlying cryptography
libraries as those in column 2.

Table 4 lists the number of calls to SecAlgo functions that appear
in each protocol implementation. Each SecAlgo function call uses
1 or more fewer lines of code compared with using PyCrypto and
other lower-level libraries. As a result, protocol implementations
written using SecAlgo are shorter and simpler than those written
using PyCrypto and other lower-level libraries.

Protocol keygen encrypt decrypt sign verify Total
NS-SK 3 5 5 0 0 13
NS-PK 3 3 3 2 2 13
DS 4 1 1 3 5 14
DS Simp 3 2 2 1 1 9
DHKE-1 7 0 0 4 4 15
SDH 5 0 0 2 2 9
X3DH 18 1 1 2 2 24
DR 11 1 1 3 1 17
Signal 29 2 2 5 3 41
KRB-5 6 6 6 6 6 30
TLS-1.2 14 3 3 4 3 27

Table 4: Number of calls to SecAlgo functions in each proto-
col implementation.



The average percentage difference in LOC across all implemen-
tations written using SecAlgo (shown in column 2 of Table 3) com-
pared to those written using low-level libraries (shown in column
3 of Table 3) is 31%, that is, using SecAlgo reduces LOC of protocol
implementations by almost a third on average.

Comparison with abstract protocol specifications.
Columns 4 to 8 of Table 3 show LOC of abstract specifications for
the protocols in Table 2 in the best security protocol specification
languages (for all we could find), as written by experts in these
languages. These specifications are not executable, and are used
as input to specialized verifiers of the respective languages. Our
executable SecAlgo programs are actually similar in size to the most
abstract of these specifications, as evidenced by the similar LOC.
The SecAlgo plus DistAlgo implementations of all but the last 2
protocols have smaller LOC than all of the abstract specifications
except for those in Scyther (SPDL [28]).

For the last 2 protocols, TLS and Kerberos, the most significant
cause of the larger LOC of the SecAlgo plus DistAlgo implemen-
tation is functionalities omitted from the abstract specifications.
For example, the abstract specifications of TLS include only the
TLS Handshake protocol, whereas the SecAlgo plus DistAlgo im-
plementation also includes the TLS Record protocol and the TLS
ChangeCipherSpec protocol. For Kerberos, none of the abstract
specifications construct tickets with actual timestamps, or use those
timestamps to validate tickets, whereas the SecAlgo plus DistAlgo
implementation does both.

Comparison with using other programming languages for
NS-SK.
Table 5 compares implementations of NS-SK in C#, Java, PyCrypto
plus Python, SecAlgo plus Python, PyCrypto plus DistAlgo and
SecAlgo plus DistAlgo. The implementations use different libraries
for distributed programming and cryptographic operations. These
implementations were developed by ourselves or with our supervi-
sion, and they represent our best effort, so far, to use each language
in the best way. For LOC comparison, we formatted the programs
according to the suggested style of each language.

Language Crypto library NS-SK
C# .NET Cryptography [55] 364
Java JCA [69] 351
Python PyCrypto [49] 217
Python SecAlgo 170
DistAlgo PyCrypto [49] 68
DistAlgo SecAlgo 46

Table 5: LOC of NS-SK implementations using different lan-
guages and libraries.

The C# and Java programs required much more effort than the
Python programs, which required much more effort than the Dis-
tAlgo programs. This is also evident in the LOC comparison. Our
experience writing these implementations confirmed that using
high-level cryptographic and communication abstractions signifi-
cantly help reduce program size and programming effort and in-
crease program clarity.

6.2 Running times and overhead
We discuss three running time experiments measuring (1) the time
taken by SecAlgo functions compared with using the underlying
lower-level cryptographic library directly, (2) the time of crypto-
graphic operations vs. message passing in protocols, and (3) the
time of NS-SK implementations using SecAlgo vs. using PyCrypto
on top of DistAlgo and Python, vs. implementations in Java and
C#.

All reported running times are CPU times measured on an Intel
Core i5-5250U processor of 2.70GHZ with 16GB of DDR3L memory,
running Ubuntu 17.10, DistAlgo 1.0.12, and Python 3.6.3. PyCrypto
2.6, PyCryptdome 3.5.1, pyca/cryptography 2.2.2, and PyNaCl 1.2.1
are used for cryptographic operations. For all experiments the
Python garbage collector was disabled. For each measurement,
protocols and cryptographic operations are run in a loop for at
least one second and the CPU time is averaged over the number
of iterations in order to get an accurate estimate of the CPU time
for a single execution of that protocol or operation. Each of those
measurements is repeated at least 50 times, and the average is taken.

