
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-021-00623-1

GENERAL

Special Issue: RV 2019

Neural predictive monitoring and a comparison of frequentist and
Bayesian approaches

Luca Bortolussi1,2 · Francesca Cairoli1 · Nicola Paoletti3 · Scott A. Smolka4 · Scott D. Stoller4

Accepted: 6 May 2021
© The Author(s) 2021

Abstract
Neural state classification (NSC) is a recently proposed method for runtime predictive monitoring of hybrid automata (HA)
using deep neural networks (DNNs). NSC trains a DNN as an approximate reachability predictor that labels an HA state
x as positive if an unsafe state is reachable from x within a given time bound, and labels x as negative otherwise. NSC
predictors have very high accuracy, yet are prone to prediction errors that can negatively impact reliability. To overcome this
limitation, we present neural predictive monitoring (NPM), a technique that complements NSC predictions with estimates
of the predictive uncertainty. These measures yield principled criteria for the rejection of predictions likely to be incorrect,
without knowing the true reachability values. We also present an active learning method that significantly reduces the NSC
predictor’s error rate and the percentage of rejected predictions. We develop two versions of NPM based, respectively, on the
use of frequentist and Bayesian techniques to learn the predictor and the rejection rule. Both versions are highly efficient, with
computation times on the order of milliseconds, and effective, managing in our experimental evaluation to successfully reject
almost all incorrect predictions. In our experiments on a benchmark suite of six hybrid systems, we found that the frequentist
approach consistently outperforms the Bayesian one. We also observed that the Bayesian approach is less practical, requiring
a careful and problem-specific choice of hyperparameters.

Keywords Predictive monitoring · Runtime verification · Hybrid automata reachability · Neural networks · Conformal
prediction · Bayesian inference

1 Introduction

Hybrid systems are a central model for many safety-critical,
cyber-physical system applications [1]. Their verification
typically amounts to solving a hybrid automata (HA) reacha-
bility checking problem [2]: given a modelM of the system
expressed as an HA, a set I of initial states of M, and a set
D of unsafe states, check whether D is reached along any

B Nicola Paoletti
nclpltt@gmail.com

1 Department of Mathematics and Geosciences, Università di
Trieste, Trieste, Italy

2 Modelling and Simulation Group, Saarland University,
Saarbrücken, Germany

3 Department of Computer Science, Royal Holloway,
University of London, London, UK

4 Department of Computer Science, Stony Brook University,
New York, USA

(time-bounded) path ofM starting from a state in I . Due to
its high computational cost, reachability checking is usually
limited to design-time (offline) analysis.

Our focus is on the online analysis of hybrid systems and,
in particular, on the predictive monitoring (PM) problem [3],
i.e., the problem of predicting, at runtime, whether or not
an unsafe state can be reached from the current system state
within a given time bound. PM is at the core of architec-
tures for runtime safety assurance such as Simplex [4], where
the system switches to a certified-safe baseline controller
whenever PM indicates the potential for an imminent safety
violation.

In such approaches, PM is invoked periodically and fre-
quently. Thus, reachability needs to be determined rapidly,
from a single state (the current system state), and typically
for short time horizons. This is in contrast with offline reach-
ability checking, where long or unbounded time horizons and
sizable regions of initial states are typically considered. PM
also differs from traditional runtime verification [5] in that

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00623-1&domain=pdf

L. Bortolussi et al.

PM is preemptive: it detects potential safety violations before
they occur, not when or after they occur.

Any solution to the PM problem involves a trade-off
between two main requirements: accuracy of the reachabil-
ity prediction, and computational efficiency, as the analysis
must execute within strict real-time constraints and typically
with limited hardware resources.

In this paper, we present neural predictive monitoring
(NPM), a machine-learning-based approach to PM that pro-
vides highly accurate predictions in a highly efficientmanner.
Moreover, NPM offers principled methods for detecting
potential prediction errors, which significantly enhances the
reliability of PM estimates.

NPM builds on neural state classification (NSC) [6], a
recently proposed method for approximate HA reachability
checking using deep neural networks (DNNs).NSCworks by
training a DNN as a state classifier using examples computed
with an oracle (an HAmodel checker). For any state x of the
HA, such a classifier labels x as positive if an unsafe state is
reachable from x within a given time bound; otherwise, x is
labeled as negative.

Executing a neural state classifier corresponds to com-
puting the output of a DNN for a single input, and thus is
extremely efficient. NSC has also demonstrated very high
accuracy in reachability predictions, owing to the power-
ful approximation capabilities of DNNs. Some classification
errors are, however, unavoidable, the most important being
false negatives, in which positive states are misclassified as
negative. Such errors may compromise system safety.

NPM overcomes this problem by extending NSC with
rigorousmethods for quantifying theuncertainty of the reach-
ability estimates. NPM can consequently identify and reject
predictions that are likely to produce classification errors.
We investigate two alternative NPM methods: a frequen-
tist approach that uses Conformal Prediction (CP) [7], a
method that provides statistical guarantees on the predictions
of machine-learning models with minimal assumptions on
the data;1 and aBayesian approach that leverages uncertainty
quantification via Bayesian neural networks (BNNs), rather
than traditional (deterministic) DNNs.We consider two pop-
ular Bayesian inference methods: Hamiltonian Monte Carlo
[8] and Variational Inference [9].

Figure 1 provides an overview of the NPM approach. We
sample from a distribution of HA states to generate a training
set Zt and a validation set Zv . An HA reachability oracle
(a model checker or, for deterministic systems, a simulator)
is used to label sampled states as positive or negative. A
neural state classifier F (i.e., a DNN-based binary classifier)
is derived from Zt via supervised learning, and is either a

1 The only assumption is exchangeability, a weaker version of the inde-
pendent and identically distributed assumption.

Fig. 1 Overviewof theNPMframework.Double-bordered components
denote extensions to the method of [6]. Training of the neural state
classifier F and retraining via active learning are performed offline.
The only components used at runtime are the classifier F and the error
detection criterion

deterministic neural network (in the frequentist approach) or
a Bayesian neural network (in the Bayesian approach).

In the frequentist case, CP is used to estimate two statis-
tically sound measures of prediction uncertainty: confidence
and credibility. Informally, the confidence of a prediction is
the probability that a reachability prediction for an HA state
x corresponds to the true reachability value of x . Credibility
quantifies how likely a given state is to belong to the same
distribution of the training data. In the Bayesian case, we use
an empirical approximation of the BNN output distribution
and, to be precise, statistics of said distribution to quantify
the model uncertainty about a specific HA state.

The measures described above, henceforth referred to as
uncertainty measures, are used to derive criteria for error
detection, i.e., for rejecting NSC predictions that are likely to
be erroneous. The rejection criterion is based on identifying,
via supervised learning on the validation set Zv , a decision
rule that optimally separates incorrect and correct predic-
tions. We again consider both a frequentist and a Bayesian
approach, deriving a support vector classifier for the former,
and a Gaussian process classifier for the latter.

Executing a neural predictive monitor corresponds to:
(i) computing the output of a DNN, either deterministic or
Bayesian, on a single input; (ii) computing the corresponding
measure of uncertainty, whose computational cost depends
on the size of the validation set for the frequentist case, and
on the sample size used for the empirical distribution of the
BNN for the Bayesian case; (iii) evaluate the rejection rule on
themeasure of uncertainty obtained via step (ii). For all of the
approaches we consider, this whole process is very efficient,
taking from2milliseconds to 0.3 seconds in our experiments.
This makes our NPMmethod suitable for online analysis and
PM.

Finally, our approach includes an active learning strategy
to improve the reliability of the state classifier F . The idea is
to employ the uncertainty-based rejection criterion to iden-
tify HA states for which F yields uncertain predictions, and
augment the training and validation sets with those states.We
then train a new state classifier with the augmented dataset,

123

Neural predictive monitoring and a comparison of frequentist...

thus ensuring improved accuracy on the HA states where F
performed poorly, and, in turn, a reduced rejection rate.

Compared to simple random sampling of the state dis-
tribution, our active learning strategy has the advantage of
parsimony: by focusing on the states with uncertain predic-
tions, it requires a significantly smaller number of additional
retraining samples to achieve a given reduction in the rejec-
tion rate, and thus significantly reduces the cost of retraining.
The active learning procedure can be iterated, as shown in
Fig. 1.We stress that these retraining iterations are part of the
training process, which is performed offline and hence does
not affect runtime performance.

In summary, the main contributions of this work are the
following:

– We develop neural predictive monitoring, a framework
for runtime predictivemonitoring of hybrid automata that
extends neural state classification with quantification of
prediction reliability.

– We instantiate the NPM framework in two variants,
which, respectively, use frequentist and Bayesian learn-
ing techniques. For both approaches, we derive optimal
criteria for rejecting unreliable NSC predictions by lever-
aging sound measures of prediction uncertainty.

– We develop an active learningmethod designed to reduce
both prediction errors and the rejection rate.

– We evaluate our method on six hybrid automata case
studies, demonstrating that our optimal rejection crite-
ria successfully rejects almost all prediction errors, with
100% of the errors recognized in 5 out of 6 case studies
for the frequentist method.Moreover, only a single active
learning iteration is needed to significantly increase the
prediction accuracy and reduce the rejection rate.

– With our analysis and experimental comparison of fre-
quentist and Bayesian variants of NPM, we show that
the frequentist approach empirically outperforms the
Bayesian one on all relevant metrics. Furthermore, the
frequentist techniques require minimal assumptions and
tuning, which makes them more practical.
In contrast, Bayesian inference requires tuning of a num-
ber of hyperparameters, including the prior distribution
for the DNNweights. If the hyperparameters are not opti-
mally tuned, the performance may be extremely poor.

This work is an extended version of [10], where we first
introduced theNPMmethod, but only the frequentist version.
Here, we introduce a fully Bayesian variant of NPM, and
compare the two versions in a new experimental evaluation
section. In this version of the paper, we also include a more
extensive treatment of the problem formulation and the NPM
method itself.

The paper is structured as follows. Section 2 presents
a rigorous formulation of the problem. Section 3 provides

background on neural state classification and on the methods
used to estimate predictive uncertainty. The uncertainty-
based error detection rules are presented in Sect. 4. Section 5
presents the active learning algorithm. Results of the exper-
imental evaluation are given in Sect. 6. Related work is
discussed in Sect. 7. Section 8 offers concluding remarks.

2 Problem formulation

We describe the predictive monitoring problem for hybrid
automata reachability and the related problem of finding an
optimal criterion for rejecting erroneous reachability predic-
tions.

Definition 1 (Hybrid automaton) A hybrid automaton (HA)
is a tuple M = (Loc, Var, Init,Flow,Trans, Inv), where
Loc is a finite set of discrete locations (or modes); Var =
{v1, . . . , vn} is a set of continuous variables, evaluated over a
continuous domain V ⊆ R

n ; Init ⊆ S(M) is the set of initial
states, where S(M) = Loc × V is the state space of M;
Flow : Loc → (V → V) is the flow function, defining the
continuous dynamics at each location; Trans is the transition
relation, consisting of tuples of the form (l, g, r , l ′), where
l, l ′ ∈ Loc are source and target locations, respectively, g ⊆
V is the guard, and r : V → V is the reset; Inv : Loc → 2V

is the invariant at each location.

We also consider parameterized HA in which the flow,
guard, reset and invariant may have parameters whose values
are constant throughout an execution. We treat parameters as
continuous variableswith flowequal to zero and identity reset
map. The behavior of an HA M can be described in terms
of its trajectories. A trajectory may start from any state; it
does not need to start from an initial state. For time bound
T ∈ R

≥0, we denote with T = [0, T] ⊆ R
≥0 the time

domain.

Definition 2 (Trajectory [11]) For HAM = (Loc,Var, Init,
Flow,Trans, Inv), time domain T = [0, T], let ρ : T →
S(M) be a function mapping time instants into states ofM.
For t ∈ T, let ρ(t) = (l(t), v(t)) be the state at time t ,
with l(t) being the location and v(t) the vector of continuous
variables. Let (ξi)i=0,...,k ∈ T

k+1 be the ordered sequence of
time points where mode jumps happen, i.e., such that ξ0 = 0,
ξk = T , and for all i = 0, . . . , k−1 and for all t ∈ [ξi , ξi+1),
l(t) = l(ξi). Then, ρ is a trajectory of M if it is consistent
with the invariants: ∀t ∈ T. v(t) ∈ Inv(l(t)); flows: ∀t ∈ T.
v̇(t) = Flow(l(t))(v(t)); and transition relation: ∀i < k.
∃(l(ξi), g, r , l(ξi+1)) ∈ Trans. v(ξ−

i+1) ∈ g ∧ v(ξi+1) =
r(v(ξ−

i+1)).

Example 1 (Spiking neuron HA) This model describes the
evolution of a neuron’s action potential. It is a deterministic

123

L. Bortolussi et al.

HA with two continuous variables, one mode, one jump and
nonlinear polynomial dynamics, defined by the ODE

{
v̇2 = 0.04v22 + 5v2 + 140 − v1 + I

v̇1 = a · (b · v2 − v1)
(1)

The jump condition is v2 ≥ 30, and the associated reset is
v′
2 := c∧v′

1 := v1 +d, where, for any variable x , x ′ denotes
the value of x after the reset. We consider the unsafe set D
defined by v2 ≤ 68.5, expressing that the neuron should not
undershoot its resting potential. The parameter values are
given in Appendix C.

Reachability checking of HA is concerned with establish-
ing whether, given an initial HA state x and a set of target
states D – typically a set of unsafe states to avoid – the HA
admits a trajectory starting from x that reaches D.

Definition 3 (Time-bounded reachability) Given an HA M
with state space X , a set of states D ⊆ X , state x ∈ X ,
and time bound T , decide whether there exists a trajectory
ρ of M starting from x and t ∈ [0, T] such that ρ(t) ∈ D,
denoted M |� Reach(D, x, T).

We aim to derive a predictive monitor for HA reachabil-
ity, i.e., a function that can predict whether or not a state
in D (an unsafe state) can be reached from the current sys-
tem state within time T . In solving this problem, we assume
a distribution X of HA states and seek the monitor that pre-
dicts HA reachability with minimal error probability w.r.t.X.
The choice of X depends on the application at hand and can
include a uniform distribution on a bounded state space or
a distribution reflecting the density of visited states in some
HA executions [6].

Problem 1 (Predictivemonitoring forHAreachability)Given
an HAMwith state space X , a distributionX over X , a time
bound T and set of unsafe states D ⊆ X , find a function
F∗ : X → {0, 1} that minimizes the probability

Prx∼X
(
F∗(x) �= 1(M |� Reach(D, x, T)

)
),

where 1 is the indicator function. A state x ∈ X is called
positive w.r.t. a predictor F : X → {0, 1} if F(x) = 1.
Otherwise, x is called negative (w.r.t. F).

Any practical solution to the above PM problemmust also
assumea spaceof functionswithinwhich to restrict the search
for the optimal predictive monitor F∗. Following the neural
state classification method of [6], in this work we consider
functions described by deep neural networks (DNNs)2. Find-
ing F∗, i.e., finding a function approximation with minimal

2 In [6], the PM problem is called “state classification problem,” and
its solution a “state classifier.”

error probability, is indeed a classicalmachine-learning prob-
lem, a supervised classification problem in particular, with
F∗ being the classifier, i.e., the function mapping HA state
inputs x into one of two classes: 1 (x is positive, can reach
D) and 0 (x is negative, cannot reach D).

Machine-learning classifiers often admit an underlying
discriminant function, which is used to determine the final
classifier output. In neural networks, the discriminant is the
function mapping inputs into the class likelihoods (i.e., the
softmax probabilities of the last network layer), such that the
predicted class is the one with the highest likelihood.

Definition 4 (Discriminant function) Let Y = {y1, . . . , yc}
be a set of classes. A function f : X → [0, 1]c is a discrim-
inant for a classifier F : X → Y iff for any input x ∈ X ,
F(x) ∈ argmaxyi∈Y fi (x), where fi (x) is the i-th compo-
nent of f (x).

Remark 1 If argmaxyi∈Y fi (x) contains more than one class,
then the discriminant implies multiple possible predictions
for x . To avoid this ambiguity,wewill assume that f is always
well defined, meaning that argmaxyi∈Y fi (x) is a singleton,
and thus, only one prediction is possible for the classifier F .
Any discriminant can be made well defined by, for instance,
imposing a total ordering on the classes to select in such
ambiguous cases and adequately adjusting the discriminant
output3.

In what follows, we will interchangeably use the term
“(reachability) predictor” for the classifier F and for its dis-
criminant f . Likewise, we will also call F a state classifier,
and in particular, neural state classifier (NSC) when its dis-
criminant f is described by a deep neural network. Belowwe
provide a definition of discriminant based on feed-forward
neural networks.

Definition 5 (Deep Neural Network discriminant) A DNN-
based discriminant over c classes can be defined as a function
fw : X → [0, 1]c of the form:

fw = fL ◦ fL−1 ◦ . . . ◦ f1 ◦ f0,

where L is the number of hidden layers, ◦ is the function
composition operator, f0 is the input standardization function
and, for i = 1, . . . , L , fi is the function computed by the i-th
layer. In particular, fL is a function mapping the output of
layer L − 1 to [0, 1]c.

Let ni indicate the number of neurons in layer i and let
oi−1 ∈ R

ni−1 be the output vector of layer i − 1. The output

3 Any discriminant f can be turned into a well-formed one by f ′(x) =
{ f (x) if |Ymax| = 1; (f (x)+0k �→ε)/(1+ε) otherwise}, where Ymax =
argmaxyi∈Y fi (x), ε ∈ R

+, k = maxyi∈Ymax
i (based on the ordering

on Y) and 0k �→ε ∈ R
c is a vector whose components are all zeros but

the k-th component equals to ε.

123

Neural predictive monitoring and a comparison of frequentist...

of layer i results from applying function fi : R
ni−1 → R

ni

to the output of the previous layer:

fi (oi−1) = ai
(
wi,i−1 · oi−1 + bi

)
, i = 1, . . . , l (2)

where wi,i−1 ∈ R
ni×ni−1 is the weight matrix that connects

oi−1 to the neurons of layer i , bi ∈ R
ni is the bias vector

of layer i , and ai is the activation function of the neurons of
layer i . Weights and biases are the parameters learned during
training.

Training set. In supervised learning, one minimizes a mea-
sure of the empirical prediction error w.r.t. a training set. In
our case, the training set Z ′ is obtained from a finite sample
X ′ of X by labeling the training inputs x ∈ X ′ using some
reachability oracle, that is, a hybrid automata reachability
checker like [12–15]. Hence, given a sample X ′ of X, the
training set is defined by

Z ′ = {(x, 1 (Reach(D, x, T)) | x ∈ X ′}.

Prediction errors. It is well known that neural networks are
universal approximators, i.e., they are expressive enough
to approximate arbitrarily well the output of any measur-
able mathematical function [16]. Even though arbitrarily
high precision might not be achievable in practice, state-
of-the-art optimization methods based on gradient descent
via back-propagation [17] can effectively learn highly accu-
rate neural network approximators. However, such methods
cannot completely avoid prediction errors (no supervised
learning method can). Therefore, we have to deal with pre-
dictive monitors F that are prone to prediction errors, which
are of two kinds:

– false positives (FPs), when, for a state x ∈ X , F(x) = 1
(x is positive w.r.t. F) but M �|� Reach(D, x, T), and

– false negatives (FNs),when F(x) = 0 (x is negativew.r.t.
F) but M |� Reach(D, x, T).

These errors are, respectively, denoted by predicates fn(x)
and fp(x). In what follows, we consider general kinds of
prediction error, described by predicate pe(x), and defined
by any arbitrary combination of fn(x) and fp(x).

Remark 2 (Feature space and state space). Neural networks
only admit inputs fromsomevector space⊆ R

n ,which is also
called feature space. However, the state space X of a hybrid
automaton is not a vector space as it is given by X = Loc×V ,
whereLoc is thefinite set ofHA locations andV is the domain
of the continuous HA variables (see Definition 1). To this
purpose, for x = (l, v) ∈ X , we apply the (straightforward)
vector embedding (l, v) �→ [#(l) v]T , where # : Loc → R is
a suitable injection (a typical choice is assigning an ordinal
value to each HA location). In what follows, we keep this

vector embedding implicit andwork directlywith inputs over
X .

2.1 Uncertainty-based error detection

A central objective of this work is to derive, given a predictor
f , a rejection criterion R f able to identify states x that are
wrongly classified by F , i.e., FNs and FPs or any combina-
tion of the two, without knowing the true reachability value
of x . Further, R f should be optimal, that is, it should ensure
minimal probability of rejection errors w.r.t. the state distri-
butionX. For this purpose, we propose to utilize information
about the reliability of reachability predictions, so as to detect
and reject potentially erroneous (i.e., unreliable) predictions.

Our solution relies on enriching each prediction with a
measure of predictive uncertainty: given f , we define a func-
tion u f : X → U mapping an HA state x ∈ X into some
measure u f (x) of the uncertainty of f about x . The set U is
called uncertainty domain. Defining u f andU is a non-trivial
task, details are provided in Sect. 3. The only requirements
are thatu f is point-specific and should not use anyknowledge
about the true reachability value. Once defined, u f can be
used to build anoptimal error detection criterion, as explained
below.

Problem 2 (Uncertainty-based error detection)Given a reach-
ability predictor f , a distribution X over HA states X , a
predictive uncertainty measure u f : X → U over some
uncertainty domainU , and a kind of error pe find an optimal
error detection rule G∗

f ,pe : U → {0, 1}, i.e., a function that
minimizes the probability

Prx∼X(pe(x) �= G∗
f ,pe(u f (x))).

Note that Problem 2 requires specifying the kind of predic-
tion errors to reject. Indeed, depending on the application at
hand, one might desire to reject only a specific kind of errors.
For instance, in safety-critical applications, FNs are the most
critical errors while FPs are less important.

As for Problem 1, we can obtain a sub-optimal solution
G f ,pe to Problem 2 by expressing the latter as a supervised
learning problem, where the inputs are, once again, sampled
according to X and labeled using a reachability oracle. We
call validation set the set of labeled observations used to learn
G f ,pe. These observation need to be independent from the
above introduced training set Z ′, i.e., those used to learn the
reachability predictor f . In the simplest scenarios, learning
G f ,pe reduces to identifying an optimal threshold. However,
the proposed supervised learning solution is capable of iden-
tifying complex and multi-dimensional decision boundaries
in an automatic fashion, making it suitable also for complex
scenarios.

123

L. Bortolussi et al.

For an error pe, the final rejection rule R f ,pe for detect-
ing HA states where the reachability prediction should not
be trusted, and thus rejected, is readily obtained by the com-
position of the uncertainty measure and the error detection
rule

R f ,pe = G f ,pe ◦ u f : X → {0, 1},

where R f ,pe(x) = 1 if the prediction on state x is rejected;
R f ,pe(x) = 0, otherwise. We remark that rejection rules
for different kinds of errors could be combined together to
express more sophisticated criteria.

List of notation

F (f) reachability predictor (NSC) (and its dis-
criminant)

u f uncertainty function for f
G f (g f) error detection function for f (and its dis-

criminant)
R f rejection function for f
X (X) HA state space (and its distribution)
D set of unsafe states
Y set of possible reachability values
Z = X × Y (Z) data domain (and its distribution)
U (UF, UB) uncertainty domain (frequentist, Bayesian

versions)
pe, f n, f p type of prediction errors
Zt , Zv , Zc training, validation, calibration datasets
Za
t , Z

a
v , Z

a
c augmented training, validation, calibration

datasets in active learning
Uv uncertainty measures for f over Zv

Ev error labels for f over Zv

Wv training set for the error detection function
G f

3 Uncertainty quantification in neural
predictive monitoring

We explore two approaches to quantify the uncertainty pro-
duced by a neural network-based reachability predictor f ,
i.e., to derive the uncertainty measures u f introduced in Sec-
tion 2.1.

The first approach, referred to as the frequentist approach,
is based on Conformal Prediction [7,18,19]. The second one,
referred to as the Bayesian approach, relies on Bayesian
learning and employs probability distributions to express and
measure uncertainty. In particular, we leverage the theory of
Bayesian neural networks [20], which combines neural net-
works and probabilistic modeling.

We present the two uncertainty quantification approaches
for a generic classification problem, where we consider an

input space X , a set of classes Y = {y1, . . . , yc}, and a
classifier F : X → Y with discriminant f : X → [0, 1]c.
For an input x , we will use the notation ŷ as a shorthand
for F(x), the classifier prediction on x . We define the data
domain by Z = X×Y , andwe denote withZ the distribution
of the data over Z .

In the context of PM of HA reachability, X is the HA state
space, Y = {0, 1} (c = 2) is the set of possible reachability
values, Z = Prx∼X(x, 1(Reach(D, x, T))), where X is the
distribution of HA states and Reach(D, x, T) is the reacha-
bility specification, and F is the reachability predictor, i.e.,
a (sub-)optimal solution of Problem 1.

3.1 Conformal prediction

Conformal Prediction (CP) is a technique that associates
measures of reliability to any traditional supervised learning
model. It is a very general approach that can be applied across
all existing classification and regression methods [7,18,19].
CP produces prediction regions instead of single point pre-
dictions: given a significance level ε ∈ (0, 1) and a test point
x∗, its prediction region, Γ ε∗ ⊆ Y , is a set of classes that are
guaranteed to contain the true class y∗ with probability 1−ε,
i.e.,

Pr(x∗,y∗)∈Z(y∗ ∈ Γ ε∗) ≥ 1 − ε.