Overhead of SecAlgo abstractions.
We fix a configuration—an algorithm, a key size, a mode of opera-
tion, and a padding—and measure the running time of each SecAlgo
primitive. We measure the same operation written using PyCrypto
directly. Themeasurement for using PyCrypto directly also includes
the time needed to encode input to cryptographic functions as byte
strings and the reverse for output from the cryptographic functions.
This is done because it is required by the low-level libraries. We
use the pickle library for Python for encoding and decoding.

Table 6 shows that SecAlgo primitives impose small overhead
for all cryptographic primitives compared with using PyCrypto.
The overhead is ≤ 4.5 microseconds for all shared key primitives,
The overhead is ≤ 13.02 microseconds for all public key primitives
except for 340.54 microseconds for keygen, but all are < 1%.

Public keys used by SecAlgo are 8 times as large as those used
for shared key cryptography (2048-bit vs. 256-bit). This means that
public key primitives may have more varied increases in running
times due to memory effect, as observed. At the same time, because
public key primitives are much more expensive, the percentage
increases may be much smaller, again as observed.

Running time of cryptographic operations in total protocol
time.
To understand the running times of cryptographic operations among
total protocol time, we measure these times for each protocol in
Table 2, and we show the contributing factors by counting the num-
ber of calls to different cryptographic functions and the number of
messages passed.

For protocol time, we measure the time used by each role exclud-
ing process setup time, and sum over all roles. For the time of all
cryptographic operations, which we call library time, we measure
the time of each SecAlgo function call and sum over all calls. We
collect the counts of calls and messages for the measured execution
of each protocol.

Table 7 shows the results, grouped by the kinds of cryptograph-
ics functions called and sorted by decreasing library time in each



Operation Configuration PyCrypto SecAlgo Increase % Increase

Shared
key

keygen AES, 256, CBC, PKCS7 47.36 49.55 2.19 4.62
encrypt AES, 256, CBC, PKCS7 65.93 70.43 4.50 6.83
decrypt AES, 256, CBC, PKCS7 14.46 16.71 2.25 15.56
sign HMAC, 256, SHA512 16.9 18.65 1.75 10.36
verify HMAC, 256, SHA512 17.26 18.84 1.58 9.15

Public
key

keygen RSA, 2048 124,526.75 124.867.29 340.54 0.27
encrypt RSA, 2048, OAEP 1,322.00 1,322.42 0.42 0.03
decrypt RSA, 2048, OAEP 3100.17 3106.41 6.24 0.20
sign RSA, 2048, PKCS1 2995.29 3008.31 13.02 0.43
verify RSA, 2048, PKCS1 698.92 705.21 6.29 0.90

Table 6: Cryptographic operations and configurations used, CPU times (in microseconds) when using PyCrypto and using
SecAlgo, and time increase (in microseconds) and percentage increase from PyCrypto time to SecAlgo time.

group. Cryptogrpahic functions are listed in the order of expensive
ones first: modular exponentiation (pow) for Diffie-Hellman, RSA
functions, elliptic curve (EC) functions, and shared key functions
(SK); among RSA functions, keygen, decrypt and sign that use pri-
vate keys, and encrypt and verify that use public keys; among EC
functions, keygen and the rest.

For library time, we see that it is almost fully determined by the
counts of calls to more expensive functions, with two exceptions: (1)
SDH and DHKE-1 both have the same numbers of expensive calls,
especially power function pow to compute Diffie-Hellman shared
secrets, but the larger time for SDH is because it uses values that are
3 times as large; (2) Signal uses EC, but it has many more calls to EC
keygen and thus a slightly larger library time than DS Simp and TLS
1.2 that use RSA but have few calls of non-keygen functions. In fact,
with the exception of Signal, the library time is sorted completely
in decreasing order.

Protocol time is also mostly in decreasing order, but with three
exceptions: TLS 1.2, Signal, and NS-SK. This is because protocol
time is also affected by the number of messages passed during the
protocol run. In fact, the three exceptions are from protocols that
have the most messages.

We consider the difference between protocol and library times.
We see that for each group, a larger time difference corresponds to a
larger number of messages, with one exception: SDH and DHKE-1
both have 3 messages, but the larger difference for DHKE-1 is due
to additional local, non-cryptographic computations in DHKE-1
but not in SDH.

Comparison with using Python and PyCrypto on NK-SK.
Figure 3 shows the running times of NS-SK written using SecAlgo
and PyCrypto on top of DistAlgo and Python, for all 4 combinations,
measured by repeating NS-SK on increasing numbers of runs.

All 4 implementations show a linear increase in running time as
the number of runs increases. The difference between using SecAlgo
and using PyCrypto, on top of DistAlgo or on top of Python, is small:
at most 2.4 seconds and between -2% and 16%. The difference can
sometimes be negative because of the small overhead of SecAlgo
and the usual variation in running times of multi-process protocols
even when averaged over 50 runs.
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Figure 3: Running times of NS-SK on increasing numbers of
protocol runs.