The CPmethod requires defining a so-called non-conformity
function (NCF) h : Z → R: given a predictor f and an exam-
ple z = (x, y), h(z)measures the “strangeness” of z, i.e., the
deviation between the label y and the corresponding predic-
tion f (x). The definition of a suitable NCF for our problem is
discussed later. Now consider the distribution of NCF scores
induced by the data distribution Z and the predictor f :

H = Pr(x,y)∼Z(h(x, y)).

Note thatH precisely captures the distribution of the dis-
tances between true classes and corresponding predictions.
The rationale behind CP is to construct the prediction region
by “inverting” a suitable hypothesis test: given a test point
x∗ and a tentative class y j ∈ Y , we exclude y j from the pre-
diction region only if it appears unlikely that the NCF score
h(x∗, y j) is distributed according toH, which implies that it
is not likely that y j is the true class. In other words, for each
y j ∈ Y , we perform the following hypothesis test:

H0 : h(x∗, y j) ∼ H against Ha : h(x∗, y j) � H,

and include in Γ ε∗ all the y j values for which we fail to reject
the null hypothesis H0 at significance level ε (this is what we

123

Neural predictive monitoring and a comparison of frequentist...

mean by “inverting the test”). In particular, H0 is rejected if

Prα∼H(α ≥ h(x∗, y j)) < ε, (3)

i.e., if the probability of observing a data point that is more
“non-conforming” than (x∗, y j) is below ε. This probability
is called p value in statistical jargon.

Note that exact derivation ofH is intractable, as it requires
integration of h, which depends on the classifier and thus
is typically nonlinear, over Z, a distribution that is seldom
given in explicit form (but only empirically, through a set
of observations). Therefore, we use instead an empirical
approximation of H, derived by computing the NCF scores
of a finite sample Zc of Z independent of the training set
used to learn the predictor f . We call Zc the calibration set.
This approach is called inductive CP [18]. We summarize it
in the algorithm below.
CP algorithm for classification. Given a sample Z ′ of Z, a
test input x∗ ∈ X , and a significance level ε ∈ (0, 1), CP
computes a prediction region Γ ε∗ for x∗ as follows.

1. Divide Z ′ into a training set Zt and a calibration set Zc.
2. Train a predictor f using Zt .
3. Define a NCF h : Z → R.
4. Apply h(z) to each example z in Zc and sort the resulting

NCF scores {α = f (z) | z ∈ Zc} in descending order:
α1 ≥ · · · ≥ α|Zc|.

5. Compute the NCF scores α
j∗ = h(x∗, y j) for the test

input x∗ and each possible class label j ∈ {1, . . . , c}.
Then, compute the smoothed p value

p j∗ = |{zi ∈ Zc : αi > α
j∗}|

|Zc| + 1
+θ

|{zi ∈ Zc : αi = α
j∗}| + 1

|Zc| + 1
,

(4)

where θ ∈ U[0, 1] is a tie-breaking random variable.
Note that p j∗ is the portion of calibration examples that
are at least as non-conforming as the tentatively labeled
test example (x∗, y j), i.e., an empirical approximation of
the p value of Equation 3.

6. Return the prediction region

Γ ε∗ = {y j ∈ Y : p j∗ > ε}. (5)

together with the vector (p1∗, . . . , pc∗) of p values, one for
each class.

Note that steps 1–4 are performed only once, while steps 5–6
are performed for each test point x∗.
Non-conformity function. A NCF function is well defined if
it assigns low scores to correct predictions and high scores
to wrong predictions. A natural choice for h, based on the

discriminant model f , is h(z) = Δ(f (xi), yi), where Δ is
a suitable distance4. Recall that, for an input x ∈ X , the
output of f is a vector of class likelihoods, which we denote
by f (x) = [f1(x), . . . , fc(x)]. In classification, a common
well-defined NCF function is given by setting

Δ(f (x), y) = 1 − fy(x), (6)

where fy(x) is the likelihood of class y when the predictor
f is applied on x . If F correctly predicts y for input x , the
corresponding likelihood fy(x) is high (the highest among
all classes, see Definition 4) and the resulting NCF score
is low. The opposite holds when F does not predict y. The
NCF measure chosen for our experiments (Eq. 6) preserves
the ordering of the class likelihoods predicted by f .
Prediction uncertainty. A CP-based prediction region pro-
vides a set of plausible predictionswith statistical guarantees,
and as such, also captures the uncertainty about the predic-
tion. Indeed, if CP produces a region Γ ε∗ with more than one
class, then the prediction for x∗ is ambiguous (i.e., multiple
predictions are plausible), and thus, potentially erroneous.
Similarly, if Γ ε∗ is empty, then there are no plausible predic-
tions at all, and thus, none can be trusted. The only reliable
prediction is the one where Γ ε∗ contains only one class. In
this case, Γ ε∗ = {ŷ∗}, i.e., the region only contains the pre-
dicted class. This is always true for our NCF function. The
proof is trivial and given in Appendix B.

The size of the prediction region is determined by the
chosen significance level ε and by the p values derived viaCP.
Specifically, fromEq. 5we can see that, for levels ε1 ≥ ε2, the
corresponding prediction regions are such that Γ ε1 ⊆ Γ ε2 .
It follows that, given a test input x∗, if ε is lower than all
its p values, i.e., if ε < min j=1,...,c p j∗ , then the region Γ ε∗
contains all the classes, and Γ ε∗ shrinks as ε increases. In

particular, Γ ε∗ is empty when ε ≥ max j=1,...,c p j∗ .
We are now ready to introduce our frequentist uncertainty

measures, called confidence and credibility, which we define
in terms of two p values, independently of the significance
level ε. The intuition is that these two p values identify the
range of ε values for which the prediction is reliable, i.e.,
|Γ ε∗ | = 1.

Definition 6 (Confidence and credibility) Given a predictor
F , the confidence of a point x∗ ∈ X , denoted by 1 − γ∗, is
defined as:

1 − γ∗ = sup{1 − ε : |Γ ε∗ | = 1}, (7)

and the credibility of x∗, denoted by c∗, is defined as:

c∗ = inf{ε : |Γ ε∗ | = 0}. (8)

4 The choice of Δ is not very important, as long as it is symmetric.

123

L. Bortolussi et al.

Fig. 2 CP p values over the [0, 1] interval and corresponding sizes
of prediction interval. ỹi is the class with the i-th largest p value, so

pỹ
1

∗ = c∗ and pỹ
2

∗ = γ∗

Therefore, the so-called confidence-credibility interval
[γ∗, c∗) contains all the values of ε such that |Γ ε∗ | = 1.

The confidence 1− γ∗ is the highest probability value for
which the corresponding prediction region contains only ŷ∗,
and thus it measures how likely (according to the calibration
set) our prediction for x∗ is. In particular, γ∗ corresponds to
the second largest p value. The credibility c∗ is the smallest
level for which the prediction region is empty, i.e., no plau-
sible prediction is found by CP. It corresponds to the highest
p value, i.e., the p value of the predicted class. Figure 2 illus-
trates CP p values and corresponding prediction region sizes.
In binary classification problems, like our predictive moni-
toring problem, each point x∗ has only two p values: c∗ (p
value of the predicted class) and γ∗ (p value of the other
class).

It follows that the higher 1 − γ∗ and c∗ are, the more
reliable the prediction ŷ∗ is, because we have an expanded
range [γ∗, c∗) of ε values by which |Γ ε∗ | = 1. Indeed, in the
degenerate case where c∗ = 1 and γ∗ = 0, then |Γ ε∗ | = 1
for any value of ε < 1. This is why, as we will explain
in the next section, our uncertainty-based rejection criterion
relies on excluding points with low values of 1 − γ∗ and c∗.
Hence, our frequentist uncertainty measure associates with
each input its confidence and credibility values.

Definition 7 (Frequentist uncertainty measure) Given a pre-
dictor F with discriminant f , we define the frequentist
uncertainty measure u f : X → UF = [0, 1]2 as the func-
tion mapping inputs x into their corresponding confidence
and credibility values, obtained as per Definition 6, i.e.,
∀x ∈ X , u f (x) = (1 − γ, c).

3.2 Bayesian neural networks

A neural network is a function fw : X → [0, 1]c, which
maps an input x ∈ X into a vector of class likelihoods,
fw(x) = [f 1w(x), . . . , f cw(x)], depending on some parame-
ters w, namely weights and biases. A trained neural network
is typically a complex but deterministic model. The core idea
of Bayesian neural networks (BNNs) is to place a probabil-
ity distribution over its parameters w, thereby transforming
the neural network into a stochastic model. The advantage

of Bayesian methods, and BNNs in particular, is that they
provide a distribution of predictions, called predictive distri-
bution, rather than a single prediction like deterministic NNs.
Such distribution captures both the aleatoric uncertainty, i.e.,
the noise inherent in the observations, and the epistemic
uncertainty, i.e., model uncertainty about its prediction [21].
We will therefore leverage this predictive distribution (its
mean and variance to be precise) to compute our Bayesian
uncertainty measures.

The Bayesian learning process starts by defining a prior
distribution for w that expresses our initial belief about the
parameter values. As we observe data Z ′ ∼ Z, we update
this prior to a posterior distribution using Bayes’ rule:

p(w|Z ′) = p(Z ′|w)p(w)

p(Z ′)
. (9)

Note that placing a prior distribution over w is analogous
to the random weight initialization required to train a tradi-
tional (deterministic) neural network. A common choice is
to choose a zero-mean Gaussian prior.

Similarly, we assume that the conditional distribution
p(y|x) is a softmax likelihood

p(y = y j |x,w) = exp(f j
w(x))∑c

i=1 exp(f
i
w(x))

. (10)

It follows that, given a set of i.i.d. observations Z ′, the like-
lihood function can be expressed as

p(Z ′ | w) =
∏

(xi ,yi)∈Z ′
p(yi |xi ,w). (11)

Note that, because of the nonlinearity introduced by the
neural network function fw(x) andby the softmax likelihood,
the posterior p(w|Z ′) is non-Gaussian. Finally, in order to
predict the value of the target for an unobserved input x∗,
we marginalize the predictions with respect to the posterior
distribution of the parameters, obtaining

p(ŷ∗|x∗, Z ′) =
∫

p(ŷ∗|x∗,w)p(w|Z ′)dw. (12)

The latter is called posterior predictive distribution and it
can be used to retrieve information about the uncertainty
of a specific prediction ŷ∗. Unfortunately, the integration is
analytically intractable due to the nonlinearity of the neural
network function [20,22].
Empirical approximation of the predictive distribution .
Assume, for the moment, that we are able to sample from the
posterior distribution (9) and let [w1, . . . , wN] denote a vec-
tor of N realizations of the random variable w ∼ p(w|Z ′).
Each realizationwi induces a deterministic function fwi that
can be evaluated at x∗, the unobserved input. The likelihood

123

Neural predictive monitoring and a comparison of frequentist...

for a target ŷ∗ can be computed using (10). The empiri-
cal approximation of the predictive distribution (12) can be
expressed as

p(ŷ∗|x∗, Z ′) ≈
N∑
i=1

1

N
p(ŷ∗|x∗, wi)

=
N∑
i=1

1

N

[
exp(f ∗

wi
(x∗))∑c

j=1 exp(f
j

wi (x∗))

]
, (13)

where f ∗
wi

denotes the component of fwi corresponding to
class ŷ∗. By the strong law of large numbers, the empirical
approximation converges to the true distribution as N → ∞
[23]. The sample size N can be chosen, for instance, to ensure
a given width of the confidence interval for a statistic of
interest [24] or to bound the probability that the empirical
distribution differs from the true one by at most some given
constant [25].
Bayesian inference techniques. Since precise inference is
infeasible, various approximatemethods have been proposed
to infer a BNN.We consider two approximate solution meth-
ods: Hamiltonian Monte Carlo and Variational Inference.

Let w be a weight vector sampled from the posterior dis-
tribution p(w|Z ′), i.e., a realization of the random variable
w. We denote with fw(x) the corresponding deterministic
neural network having weights fixed to w.

Hamiltonian Monte Carlo (HMC) [8] defines a Markov
chain whose invariant distribution is exactly the posterior
p(w|Z ′) . The Hamiltonian dynamics is used to speed up the
space exploration. HMC does not make any assumption on
the form of the posterior distribution, and is asymptotically
correct. After convergence, HMC returns a trace of explored
network weights w0, w1, . . . , wN that, all together, can be
interpreted as an empirical approximation of the posterior
p(w|Z ′). Controlling in a precise way the convergence rate
and howwell the chain explores the parameter space is, how-
ever, far from trivial.

Variational Inference (VI) [9] directly approximates the
posterior distribution with a known parametric distribution
q(w;ψ), typically a distribution easy to sample from. Its
parameters ψ , called variational parameters, are learned by
minimizing the Kullback–Leibler (KL) divergence between
the proposed distribution and the posterior. The KL diver-
gence between q(w;ψ) and p(w|Z ′) is defined as

K L(q(w;ψ)||p(w|Z ′)) =
∫

q(w;ψ) log
q(w;ψ)

p(w|Z ′)
dw.

(14)

Since the posterior distribution is not known, a different
objective function, called Evidence Lower Bound (ELBO),

is introduced. It is defined as

ELBOψ = Eq(w;ψ){log p(Z ′|w) − K L(q(w;ψ)||p(w))}.
(15)

ELBO [26]. In VI, the variational objective, i.e., the negative
ELBO, becomes the loss function used to train of a Bayesian
neural network [26]. A common choice for q(w;ψ) is the
Gaussian distribution (where ψ are its mean and variance).

The predictive distribution is a nonlinear combination of
Gaussian distributions, and thus it is not Gaussian. However,
samples can be easily extracted from q(w;ψ), which allows
us to obtain an empirical approximation of the predictive
distribution.
Prediction uncertainty.Having showed how to derive empiri-
cal approximations of the predictive distribution (either with
HMC or with VI) we can now extract statistics to charac-
terize the latter. We stress that the predictive distribution,
and hence its statistics, effectively captures prediction uncer-
tainty. Our Bayesian uncertainty measure is, therefore, given
by the empirical mean and variance of the predictive distri-
bution.

Definition 8 (Bayesian uncertainty measure) Given obser-
vations Z ′ ∼ Z and a Bayesian neural network fw with
w ∼ p(w|Z ′), we define the Bayesian uncertainty measure
u f : X → UB ⊆ R

2 as the function mapping inputs x into
the empiricalmean and variance of the predictive distribution
p(ŷ | x, Z ′) (12). Formally, ∀x ∈ X , u f (x) = (μ, σ 2).

Remark 3 (Softmax probabilities as uncertainty measures).
A popular method to assess the quality of a prediction is to
use the probabilities outputted by the softmax layer of the
DNN (i.e., the output of the discriminant function). How-
ever, previous works have shown that such probabilities are
not well calibrated, meaning that the probability associated
with the predicted class label does not reflect its ground-truth
correctness likelihood [27,28]. For example, in a binary clas-
sification problem, one can consider the difference between
the probability of the two classes as a measure of uncertainty,
where small differences indicate uncertain predictions. Pre-
vious experiments in [29] have shown that such a measure
yields poor error detection in NPM, because the measure is
overconfident in predictions that turn out being erroneous.

Such observation supports our claim that more principled
and calibrated methods to measure uncertainty are needed.
On one hand, our uncertainty measure based on Conformal
Prediction overcomes this limitation, as it makes predictions
with statistical evidence, rather than probabilistic evidence.
On the other hand, our Bayesian measure of uncertainty
remains consistent also in regions where no data has been
observed and, in particular, where the deterministic DNN
will behave almost randomly.

123

L. Bortolussi et al.

4 Uncertainty-based rejection criteria

In this section, we show how to leverage the measures
of uncertainty introduced in Sect. 3 to learn an optimal,
uncertainty-based error detection rule for reachability pre-
dictions, thereby solving Problem 2.

The rationale is that an unseen input x must have suf-
ficiently low uncertainty values in order for the prediction
to be accepted. However, manually determining such deci-
sion boundaries on the uncertainty domainU is a non-trivial
task. As discussed in Sect. 2, optimal error detection thresh-
olds can be automatically identified by solving an additional
supervised learning problem.

For a type of error e ∈ {pe, fp, fn}, given a set of validation
inputs Xv , sampled from X, and an uncertainty measure u f ,
we build a validation set We

v , defined as

We
v = {(u f (x), 1(e(x))) | x ∈ Xv}. (16)

The inputs ofWe
v , referred to asUv , are the uncertainty mea-

sures evaluated on Xv:

Uv = {u f (x) | x ∈ Xv}. (17)

Similarly, each input u f (x) ∈ Uv is then labeled, respec-
tively, with 1 or 0 depending, respectively, on whether or not
the classifier f makes an error of type e on x :

Ee
v = {1(e(x)) | x ∈ Xv}. (18)

For ease of notation, in the following we omit the type of
error considered. However, it is important to keep it in mind
when addressing a specific application.

We seek to find those uncertainty values that optimally
separate the points in Uv in relation to their classes, that is,
separate points yielding errors from those that do not. Find-
ing such a separation corresponds to finding a (sub-)optimal
solution to Problem 2.

As for the uncertainty measures of the previous section,
we present two alternative solutions to this problem. The first
one leverages support vector classification (SVC) and applies
to the frequentist case, based on CP, where the uncertainty
values are given by confidence and credibility. The second
solution leveragesGaussian process classification (GPC) and
applies to the Bayesian case, based on BNNs, where uncer-
tainty values are given by mean and standard deviation of the
predictive distribution.

Remark 4 (Highly unbalanced dataset). In predictive moni-
toring, the neural network-based reachability predictors that
we use have typically very high accuracy (see results in
Sect. 6). Therefore, the dataset Wv is typically highly unbal-
anced, as it contains more examples of correct classifications

(class 0) than of classification errors (class 1). In binary clas-
sification problems, in particular in both SVC and GPC,
accuracy can be a misleading measure when dealing with
imbalanced datasets. Indeed, for instance, a constant function
mapping any input into themost frequent class will have high
accuracy. Therefore, a model trained on accuracy maximiza-
tion tends to misinterpret the behavior of the observations
belonging to the minority class, causing misclassification.
However, in our method, the less frequent class (i.e., the pre-
diction errors) is actually the most interesting one, which we
want to classify correctly.

4.1 Frequentist error detection via support vector
classification (SVC)

For data parsimony, since calibration points were not used to
train the reachability predictor, we build the validation setWv

from the calibration set Zc.A cross-validation strategy is used
to compute values of confidence and credibility for points in
Zc. The cross-validation strategy consists of removing the j-
th score, α j , in order to compute γ j and c j , i.e., the p values
at x j ∈ Xc, where Xc = {x | ∃y ∈ Y : (x, y) ∈ Zc}. In this
way, we can compute our frequentist uncertainty measure
given by confidence 1−γ and credibility c for every point in
the calibration set. The support vector classifier (SVC) is then
trained on pairs ((1− γ, c), e), where e indicates whether or
not a prediction error is observed.

In a nutshell, SVC is a kernel-based method that maps
the original data into a new space, called feature space, via
a feature map φ. By doing so, patterns that are not linearly
separable in the original data can be converted to be lin-
early separable in the feature space [20]. The linear decision
boundary for a binary SVC is defined as

d(x) = a · φ(x) + b = 0, (19)

for x in the original space. Training a SVC reduces to find the
values of a and b that maximize the margin around the sepa-
rating hyperplane and the decision function d(x). In the dual
formulation of the SVC problem, whose details are out of
the scope of this paper, the optimization is performed using
kernel functions rather than feature maps. Recall that a ker-
nel can be defined as k(u, u′) = φ(u)T · φ(u′). In practice,
given a test point x∗ with predicted label ŷ∗ and uncertainty
measure u f (x∗) = (1 − γ∗, c∗), error detection at x∗ boils
down to evaluating the learned SVC, i.e., its decision func-
tion d, at u f (x∗). If d(u f (x∗)) > 0 the point x∗ is classified
as potentially erroneous, class 1, and 0 otherwise.
Tuning of SVC hyperparameters. A simple method to han-
dle imbalanced classes in SVC is via cost-sensitive learning
[30]. The aim is to find the classifier that minimizes the mean
predictive error on the training set. Each misclassified exam-
ple by a hypothetical classifier contributes differently to the

123

Neural predictive monitoring and a comparison of frequentist...

error function. Oneway to incorporate such costs is the use of
a penalty matrix, which specifies the misclassification costs
in a class dependent manner [31]. We design an empirical
penalty matrix P, as follows: the (i, j)-th entry of P gives
the penalty for classifying an instance of class i as class j . Of
course, when i = j , the penalty is null. The penalty matrix
for dataset Wv is defined as

P =
[

0 q
2re(q−ne)

req
2ne

0

]
, (20)

where ne is the number of points belonging to class 1 in
Wv , re is a parameter influencing how many errors we are
willing to accept and q = |Wv|. The term req

2ne
, which repre-

sents the penalty for wrongly classifying an error as correct,
increases as ne decreases. Note that, when re = 1 and the
dataset is perfectly balanced (q = 2ne), the penalties are
equal: req

2ne
= q

2re(q−ne)
= 1. Further, if re > 1, the penalty

term increases, leading tomore strict rejection thresholds and
higher overall rejection rates. On the contrary, if re < 1, the
penalty decreases, leading to possibly missing some errors.

Definition 9 (Frequentist error detection criterion) Given a
state x∗ ∈ X , a reachability predictor f and an uncertainty
measure u f (x∗) = (1 − γ∗, c∗) as per Definition 7, the fre-
quentist error detection function G f : UF → {0, 1} rejects
a reachability estimate F(x∗), i.e., G f (1 − γ∗, c∗) = 1, if
and only if

d (1 − γ∗, c∗) > 0,

where d is the binary SVC of (19) trained on Wv (16).

4.2 Bayesian error detection via Gaussian process
classification (GPC)

Recall that we define our Bayesian uncertainty measure as
the mean and variance of the empirical approximation of
the BNN predictive distribution. Therefore, the prediction
ŷ∗ made on an unseen input x∗ is associated with a vector
of uncertainty (μ∗, σ 2∗) ∈ UB ⊂ R

2. To keep the approach
fully Bayesian, we propose a probabilistic solution to the
error detection problem based on Gaussian Processes [32].

Formally, aGaussianProcess (GP) is a stochastic process,
i.e., a collection of random variables indexed by some input
variable, in our case u ∈ U , such that every finite linear
combination of them is normally distributed. In practice, a
GP defines a distribution over real-valued functions of the
form � : UB → R and such distribution is uniquely identified
by its mean and covariance functions, respectively, denoted
bym(u) = E[�(u)] and k(u, u′). The GP can thus be denoted
as GP(m(u), k(u, u′)). This means that the function value at
any point u, �(u), is a Gaussian random variable with mean

m(u) and variance k(u, u). Typically, the covariance function
k(·, ·) depends on some hyperparameter γ .

As mentioned before, GPs can be used to perform prob-
abilistic binary classification, i.e., learning a Bayesian clas-
sifier G f : UB → {0, 1} from a set of observations. GPs
model the posterior probabilities by defining latent functions
� : UB → R, whose output values are then mapped into the
[0, 1] interval by means of a so-called link function Φ. Typi-
cally, in binary classification problem, the logit or the probit
function are used as Φ.

Given an input ui , let �i = �(ui) denote its latent variable,
i.e., the latent function � evaluated at ui . Also denote lv =
[�(ui) | ui ∈ Uv], where Uv is a set of input points defined
as per 17. FromUv , it is possible to compute the mean vector
mv of the GP, by evaluating the mean function m(·) at every
point in the set, and the covariance matrix K γ

v , by evaluating
the covariance function on every pair of points in the set:
mv = [m(ui)|ui ∈ Uv] and K γ

v = [kγ (ui , u j)|ui , u j ∈ Uv].
The first step of a GPC algorithm is to place a GP prior

over the latent function �, defined by

p(�|Uv) = N(�|mv, K
γ
v).

Let now consider a test input u∗ with latent variable �∗.
In order to do inference, that is, predict its label e∗, we have
to compute

p(e∗ = 1|u∗,Uv, Ev) =
∫

Φ(�∗)p(�∗|u∗,Uv, Ev)d�∗,

(21)

where Ev , see Eq. 18, denotes the set of labels corresponding
to points in Uv , see Eq. 17. The discriminant function g f :
UB → [0, 1]2 of the error detection classifier G f is defined
as

g f (u∗)=[1 − p(e∗ =1|u∗,Uv, Ev), p(e∗ =1|u∗,Uv, Ev)].
(22)

To compute Eq. (21), we have to marginalize the posterior
over the latent Gaussian variables:

p(�∗|u∗,Uv, Ev) =
∫

p(�∗|u∗,Uv, �v)p(�v|Uv, Ev)d�v,

(23)

where the posterior p(�v|Uv, Ev) can be obtained using the
standard Bayes rule

p(�v|Uv, Ev) = p(Ev|�v,Uv)p(�v|Uv)

p(Ev|Uv)
.