Using DistAlgo is about 5 times as slow as Python, but that is ex-
pected and is the subject of DistAlgo compilation and optimizations
studied separately [50].

The main result is that whether using DistAlgo or Python, using
SecAlgo is at most a small increase over using PyCrypto directly,
while being safe and much simpler to use.

7 RELATEDWORK AND CONCLUSION
There have been many efforts at building better cryptographic
libraries providing simpler interfaces. These include the NaCl li-
brary [16, 17] for C and C++; libsodium [38], a portable version of
NaCl with a slightly improved interface; the pyca/cryptography
library [71] for Python; the Charm library [2, 3] for Python; the
Keyczar library [30, 78] for C++, Java, and Python; and the Tink
library [5] for C++, Java, Go, and Objective-C.

These libraries simplify use of cryptographic operations in ways
similar to SecAlgo. Simplifying techniques to reduce the number
of decisions for users include: (1) requiring fewer inputs from the
user, (2) handling tedious, routine tasks automatically behind the
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SDH 2 2 2 2 160.08 161.71 1.63 3
DHKE-1 2 2 2 4 42.60 45.89 3.29 3
NS-PK 5 5 19.87 27.87 7.99 7
DS 4 6 1 17.59 22.76 5.17 3
DS Simp 2 2 3 8.34 10.40 2.06 2
TLS 1.2 1 3 33 6.90 20.33 13.43 9-13*
Signal 11 19 29 8.40 19.05 10.65 8
DR 6 9 25 4.93 9.70 4.77 6
X3DH 5 10 4 3.72 8.42 4.70 4
KRBv5 26 0.75 8.45 7.70 6
NS-SK 11 0.61 11.61 10.99 7

Table 7: Number of calls to diferent cryptographic functions (with expensive ones first), CPU times (inmilliseconds) of protocol
run and library calls, difference between the two times, and number of messages passed. An empty entry denotes 0. ∗ for
TLS1.2 indicates that the number of messages can differ when different branching conditions hold; our experiments used the
condition for which 9 messages are passed.

scenes, (3) supporting better default configurations, and (4) remov-
ing unsafe algorithms and implementations.

However, these libraries fall short when compared with SecAlgo.
Charm provides simplified use for only a single operation—shared
key authenticated encryption. pyca/cryptography provides simpli-
fied use of only shared key authenticated encryption and X.509
certificate handling. Keyczar and Tink provide only shared key
authenticated encryption, hybrid encryption, signing, and message
authentication code creation. NaCl and libsodium provide a much
more complete set of cryptographic operations, but provide little to
no configurability but only one algorithm for most cryptographic
operations.

Acar et al. [1] study the usability of five Python cryptographic li-
braries: PyCrypto [49], M2Crypto [76], Keyczar [30, 78], pyca/cryp-
tography [71], and PyNACL [72] (a Python binding of NACL). They
found that clear documentation and concrete code examples were
the most significant factors determining whether subjects produced
solutions that work. Furthermore, they found that code written with
simplified APIs were muchmore likely to be secure, while code writ-
ten with low-level libraries were more likely to contain mistakes
that compromised their security. SecAlgo provides higher-level,
simpler APIs than these previous libraries.

Egele et al. [35, p. 81] study cryptographic misuse in Android
and propose mitigation strategies: (1) introduction of better default
configurations in cryptographic libraries and (2) provision of better,
more complete documentation of cryptographic libraries. SecAlgo
realizes the first by default configurations that implement best
security practice and allows the second to be made much simpler
and easier to use.

FixDroid [62] is an IDE plug-in for the Android SDK that iden-
tifies cryptographic mistakes in source code, as it is written, and
provides suggested corrections. CogniCrypt [44] automatically gen-
erates Java code for a collection of common cryptographic tasks
(e.g., encrypting data with a password, storing passwords, secure
communication, etc.) and performs static analysis to verify that
generated code is properly integrated into the user’s application.

CDRep [52] acts directly on Android binaries by using static analy-
sis to detect cryptographic misuses and then generates and applies
patches to correct them. Use of SecAlgo allows many tasks of such
tools to be greatly simplified or completely eliminated.

Security protocol specification languages are for abstract for-
mulation and verification of security protocols. Scyther [26, 27],
AVISPA [6, 7], ProVerif [20, 21], and CryptoVerif [18, 22] are process
or role oriented similar to SecAlgo plus DistAlgo. Tamarin [53, 54]
models the state of the protocol as a multi-set of facts and models
protocol actions as rewrite rules operating on these facts. SecAlgo
plus DistAlgo programs are simpler than even abstract specifica-
tions written in most of these formal specification languages. Unlike
these formal specification languages, SecAlgo is for building actual
implementations of security protocols as well as full-fledged secure
applications.