123

L. Bortolussi et al.

Therefore, performing inference reduces to solving two
integrals (Eqs. 21 and 23). In classification, the first integral
is not available in closed form since it is the convolution
of a Gaussian distribution, p(�v), and a non-Gaussian one,
p(Ev|�,Uv). Hence, we have to rely on approximations in
order to compute and integrate over the posterior p(�v|Ev).
In our experiments, we use the Laplace method, which pro-
vides a Gaussian approximation q(�v|Ev) of the posterior
p(�v|Ev), which can then be easily computed and integrated
over.
Tuning ofGPChyperparameters. In the prior distribution, the
covariance for the latent variables depends on some hyperpa-
rameters γ . A classical strategy to select the optimal values
for such parameters is to find the values of γ that maxi-
mize the marginal likelihood, which, intuitively, measures
how likely the data are, given a certain value of γ . However,
as mentioned in Remark 4, the marginal likelihood may be
a poor choice because class 1 is very little represented. An
alternative solution is to compute, for different values of γ ,
the confusion matrix of the GPC on the training set Wv . The
entries of such matrix can be used to define more clever mea-
sures of performance that apply to binary classification. In
our experiments, we use the true positive rate (TPR), as it
is well-suited for datasets presenting a strong disproportion.
TPR measures the fraction of points in class 1 that have been
correctly classified:

TPR := TP
TP+FN , (24)

where TP indicates the number of true positives and FN
indicates the number of false negatives. Alternative mea-
sures, such as the Matthews correlation coefficient (MCC)
[33], may apply. Note that, during the training phase, the
GPC assigns to each point the class with highest likelihood.

Another key step is the following. The discriminant func-
tion, g f , returns a vector containing the probability of
belonging to each of the two classes. However, such proba-
bilities might not separate well in cases of highly unbalanced
datasets. Therefore, choosing the class with the highest prob-
ability, as per Definition 4, may lead to bad performance.
Therefore, after the GPC has been trained with an optimal
value for γ , it may be useful to find the decision threshold that
maximizes theGPC accuracy on the training setWv . This can
be done, for instance, using the ROC curve. In other words,
we classify as correct (class 0) only those points that have an
extremely high probability of belonging to that class. We do
so by searching for the threshold τ that maximizes the quan-
tity T PR − FPR, i.e., the proportion of recognized errors
minus the proportion of points wrongly rejected. Below we
provide the formal definition of the Bayesian error detection
function for a generic threshold τ .

Definition 10 (Bayesian error detection criterion) Given a
state x∗ ∈ X , a reachability predictor f , a Bayesian uncer-
tainty measure u f (x∗) = (μ∗, σ 2∗) = u∗ as per Definition 8,
and a decision threshold τ ∈ [0, 1), the error detection func-
tionG f : UB → {0, 1} rejects a reachability estimates F(x∗)
if and only if

p(e∗ = 1 | u∗,Uv, Ev) > τ,

whereUv , Ev are the inputs and outputs of the validation set,
see (17) and (18).

5 Active learning

Recall that we are dealing with two related learning prob-
lems: learning a prediction rule (i.e., a reachability predictor)
using the training set Zt , and learning a rejection rule using
the validation set Wv (via learning an adequate uncertainty
measure first).

As the accuracy of a classifier increases with the qual-
ity and the quantity of observed data, adding samples to
Zt will generate a more accurate predictor, and similarly,
adding samples to Wv will lead to more precise error detec-
tion. Ideally, onewants tomaximize accuracywhile using the
least possible amount of additional samples, because obtain-
ing labeled data is expensive (in NPM, labeling each sample
entails solving a reachability checking problem), and the size
of the datasets affects the complexity and the dimension of
the problem. Therefore, to improve the accuracy of our learn-
ingmodels efficiently, we need a strategy to identify themost
“informative” additional samples.

For this purpose, we propose an uncertainty-aware active
learning solution, where the retraining points are derived by
first sampling a large pool of unlabeled data, and then con-
sidering only those points where the current predictor f is
still uncertain. The criterion used to decide whether a point
is uncertain enough to be considered informative is indeed
our rejection rule R f . In particular, recall that the uncer-
tainty function u f : X → U maps input states to their
level of uncertainty, and the error detection function G f :
U → {0, 1} maps uncertainty values to a binary class inter-
preted as accepting/rejecting a prediction. The rejection rule
R f : X → {0, 1}, introduced in Sect. 2, is defined as the com-
bination of these two functions, R f = G f ◦ u f . Therefore,
such rejection rule provides an effective uncertainty-based
query strategy. Points rejected by R f , i.e., points whose pre-
dictions are expected to be erroneous, are indeed the most
uncertain ones.

The proposed active learning method should reduce the
overall number of erroneous predictions, because it improves
the predictor on the inputs where it is most uncertain, and,
as a consequence, also reduces the overall rejection rate.

123

Neural predictive monitoring and a comparison of frequentist...

However, it cannot be excluded in general that the retrain-
ing process introduces new prediction errors. We stress that,
with ourmethod, these potential new errors can be effectively
detected.

5.1 General active learning algorithm

Our active learning algorithmworks as follows. The rejection
rule R f is used as a query strategy to identify, from a batch of
randomly selected unlabeled points, those with a high degree
of uncertainty. We then query the oracle, i.e., the HA reach-
ability checker, to label such uncertain points, and finally we
divide them into two groups: one group is added to the train-
ing set Zt ⊆ X×Y , producing the augmented dataset Za

t ; the
other is added to the validation set Zv , producing Za

v . The set
of uncertain points must be divided according to the splitting
probability used to originally divide Z ′ into Zt and Zv . The
first step consists in retraining the reachability predictor on
Za
t . Let fa denote the newpredictor. The second step requires

extracting the augmented validation datasetWa
v from Za

v . To
do so, wemust first train a new uncertainty measure u fa so as
to reflect the new predictor fa . Then, the new error detection
rule G fa is trained on

Wa
v = {(u fa (x), 1(e fa (x)) | x ∈ Xa

v },

where e fa is the error predicate introduced in Sect. 2 (the fa
index is added to stress dependencyon the updated predictor).
In conclusion, this process leads to an updated rejection rule
R fa = G fa ◦ u fa , which is expected to have a reduced rate
of incorrect rejections.

We now describe in detail our uncertainty-aware active
learning algorithm, which given an initial training set Zt , a
predictor with discriminant f trained on Zt , an initial valida-
tion set Zv , and a rejection rule R f trained on Zv , computes
an enhanced predictor fa and enhanced rejection rule R fa as
follows.

The above algorithm is used as-is in the Bayesian frame-
work. For the frequentist case, we present a refined version
of the algorithm that overcomes issues with the sensitivity of
CP-based measures.
Sensitivity of CP-based uncertainty measures. The distribu-
tion of calibration scores depends both on the case study at
hand and on the trained classifier. If such a classifier F has
high accuracy, then most of the calibration scores α1, . . . , αq

will be close to zero. Each p value p j∗ of an unseen test point
x∗ counts the number of calibration scores greater than α

j∗ ,
the non-conformity score for label j at x∗. Credibility, which
is the p value associated with the class predicted by F , is
expected to have a small score and therefore a high p value.
On the contrary, γ , which is the p value associated with the
other (non-predicted) class, is expected to have a larger score.
However, given the high accuracy of F , the number of cal-

Algorithm 1 Active Learning algorithm
Inputs: training set Zt , validation set Zv , predictor f , uncertainty func-
tion u f , rejection rule R f , maximum iterations nit .
Outputs: enhanced predictor fa , enhanced rejection rule Ra

f .

repeat nit times:

// Select retraining inputs
1. Randomly sample a set of input points.
2. Identify the subset A of points rejected based on R f .

// Derive augmented datasets
3. Invoke the reachability oracle to label the points in A.
4. Divide the data into two groups and add them, respectively, to Zt

and Zv , obtaining an augmented training set, Za
t , and an augmented

validation set, Za
v .

5. Train a new predictor fa from Za
t .

6. Build the training set W fa
v using Za

v and fa .
7. Train a new error detection rule G fa , using u f and the method of

Section 4, and obtain the enhanced rejection rule R fa .
8. Zt ← Za

t , Zv ← Za
v , f ← fa , R f ← Ra

f .

end

ibration scores significantly greater than zero is very small.
Therefore, the fraction of calibration scores determining γ is
not very sensitive to changes in the value ofα∗,which is deter-
mined by f (x∗). On the contrary, credibility is extremely
sensitive to small changes in α∗. In general, the sensitivity
of confidence with respect to α∗ increases as the accuracy of
f decreases, and vice versa for credibility. Figure 3 shows
the credibility landscapes for two different training instances
of model f on the same training set for a concrete case
study. We observe that even if regions where misclassifica-
tions take place are always assigned low credibility values,
outside those regions credibility values are subject to high
variance.

This sensitivity results in an over-conservative rejection
criterion, leading to a high rejection rate and in turn, to an
inefficient query strategy. However, if we enrich the calibra-
tion set using additional samples with nonzero α-scores, we
can reduce such sensitivity, thereby making credibility more
robust with respect to retraining. This process is illustrated in
Figure 3, where the additional nonzero α-scores (right) lead
to a more robust credibility landscape, where low-credibility
regions are now more tightly centered around areas of mis-
classification.

Observing that samples with uncertain predictions will
have nonzero α-scores5, we will use the original rejection
rule to enrich the calibration set, thereby deriving a refined
rejection rule and in turn, a refined and more effective query
strategy for active learning.

5 The α-score of a sample (xi , yi) is zero only if fyi (xi) = 1.

123

L. Bortolussi et al.

5.2 Frequentist active learning algorithm

Provided that the credibilitymeasure is extremely sensitive in
our application, we found that dividing the frequentist active
learning algorithm in two phases dramatically improves per-
formances. In the first phase, we refine the query strategy:
we use the current rejection rule R f to identify a batch of
uncertain points, temporarily add these points to the calibra-
tion set, thereby obtaining an updated, more robust, rejection
rule that we use as a query strategy. In the second phase, we
simply perform an active learning iteration, i.e., steps 2–5
above) but using the refined query strategy to identify the
retraining inputs.

We now describe the details of this variant of the active
learning algorithm designed for the frequentist framework.
Given an initial training set Zt , a prediction rule f trained on
Zt , an initial calibration set Zc, a rejection rule R f trained
on Zc and a rejection ratio re, we proceed as follows.

Algorithm 2 Frequentist AL algorithm
Inputs: training set Zt , calibration set Zc, predictor f , uncertainty func-
tion u f , rejection rule R f , maximum iterations nit .
Outputs: enhanced predictor fa , enhanced rejection rule Ra

f .

repeat nit times:

// Refine the query strategy
1. Randomly sample a set of input points.
2. Identify the subset Q of points rejected by R f .
3. Identify the subset A of points rejected based on R f .
4. Invoke the reachability oracle to label the points in Q.
5. Define a query set ZQ by adding these points to Zc.

6. Obtain an updated rejection rule RQ
f from ZQ using the method of

Section 4.

// Active phase
7. Randomly sample a set of input points.
8. Identify the subset A of points rejected by RQ

f .
9. Invoke the reachability oracle to label the points in A.

10. Divide the labeled data into two groups and add them, respectively,
to Zt and Zc, obtaining an augmented training set, Za

t , and an
augmented calibration set, Za

c .
11. Train a new predictor fa from Za

t .

12. Zt ← Za
t , Zc ← Za

c , f ← fa , R f ← Ra
f .

end

It is important to observe that, in order for the active
learning algorithm to preserve the statistical soundness of
conformal prediction, the augmented training and calibration
sets Za

t and Za
c must be sampled from the same distribution.

This is guaranteed by the fact that, in the active learning
phase, we add new points to both the training and the cali-
bration dataset, and these points are sampled from the same
distribution (in particular, we apply the same random sam-
pling method and same rejection criterion). The only caveat

Fig. 3 Credibility values in the spiking neuron case study. Calibration
scores (first row) and credibility landscapes using the initial calibration
set Zc (left column) versus the query set ZQ (right column). The land-
scapes are obtained for different instances of the predictor f , trained
on the same dataset Zt

is ensuring that the ratio between the number of samples in
Zc and Zt is preserved on the augmented datasets.

6 Experimental results

We experimentally evaluate the proposed method and com-
pare the frequentist andBayesian approaches on a benchmark
of six hybrid system models with varying degrees of com-
plexity. We consider four deterministic case studies: the
model of the spiking neuron (SN) action potential [6] intro-
duced in Sect. 2 and the classic inverted pendulum (IP)
on a cart, which are two-dimensional models with nonlin-
ear dynamics, the artificial pancreas (AP) [34], which is a
six-dimensional nonlinear model, and the helicopter model
(HC) [6], which is a linear model with 29 state variables.
In addition, we analyze two non-deterministic models with
nonlinear dynamics: a cruise controller (CC) [6], whose input
space has four dimensions, and a triple water tank (TWT)6,
which is a three-dimensional model. Details of the case stud-
ies are available in Appendix C.

6.1 Experimental settings

The experiments were performed on a computer with a CPU
Intel x86, 24 cores and a 128GB RAM.

Table 1 compares the performances of DNN and BNN
against different types, respectively, deterministic and
Bayesian, of classifiers. In particular, in the deterministic
case we compare: a sigmoid DNN (DNN-S) with 3 hidden

6 http://dreal.github.io/benchmarks/networks/water/

123

http://dreal.github.io/benchmarks/networks/water/

Neural predictive monitoring and a comparison of frequentist...

Table 1 Empirical accuracy of the state classifiers for each case study.
Values are in percentage.

IP AP CC TWT HC SN

DNN-S 99.84 99.56 99.92 99.91 98.33 99.78

SNN 99.74 99.49 99.91 99.81 98.96 99.51

DNN-R 99.61 99.41 99.91 99.82 98.75 97.59

SVM 98.85 99.17 99.50 99.32 96.54 67.94

RF 99.66 96.61 99.19 99.24 91.67 99.51

NBOR 99.66 96.61 99.19 99.24 91.67 98.43

BNN-VI 99.47 99.29 99.49 99.56 99.32 99.45

BNN-HMC 99.12 99.63 99.88 99.77 97.79 98.87

GP 99.80 99.61 99.86 99.76 96.16 98.43

BLR 57.85 97.68 97.96 87.16 90.14 56.72

For each model, the best result for deterministic classifiers and the best
result for Bayesian classifiers are highlighted in bold

layers of 10 neurons each, tanh activations for the hidden lay-
ers and Sigmoid function for the output layer; a shallow NN
(SNN) of 20 neurons; a ReLUDNN (DNN-R), with 3 hidden
layers of 10 neurons each and rectified linear unit (ReLU)
activations for all layers; a support vector machine with
radial kernel (SVM); a random forest classifier (RF); and
a k-nearest neighbors classifier (NBOR). For the Bayesian
case, we compare: a Bayesian NN (BNN) with 3 hidden lay-
ers of 10 neurons each, standard Gaussian priors, trained
with both variational inference (BNN-VI) and Hamiltonian
Monte Carlo (BNN-HMC) methods; a Gaussian Process
(GP); and a Bayesian Logistic Regression model (BLR). In
the deterministic framework, differences in accuracy values
are relatively small, even though the DNNs outperform the
other classifiers in all case studies but HC.

In the Bayesian scenario, we observe that GP and BNN
have comparable performances on the simplestmodels.How-
ever, BNN works better as soon as the dimension of the
system increases. Furthermore, BNNs offer better scalabil-
ity than GPs. Indeed, the scalability of GP inference depends
heavily on the size of the dataset n, with a time complex-
ity of O(n3), whereas for BNNs with VI this is O(n · m),
where m is the number of epochs, and for BNN with HMC
the complexity is O(n · k), where k is the number of steps
of the Markov chain. In our experiments m � k, and k and
n have same order of magnitude. On the other hand, BLR
shows limited performances for systems whose dynamics
is intrinsically nonlinear. In general, despite the overall dif-
ference in performance may seem small, we would like to
stress that we target safety-critical applications, for which
we seek accuracies as close as possible to 100% and even
small improvements become important.

Motivated by the results presented in Table 1, we choose
the sigmoidDNN architecture described above for our reach-
ability predictions. In particular, the output of the DNN

with parameters w in a state x ∈ X , denoted by fw(x),
is the likelihood of class 1, i.e., the likelihood that the
hybrid automaton state is positive. Therefore, the discrimi-
nant function f evaluated at x returns a vector of probabilities
f (x) = [1− fw(x), fw(x)]. To avoid overfitting, we did not
tune the architecture (i.e., number of neurons and hidden
layers) to optimize the performance for our data and, for the
sake of simplicity, we choose the same architecture for all
the case studies, as we found no specific DNN architecture
with consistently better performances. See Appendix D for
a detailed performance analysis for different choices of the
DNN architecture. In particular, we use the same architecture
for deterministic DNNs and their Bayesian counterpart.

The entire pipeline is implemented in Python, and the neu-
ral networks are trained with TensorFlow [35] and PyTorch
[36]. More precisely, Keras [37], a Python deep learning
library, is used to train the deterministic DNN, Edward [38],
a Python library for probabilistic modeling built on Tensor-
Flow, is used to train the BNNwithHMC inference, and Pyro
[39], a probabilistic programming library built on PyTorch,
is used to train the BNN with VI. The source code for all
the experiments can be found at the following link: https://
github.com/francescacairoli/NPM.

For every model, we generate an initial dataset Z ′ of 20K
samples and a test set Ztest of 10K samples. The helicopter
model is the only exception, where, due to the higher dimen-
sionality, a set Z ′ of 100K samples is used. Both Z ′ and
Ztest are drawn from the same distribution Z; see [6] and
Appendix E for more details on how data are labeled and on
the distributions for each case study. The training and valida-
tion sets are two subsets of Z ′ extracted as follows: a sample
z ∈ Z ′ has probability s of falling into Zt and probability
1 − s of falling into Zv , where s = 0.7 is the splitting ratio.
Recall that the calibration set Zc of the frequentist approach
coincides with the validation set Zv and that we use the same
splitting rate s when augmenting the datasets during active
learning. The dReal solver [12] is used as a reachability ora-
cle to label the datasets for the non-deterministic case studies.
For the deterministic case studies, we used an HA simulator
implemented in MATLAB.
Kernel choice. Both error detection rules, based on SVC for
the frequentist approach andGPC for the Bayesian approach,
are kernel-based methods. The radial basis function (RBF)
kernel has been chosen in both cases, as it outperforms
the polynomial and linear kernels. The RBF is defined as
kγ (u, u′) = exp(γ ‖u−u′‖2), where ‖u−u′‖2 is the squared
Euclidean distance between the two input vectors.
Error type selection.Belowwe focus on detecting all kinds of
prediction error, including false positives and false negatives.
However, it is possible—and this is a very useful feature
of our approach—to focus on a specific type of error. For
example, in safety-critical applications, one could focus on
detecting false negatives, which are the most critical kind of

123

https://github.com/francescacairoli/NPM
https://github.com/francescacairoli/NPM

L. Bortolussi et al.

errors. An alternative solution, which we explored in [10],
is to learn two distinct rejection rules, one for false positives
and one for false negatives, and combine them into a global
rejection rule that suits the case study at best.

In addition, in the frequentist case, one can tune the SVC
penaltymatrixP (see equation (20)) to penalize specifickinds
of errors. For instance, setting r f n > 1 will result in a detec-
tion rule that is stricter on recognizing false negatives. In the
Bayesian case, the GPC decision threshold can be tuned by
maximizing scores other than T PR − FPR.
Tuning of the Bayesian approach. Training the determin-
istic DNNs was straightforward in our experiments. All
models share the same initialization settings and all reach
an extremely high accuracy (always higher than 99%, see
Table 3). On the contrary, training a Bayesian neural network
requires a careful tuning of the inference hyperparameters,
e.g., the choice of prior distributions and the sample size
used to empirically approximate the predictive distribution.
Furthermore, in the HMC framework, the parameters gov-
erning the Hamiltonian dynamics affect the capabilities of
the Monte Carlo algorithm to explore and to eventually con-
verge. In the VI framework, the hyperparameters by which
we maximize the ELBO (15) may change from one model
to the other. The main drawback is that this may limit the
effectiveness of the active learning framework, as explained
later in this section.

6.2 Performancemeasures

We want our method to be capable of working at runtime,
which means it must be extremely fast in making predic-
tions and deciding whether to trust them. We emphasize that
the time required to train the reachability predictor and the
error detection rule does not affect its runtime efficiency, as
it is performed in advance (offline) only once. Also, we do
not want an over-conservative rejection rule, as unnecessary
rejections would reduce effectiveness of our predictive mon-
itor7.

Keeping that in mind, the relevant performance metrics
for NPM are the accuracy of the reachability predictor F ,
the error detection rate (or recognition rate) and the overall
rejection rateof the rejection rule R f . The error detection rate
measures the proportion of errors made on the test set by F
that are actually recognized by R f , whereas, the rejection rate
measures the overall proportion of test points rejected by R f .
Clearly, we want our method to be reliable and thus, detect
themajority of prediction errors (high detection rate) without
being overly conservative, i.e., keeping a low rejection rate.

7 Defining countermeasures to a rejected prediction is out of the scope
of ourmethod, but thesemay include switching to a fail-safemode of the
systemor querying theHAmodel checker for the true reachability value.
Both cases consistently affect the runtime efficiency of our monitor.

Another important remark is about the interaction of the
two classifiers, F and G f : as the accuracy of F increases it
commits fewer errors, whichmakes it harder for the detection
rule G f to learn how to capture them because the validation
set Wv for training G f will contain few examples of predic-
tion errors. The opposite holds as well: if F performs poorly,
it produces a less unbalanced validation set Wv , which may
result in a more accurate rejection rule R f . These two behav-
iors are balanced against one another, as discussed above, by
tuning the training of the rejection rules.

6.3 Computational performance

Offline cost.Training anNPMrequires the following steps: (i)
training the state classifier, (ii) generating the datasets Wv ,
which requires computing the uncertainty values for each
point in Zv , and (iii) training the error rejection rule. All these
steps are performedoffline. Executing the entire pipeline, i.e.,
learning a working NPM, when |Z ′| = 20K, takes around
3 minutes in the frequentist case and around 11 minutes in
the Bayesian case. When |Z ′| = 100K, it takes around 6.5
(120–190) minutes in the frequentist (Bayesian) case. The
time required to execute 20K VI epochs is comparable with
the time required to perform 2K HMC steps (see Table 2,
bottom-left frame).
Online cost. Given a test input x∗, it takes from 1.4 up to 31
milliseconds to evaluate the NPM, i.e., to make a prediction
and choosewhether to accept it or not (seeTable 2, top frame).
Importantly, this time does not depend on the dimension or
dynamics of the hybrid system. However, in the Bayesian
approach it depends on the number of observations used to
empirically approximate the predictive distribution, which is
a fixed cost, whereas, in the frequentist approach the eval-
uation time is affected by the size of the calibration set Zc,
which may increase as we add observations8. On this aspect,
the query strategy refinement we propose for active learning
ensures that the augmented calibration set is as small as pos-
sible, which translates into runtime efficiency of our method.
Active learning overhead (offline). Active learning carries
two additional training costs: the time needed to compute
uncertainty values for a large pool of data, and the time the
oracle needs to compute labels for the most uncertain points.
The latter dominates, especially for non-deterministic sys-
tems, since they require fully fledged reachability checking,
which is more expensive than simulation of a determinis-
tic system. Therefore, if the rejection rate is relatively high
and we consider a large pool of randomly selected points,

8 The size of Zc affects only the computation of the uncertainty
measures, which reduces to computing two p values (confidence and
credibility). Each p-value is derived by computing a non-conformity
score, which has same cost as evaluating the state classifier, and one
search over the array of calibration scores.

123

Neural predictive monitoring and a comparison of frequentist...

Table 2 (Top)Online
computational costs: time to
evaluate the NPM, i.e., time to
obtain a reachability prediction
and decide whether to trust it, on
a single state

Online costs (ms) Offline costs (min) AL overhead (min)
Model CP VI HMC Model CP VI HMC CP VI HMC

IP 1.4 13.0 8.1 IP 2.0 8.9 14.5 9.6 32.4 27.8

AP 2.1 15.0 7.9 AP 2.5 11.6 9.3 10.0 30.4 16.4

CC 2.0 14.0 8.2 CC 2.9 12.2 14.1 57.9 95.0 135.5

TWT 2.1 14.0 8.1 TWT 3.1 12.8 11.0 21.2 74.4 207.6

HC 4.0 31.0 14.5 HC 6.5 194.0 121.0 26.0 593.0 917.1

SN 1.6 15.0 8.3 SN 4.5 9.9 15.2 11.4 29.9 57.5

Time is measured in milliseconds (ms). (Bottom) Offline computational costs: time required to initially train
the NPM. AL overhead: time to complete an active learning iteration (on average). Time is measured in
minutes

the procedure may take long. The pool of new inputs has
indeed to be large in order to have good exploration and find
significant instances. As we will show experimentally, our
uncertainty-aware active learning approach results in a more
precise rejection rule with a lower rejection rate. Therefore,
the time spent for offline retraining pays off in improving the
online performance of the NPM.

In our study, the pool used to refine the query strategy
(required only with CP) contains 50K samples, whereas
the pool used for the active learning phase contains 100K
samples. In particular, one iteration of the active learning pro-
cedure takes, for the simplest deterministic models, around
10 minutes in the frequentist scenario, and around 20 min-
utes in theBayesian scenario (bothVI andHMCapproaches).
The helicopter model needs longer time, as it is trained for a
higher number of epochs: it takes around 1 hour in the fre-
quentist case against the 10 hours of the Bayesian case. For
the non-deterministic models (triple water tank and cruise
controller), an active learning iteration takes approximatively
the same time of a simple deterministic model, except for
the overhead introduced in labeling new points (see Table 2:
bottom-right frame). dReal, the non-deterministic reachabil-
ity checker, takes around 1.5 mins to label 100 observations
of the CCmodel and around 4 mins to label the same amount
of points of the TWT model. In general, the time required
for a single active learning iteration is expected to decrease
for subsequent iterations, as the rejection rate will be lower
(leading to fewer retraining samples). Note that retraining is
performed offline and does not affect runtime performance
of our approach.