In conclusion, SecAlgo provides simpler and more powerful high-
level abstractions for cryptographic operations and allows security
protocols and applications to be written more easily and clearly.
Future work includes possible further optimization of the imple-
mentation to minimize performance overhead, extension to support
more combinations of best cryptographic functions from different
libraries, static checking and optimization of these combinations,
more extensive use and evaluation of the abstractions, and transla-
tion into languages of protocol verification tools such as ProVerif
and Scyther for formal verification.
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A MISUSE PREVENTION
To validate SecAlgo against main types of cryptographic misuse,
we surveyed studies of misuses that occur in mobile applications.



Misuse type Description Reported number of apps with this misuse type by study
CryptoLint CMA CNKX CDRep

M1K Insufficient key size - 1 7 -
M2K Constant or hardcoded keys 3644 0 4 882
M1S Encryption in ECB mode 7656 7 16 887
M2S Encryption with predictable IV 1932 8 2 979
M3S Encryption with obsolete algorithm - 8 16 -
M1A RSA encryption without OAEP - 3 2 -
M1H Hashing with obsolete algorithm - 38 16 5582
Sum Sum of numbers above 13232 65 63 8330
Total apps Total number of apps analyzed 11748 45 49 8640

Table 8: Misuse type and number of apps containing that type, plus total number of apps studied, using the misuse analysis
systems CryptoLint [35], CMA [75], CNKX [24], and CDRep [52]. Misuse types prevented by SecAlgo are listed; three other
types studied [24, 35, 52] (a constant salt for password-based encryption (PBE), < 1000 iterations for PBE, and improper seeding
for Java SecureRandomobjects), not prevented by SecAlgo, are not listed. ’-’means that the study did not report about instances
of the corresponding misuse type.

Misuse type Prevention
M1K excluded from whitelist of approved key sizes, safe

defaults
M2K keygen generates random key at runtime
M1S excluded from whitelist of approved block modes

of operation
M2S encrypt generates random IV when needed
M3S excluded from whitelists of approved encryption

algorithms
M1A encrypt uses OAEP padding for RSA encryption,

no alternative
M1H excluded from whitelist of approved hasing algo-

rithms
Table 9: Summary of the way in which each misuse type is
prevented by SecAlgo.

Table 8 presents results of our evaluation using four such studies.
It shows that SecAlgo prevents seven main types of cryptographic
misuse out of a total of ten. Note that each misuse type reported
occurs at least once in each of the applications counted. Thus even
the sum from CryptoLint alone means that SecAlgo abstractions
prevent at least 13232 instances of types of cryptographic misuse.

We describe how exactly SecAlgo prevents all of the misuse
types listed in Table 8. They are summarized in Table 9.

• M1K: Insufficient key size. This issue is handled by the
keygen abstraction. The default key sizes for all algorithms
are safe as they guarantee at least 112 bits of security, which
NIST has determined as the minimum security strength al-
lowable until 2030 [66]. A key size given explicitly at a call to
keygen is checked against a whitelist for the algorithm and
if the key size is found to be insufficient, SecAlgo throws an
exception.

• M2K: Hard-coded keys. Hard-coded keys are unsafe be-
cause they can be extracted by binary disassembly. SecAlgo
inhibits the use of hard-coded keys through easy generation

of keys using keygen and, in a planned extension, easy secure
storage of keys.

• M1S: Encryption in ECBmode. Creation of a key for ECB
mode is prevented during keygen because ECB is not in-
cluded in the the whitelist of allowed block cipher modes
in SecAlgo. The whitelist is checked again when the key
is used preventing the use of keys whose tags have been
manually altered in an attempt to encrypt with ECB mode.
Any attempt to use unsafe block modes like ECB, detected by
checking the whitelist of approved modes will be reported
as an error at runtime.

• M2S: Encryption with predictable IV. The default be-
haviour of encrypt generates IVs automatically, thus prevent-
ing predictable IVs. SecAlgo uses a cryptographically strong
random number generator to generate the random data block
to use as the IV as directed by NIST SP 800-38A [32].

• M3S: Encryption with obsolete algorithm. As for M1S,
this misuse is prevented by having a whitelist of safe al-
gorithms. Obsolete algorithms like DES, ARC2 and ARC4
stream ciphers are not allowed by SecAlgo abstractions
keygen, encrypt, and decrypt. Any attempt to use an obsolete
algorithm will be reported as an error at runtime.

• M1A: RSA encryption without OAEP. Optimal Asym-
metric Encryption Padding (OAEP) is the default padding
scheme used with RSA by SecAlgo. SecAlgo does not offer
any alternative to OAEP and thereby ensures safety.

• M1H: Hashing with obsolete algorithm. Unsafe hashing
algorithms like MD2, MD4, MD5 and SHA-1, are not in the
whitelist of allowed hashing algorithms in SecAlgo. Any
attempt to use an obsolete algorithm will be reported as an
error at runtime, as for M1S.
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