6.4 Experiments

We evaluate our approach on three configurations: the
initial configuration, where the predictor F and error detec-
tion rule G f are derived via supervised learning; the active
configuration, where the initial models are retrained via
our uncertainty-aware active learning; and the passive con-
figuration, where the initial models are retrained using a

Table 3 NSC accuracy, error detection rate and rejection rate in initial
configuration

Model NSC Acc. � Err. Det. rate Rej. rate

IP CP 99.55 45 100.00 5.37

VI 99.72 28 83.81 1.46

HMC 99.03 97 96.70 9.68

AP CP 99.64 36 100.00 4.97

VI 99.30 70 97.17 5.36

HMC 98.35 165 96.73 9.34

CC CP 99.88 12 100.00 3.63

VI 99.25 75 91.15 3.67

HMC 98.16 184 98.04 7.75

TWT CP 99.81 19 100.00 4.40

VI 99.58 42 74.92 1.06

HMC 98.13 187 93.30 6.56

HC CP 99.43 57 97.21 6.12

VI 97.37 263 84.24 13.55

HMC 97.66 234 91.60 16.03

SN CP 99.79 21 100.00 3.95

VI 98.47 153 85.76 6.04

HMC 98.69 131 99.24 21.84

Each block denotes a different case study. CP indicates the frequentist
approach; VI and HMC indicate the two inference techniques used in
the Bayesian approach

uniform sampling strategy to augment the dataset and with
the same number of observations of the active configuration.
In this way, we can evaluate the benefits of employing an
uncertainty-based criterion to retrain our models.

Table 3 presents the experimental performances (on the
test set Ztest) in the initial configuration. The results are aver-
aged over five runs, where in each run, we resample Zt and
Zc from Z ′ and retrain F . Table 4 compares the performances
of the three configurations, only for one run in this case.
Frequentist approach. The average NSC accuracy over the
six case studies is 99.68%. The rejection criterion recognizes
well almost all the errors, with an average error detection rate
of 99.53%, but the overall rejection rate in the initial configu-

123

L. Bortolussi et al.

Table 4 Comparison of initial, active and passive approaches

NSC Acc. � Err. Det. rate Rej. rate

Inverted Pendulum (IP)

CP Initial 99.79 21 100.00 5.24

Active 99.87 13 100.00 3.12

Passive 99.79 21 100.00 6.07

VI Initial 99.58 42 80.95 1.68

Active 99.58 42 85.71 1.31

Passive 99.71 29 75.81 1.13

HMC Initial 87.45 1255 100.00 24.72

Active 99.15 85 87.06 4.17

Passive 98.49 151 100.00 13.02

Artificial Pancreas (AP)

CP Initial 99.61 39 100.00 4.17

Active 99.83 17 100.00 1.65

Passive 99.62 38 100.00 5.48

VI Initial 99.29 71 95.77 5.17

Active 99.71 29 96.55 1.75

Passive 99.47 53 100.00 3.29

HMC Initial 98.95 105 98.09 8.32

Active 99.38 62 90.32 4.17

Passive 95.12 488 100.00 26.79

Cruise Controller (CC)

CP Initial 99.85 15 100.00 3.46

Active 99.96 4 100.00 0.51

Passive 99.88 12 100.00 5.15

VI Initial 99.01 99 97.98 5.53

Active 99.84 16 100.00 1.25

Passive 99.74 26 100.00 1.46

HMC Initial 97.22 278 99.64 8.41

Active 99.47 53 94.34 3.14

Passive 95.75 425 97.03 8.42

Triple Water Tank (TWT)

CP Initial 99.82 18 100.00 5.87

Active 99.96 4 100.00 0.70

Passive 99.81 19 100.00 4.43

VI Initial 99.60 40 77.50 1.11

Active 99.67 33 84.85 1.61

Passive 99.50 50 75.40 20.32

HMC Initial 97.50 250 96.80 5.04

Active 99.20 80 95.00 3.70

Passive 91.86 814 52.58 11.31

Helicopter (HC)

CP Initial 99.21 79 95.95 6.75

Active 99.49 51 94.12 4.52

Passive 99.40 60 95.00 5.92

VI Initial 98.14 186 88.71 13.64

Active 98.90 110 92.86 1.98

Passive 98.66 134 87.54 9.94

Table 4 continued

NSC Acc. � Err. Det. rate Rej. rate

HMC Initial 97.74 226 89.82 14.71

Active 97.74 223 73.01 7.06

Passive 97.77 223 65.47 6.40

Spiking Neuron (SN)

CP Initial 99.61 39 100.00 4.17

Active 99.83 17 100.00 1.65

Passive 99.62 28 100.00 5.48

VI Initial 98.18 182 91.21 7.91

Active 98.20 180 91.11 6.26

Passive 98.20 180 98.52 14.57

HMC Initial 98.32 168 74.40 9.89

Active 98.89 111 87.38 5.91

Passive 98.21 179 74.86 14.85

Results are over a single run. Legend is as in Table 3

ration is around 5%, a non-negligible amount. Table 4 shows
that the passive learning approach provides little improve-
ment: the NSC accuracy is similar to the initial one and the
rejection rate is still relatively large. However, the active
approach provides a significant improvement: the overall
rejection rate and the number of errors made by the NSC falls
dramatically, while preserving the ability of detecting almost
all errors (with an error detection rate of 100%, except for
the helicopter). In particular, rejection rates span from 3.46%
to 6.75% with the initial rejection rule, but drop to between
0.51% and 4.52% after active learning, and the average NSC
accuracy increases from 99.68% (initial) to 99.82% (active).
Bayesian approach. The predictive distribution is approx-
imated by samples of 100 observations. The BNN priors
are chosen to be standard normal distributions. In the ini-
tial configuration, the NSC accuracy, averaged over all the
case studies, is 98.95% with VI and 98.27 with HMC. The
rejection criterion recognizes on average 86.18% of errors
with VI and 95.27% with HMC. The overall rejection rate is
approx. 5.19%withVI, spanning from1.06% to 13.55%, and
approx. 9.87% with HMC, spanning from 6.56% to 16.03%.

Table 4 shows that, in the HMC framework, the passive
learning approach happens to produce results that are even
worse than the initial configuration. The reason might be that
that once the training sets are extended with data that may
come from a distribution different from X, the set of hyper-
parameters chosen to optimally solve the initial problem
may become sub-optimal. Indeed, when the hyperparame-
ters were tuned again, specifically for the passive learning
dataset, high performances were reached. For instance, in the
TWT model, the initial HMC performance rates (obtained
with proper hyperparameter tuning) are: 97.5% accuracy,
96.8% recognition and 5.04% rejection. Passive learning

123

Neural predictive monitoring and a comparison of frequentist...

(without re-tuning the hyperparameters) causes a significant
drop in performance: 91.86% accuracy, 52.58% recognition
and 11.31% rejection. However, once the HMC hyperparam-
eters are tuned specifically for the passive learning dataset,
the level of performance gets back to the initial one: 98.59%
accuracy, 96.45% recognition and 3.63% rejection. On the
other hand, active learning still yields improvements: the
NSC accuracy rises from 98.27% to 99.30%, and the rejec-
tion rates, initially very high, are significantly reduced,which
unfortunately causes a slight decrease in the error detection
accuracy. The recognition rate falls from 95.27% to 91.68%.

We finally observe that VI outperforms inference via
HMC, even thoughVI is not able to reach recognition rates as
high as in the frequentist approach. In particular, on average,
the initial VI approach yield an NSC accuracy of 98.95%,
a rejection rate of 5.19% and a recognition rate of 86.18%.
The passive results, as before, introduce onlyminor improve-
ments, whereas active learning yields a significant reduction
in the rejection rate (from 5.19% to 2.36%), an increase in
the NSC accuracy (from 98.95% to 99.32%) and an increase
in the overall recognition rate (from 86.175% to 91.85%).
Discussion.A likely reason why the Bayesian approach falls
behind the frequentist one is that the former introduces sev-
eral levels of approximation. Indeed the BNN is trained using
either VI or HMC, two approximate inference techniques,
resulting in an approximation of the true posterior distri-
bution. Moreover, the resulting uncertainty measures are
defined by statistics of said distribution (mean and variance in
our case), which introduces an additional error as these mea-
sures do not retain full information about the BNN posterior.
The latter error propagates as we apply GP classification for
error detection, which produces another approximate solu-
tion.

However, it is not to say that the Bayesian approach does
not work well overall. Indeed, Bayesian NPM is capable of
recognizing always at least the 85% of the prediction errors
and the accuracy of the predictive monitor is always well
above 98%. Moreover, we expect the Bayesian solution to
work better in settings with noise and partial observability,
settings where the Bayesian approach should provide a more
robust performance than the frequentist one.

Another interesting aspect is that active learning seems to
enhance the classifier confidence in its predictions, as demon-
strated by an improved detection rate and a sensibly reduced
rejection rate. This is the main advantage of active learning,
besides providing a higher state classifier accuracy.

In summary, the main conclusions from our experimental
analysis are:

– Our reachability predictors attain high accuracies, con-
sistently above 97.37% (above 99.43% for the frequentist
case).

– The frequentist approachoverall outperforms theBayesian
ones in all metrics and configurations, followed by VI.

– Error detection rates stay approximately constant after
retraining (active or passive). The frequentist approach
achieves staggering performance on this metric.

– The benefits of active learning are visible from an overall
reduction of the rejection rate and an overall increase in
the NSC accuracy.

6.5 CP over the error detection rule

Recall that our frequentist error detection rule G f builds
on CP to quantify the reliability of the NSC predictions. In
principle, CP can be applied to derive prediction regions with
statistical guarantees to any supervised learning model. The
SVC G f for error detection is no exception.

In this experiment, we show that we can apply CP to pro-
duce prediction regions Γ ε for G f , which, by definition,
contain the correct rejection decision with probability 1− ε.
For this purpose, we apply CP to the SVC Ga

f obtained after
one active learning iteration. In particular, we derive from
Γ ε a so-called risky rejection strategy, aimed at reducing the
rejection rate: we reject only those points by which the pre-
diction region for Ga

f contains only class 1, that is, when
rejecting is the only plausible decision (according to CP).
We report the results for two case studies, the helicopter
and the artificial pancreas, to show how the performances
of the risky rejection strategy compare to the ones obtained
via active learning. These two models are representative of
cases where active learning could sensibly reduce the rejec-
tion rate (artificial pancreas) and where instead it could not
(helicopter).

Note that applying CP to Ga
f requires a new calibration

set, i.e., a set of points from Wa
v not used to train Ga

f but
rather to calibrate its predictions. The CP framework needs a
few further adjustments, discussed in detail in Appendix A.

Choosing an optimal value for ε, i.e., one that yields
high detection rates and low rejection rates, is non-trivial
and requires problem-specific tuning. In Fig. 4, we compare
the above introduced risky strategy against the initial one
at different ε levels and after one active learning iteration
(results are reported only for the HC and AP case studies).
We observe that, with a properly tuned ε, we can achieve the
same detection rate of the initial approach (this occurs for
ε ∈ [0.057, 0.1] in the AP model, and ε ∈ [0.03, 0.11] in
the HC model), but at the same time a lower rejection rate.
For instance, a sweet spot that most reduces the rejection
rate without sacrificing detection is ε = 0.03 for the HC and
ε = 0.057 for the AP.

123

L. Bortolussi et al.

Fig. 4 Rejection rate and recognition rate of initial rejection rule (ini-
tial), the rule obtained after one active learning iteration (active), and
the “risky” rule obtained by applying CP to the latter (risk)

7 Related work

A number of methods have been proposed for online reach-
ability analysis that rely on separating the reachability
computation into distinct offline and online phases. However,
these methods are limited to restricted classes of mod-
els [3,40], or require handcrafted optimization of the HA’s
derivatives [41], or are efficient only for low-dimensional
systems and simple dynamics [42].

In contrast, NSC [6] is based on learningDNN-based clas-
sifiers, is fully automated and has negligible computational
cost at runtime. In [43,44], similar techniques are introduced
for neural approximation ofHamilton–Jacobi (HJ) reachabil-
ity. Our methods for prediction rejection and active learning
are independent of the class of systems and the machine-
learning approximation of reachability, and thus can also be
applied to neural approximations of HJ reachability.

In [45], Yel and others present a runtime monitoring
framework that has similarities with our NPM approach, in
that they also learn neural network-based reachability mon-
itors (for UAV planning applications), but instead of using,
likewedo, uncertaintymeasures to pin downpotentially erro-

neous predictions, they applyNNverification techniques [46]
to identify input regions that might produce false negatives.
Thus, their approach is complementary to our uncertainty-
based error detection, but, due to the limitations of the
underlying verification algorithms, they can only support
deterministic neural networks with sigmoid activations. On
the contrary, our techniques support any kind of ML-based
monitors, including probabilistic ones.

The work of [47,48] addresses the predictive monitoring
problem for stochastic black-box systems, where a Markov
model is inferred offline from observed traces and used
to construct a predictive runtime monitor for probabilis-
tic reachability checking. In contrast to NSC, this method
focuses on discrete-space models, which allows the predic-
tor to be represented as a look-up table, as opposed to a neural
network.

In [49], a method is presented for predictive monitoring
of STL specifications with probabilistic guarantees. These
guarantees derive from computing prediction intervals of
ARMA/ARIMA models learned from observed traces. Sim-
ilarly, we use CP which also can derive prediction intervals
with probabilistic guarantees, with the difference that CP
supports any class of prediction models (including auto-
regressive ones). In [50], model predictions are used to
forecast future robustness values of MTL specifications for
runtime monitoring. However, no guarantee, statistical or
otherwise, is provided for the predicted robustness. Desh-
mukh and others [51] have proposed an interval semantics
for STL over partial traces, where such intervals are guaran-
teed to include the true STL robustness value for any bounded
continuation of the trace. This approach can be used in the
context of predictive monitoring but tends to produce over-
conservative intervals.

A related approach to NSC is smoothed model checking
[52], where Gaussian processes [32] are used to approximate
the satisfaction function of stochastic models, i.e., map-
ping model parameters into the satisfaction probability of a
specification. Smoothed model checking leverages Bayesian
statistics to quantify prediction uncertainty, but faces scal-
ability issues as the dimension of the system increases. In
contrast, computing our measure of prediction reliability is
very efficient, because it is nearly equivalent to executing the
underlying predictor.

In the field of computer security, amachine learning-based
method for malware detection [27] is conceptually very sim-
ilar to our NPM method. The authors develop a tool for
assessing the performance of a classifier using the statisti-
cal guarantees of conformal predictions with a self-trained
mechanism to filter out unreliable classification decisions.

Literature on uncertainty-based active learning in deep-
learning models is small and sparse, mainly because deep
learning methods rarely represent model uncertainty, and
state-of-the-art deep learning techniques require large amounts

123

Neural predictive monitoring and a comparison of frequentist...

of data, which makes active learning impractical. Several
uncertainty-based acquisition functions (i.e., functions used
to rank the informativeness of new observations for active
learning) are reviewed in [21]. In [53], a Deep Ensemble
active learningmethod is proposed, where uncertainty is esti-
mated from a stochastic ensemble of BNN models (obtained
via MC-Dropout, another approximate Bayesian inference
technique). Some applications of BNN in active learning are
presented in [54,55]. In these works, however, the decision
threshold used to identify informative samples is always cho-
sen empirically. An important contribution of our work is the
automatic tuning of the decision rule.

A basic application of conformal predictors in active
learning is presented in [56]. Our approach introduces three
important improvements: a more flexible and meaningful
combination of confidence and credibility values, automated
learning of rejection thresholds (which are instead fixed in
[56]), and refinement of the query strategy.

In [29], we presented a preliminary version of the fre-
quentist approach. In [10], we added to it an automated
and optimal method to select the rejection thresholds and
an active learning framework.

8 Conclusion

Wehave presented neural predictivemonitoring, an approach
for runtime predictive monitoring of hybrid systems that
complements reachability predictions with principled esti-
mates of the prediction uncertainty. NPM uses these esti-
mates to derive optimal rejection criteria that identify
potentially erroneous predictions without knowing the true
reachability values.We have further designed an active learn-
ing strategy that, leveraging such uncertainty-based rejection
criteria, increases the accuracy of the reachability predictor
and reduces the overall rejection rate. Our approach over-
comes the computational footprint of reachability checking
(infeasible at runtime), while improving on traditional run-
time verification by being able to detect future violations in
a preemptive way.

We have devised two alternative solution methods for
NPM. The first one follows a frequentist approach, with state
classifiers expressed as deterministic DNNs and rejection
rules expressed as support vector classifiers, where the rejec-
tion rules are optimized to detect unreliable predictions from
uncertainty measures derived via Conformal Prediction. The
second one follows a Bayesian approach, with a probabilistic
state classifier based on Bayesian neural networks, rejection
rules given as Gaussian process classifiers, and uncertainty
measures extracted from statistics of the BNN predictive dis-
tribution.

The strengths of our NPM technique are its effectiveness
in identifying and rejecting prediction errors and its compu-

tational efficiency: executing the classifier and the rule take
on the order of milliseconds. NPM’s efficiency is not directly
affected by the complexity of the system under analysis but
only by the complexity of the underlying learning problem
and classifier.

Our experimental evaluation demonstrates that the fre-
quentist approach outperforms the Bayesian one: the state
classifier is simpler to train and faster to evaluate, and the
error detection criteria are more accurate. Regarding BNN
inference, we found that VI scales better than HMC with
respect to the dimension of the system. The assumptions
on the prior and the necessary tuning of hyperparameters
represent important drawbacks of the Bayesian techniques,
which, however, tend to bemore consistent than deterministic
models in regions with no data observed: here the posterior
distribution will typically have high variance.

Among directions for future work, we plan to extend our
approach to support more complex and real-world systems
that include noise and partial observability, settings where
the Bayesian approach can potentially provide more robust
performance than the frequentist one.

Acknowledgements This work has been partially supported by the
UK NCSC project “PM-CPS” n. 4217549, the Italian PRIN project
“SEDUCE” n. 2017TWRCNB, the German DFG “multimode” project,
U.S. ONR grant N00014-20-1-2751 and U.S. NSF grants CCF-
1954837, CPS-1446832, and CCF-1918225.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A conformal predictions on SVC

A.1 Mondrian approach in conformal predictions

CP works as explained in Sect. 3.1. Given a test point x∗, we
compute a p value for every possible class and, given a sig-
nificance level ε, the prediction region Γ ε∗ is the set of labels
whose p value exceeds the significance level. In practice, the
prediction region for each test point can be interpreted as
the set of classes that guarantees that the true class is not in
the set no more than a fraction ε of the times. This is called
the validity property. It provides a statistical guarantee on the
expected number of errors, i.e., number of times the true label

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

L. Bortolussi et al.

is not in the prediction set. The validity property, as stated
above, guarantees an error rate over all possible labels, not on
per-label basis. The latter can be achieved with a CP variant,
called label-conditional CP, which is in turn a variant of the
Mondrian CP approach. The only change is in the calculation
of the p values. The p value associated with class y j on a test
point x∗ is defined as:

p j∗ = |{zi ∈ Zc : yi = y j , αi > α
j∗}|

|{zi ∈ Zc : yi = y j }| + 1
+ (25)

+ θ
|{zi ∈ Zc : yi = y j , αi = α

j∗}| + 1

|{zi ∈ Zc : yi = y j }| + 1
. (26)

In words, we consider only the αi corresponding to examples
with the same label y j as the hypothetical label that we are
assigning at the test point.

Label-conditional validity [57] is extremely important
when the CP is applied to an unbalanced dataset, as in our
case Wv . It has been shown empirically, that, with the plain
validity property, the overall error rates tend to the chosen
significance level, but the minority class are disproportion-
ally affected by errors. The Mondrian approach ensures that,
even for the minority class, the expected error rate will tend
to the chosen significance level ε. We refer the reader to the
existing literature [58,59] for further details.

A.2 SVC non-conformity measure

CP relies on the definition of a non-conformity measure,
which captures the extent to which a given input data con-
forms to the associated class. Every classification algorithm
has a specific non-conformity measure, that makes the CP
algorithm perform well in each framework. SVC is a kernel-
based method that transforms the original data by mapping
them into a new space, called feature space, via a feature
map φ(x). By doing so, patterns that are not linearly separa-
ble, can be converted to be linearly separable in the feature
space [20]. The linear decision boundary for a binary SVC
is defined as d(x) = a · φ(x) + b = 0, for x in the original
space. Support vectors are the data points that lie closest to
the decision hyper-plane. SVCmaximizes themargin around
the separating hyperplane and the decision function, which
depends only on the support vectors. For ease of notation, we
are assuming Y = {−1, 1}, rather than {0, 1}. The distance
of a point x∗ from the separating hyperplane of the SVC is
given by:

dh∗ = |d(x∗)|
||a|| ,

where d(x∗) is SVC decision function d(·) evaluated in x∗
and ||a|| is the weighted sum of the support vectors. Then,

Fig. 5 Results as in Figure 4 for the IP model. A good choice for ε is
around 0.08

the distance to the margin boundary of the class under con-
sideration is given by:

dm∗ = |d(x∗)| − 1

||a|| .

The non-conformity measure is thus defined as

α
j∗ = exp(−dm∗).

Such definition is presented in [60]. In case of transductive
CP (TCP), the NCM can be derived directly from the value
of Lagrange multipliers associated with the support vectors,
as proposed in [59].

Remark 5 When CP are applied to the SVC, the input space
is the uncertainty domain U, rather than X. However, for ease
of presentation, we stick to the p values notation introduced
in Section 3.1.

Appendix B Proofs

Proposition 1 For the NCF function (6), if Γ ε∗ = {y j1}, then
y j1 = F(x∗).

Proof Suppose by contradiction that Γ ε∗ = {y j1} and y j1 �=
F(x∗) = y j2 . Then, by Equation 5, this implies that p j1∗ >

ε and that p j2∗ ≤ ε, i.e., p j1∗ > p j2∗ . In turn, this implies
that the corresponding NCF scores are such that α

j1∗ ≤ α
j2∗

(the inequality is not strict due to the tie-braking factor θ

in Equation 4). But according to the definition of our NCF
function (6), this means that fy j1 (x∗) ≥ fy j2 (x∗), i.e., that
the likelihood of the non-predicted class y j1 is not below than
that of the predicted class y j2 , which, by Definition 4 and the
assumption of well-formed discriminant, is a contradiction.

��

123

Neural predictive monitoring and a comparison of frequentist...

Appendix CModels and case studies

Webriefly introduce the case studies used in our experimental
evaluation.
Spiking Neuron. This model describes the evolution of a
neuron’s action potential. It is a deterministic HA with two
continuous variables, one mode, one transition and nonlinear
polynomial dynamics. We consider the unsafe set D defined
by v2 ≤ 68.5, expressing that the neuron should not under-
shoot its resting potential. The time bound for the reachability
property is T = 20.
Inverted Pendulum. We consider the classic inverted pendu-
lum on a cart nonlinear system.We consider the unsafe set D
defined by |θ | > π/4, corresponding to the safety property
that keeps the pendulum within 45◦ of the vertical axis. The
time bound is T = 5.
Artificial Pancreas For the APmodel, the unsafe set D corre-
sponds to hypoglycemia states, i.e., D = BG ≤ 3.9 mmol/L,
where BG is the blood glucose variable. The state distribu-
tion considers uniformly distributed values of plasmaglucose
and insulin. The insulin control input is fixed to the basal
value. The time bound is T = 240.
Triple Water Tank For the TWT model, D is given by states
where the water level of any of the tanks falls outside a given
safe interval I , i.e., D = ∨3

i=1xi /∈ I , where xi is the water
level of tank i . The state distribution considers water levels
uniformlydistributedwithin the safe interval. The timebound
is T = 1.
Cruise Control. It is a non-deterministic HA with 3 con-
tinuous variables, 6 modes, 11 transitions, and nonlinear
polynomial dynamics. The unsafe set D is defined by v ≤
−1, which expresses that the vehicle’s speed should not be
below a reference speed by 1m/s or more. The reachability
time bound is T = 10.
Helicopter Controller. We augment the 28-variable heli-
copter controller available on SpaceEx website9 with a
variable z denoting the helicopter’s altitude. The dynamics
of z is given by ż = vz , where vz is the vertical velocity
and represented by variable x8. The unsafe set D is defined
by z ≤ 0. The time bound is T = 5. Since this model is
large and publicly available on SpaceEx website, we do not
provide the details here.

C.1 Spiking neuron

We consider the spiking neuron model on the Flow* web-
site10. It is a hybrid system with one mode and one jump.

9 http://spaceex.imag.fr/.
10 https://flowstar.org/examples/.

θ

Fig. 6 Schematic of the inverted pendulum on a cart. Source: https://
en.wikipedia.org/wiki/Inverted_pendulumWikipedia

The dynamics is defined by the ODE

{
v̇2 = 0.04v22 + 5v2 + 140 − v1 + I

v̇1 = a · (b · v2 − v1)
. (27)

The jump condition is v2 ≥ 30, and the associated reset is
v′
2 := c∧v′

1 := v1 +d, where, for any variable x , x ′ denotes
the value of x after the reset.

The parameters are a = 0.02, b = 0.2, c = −65, d = 8,
and I = 40 as reported on the Flow* website. We consider
the unsafe state set D = {(v2, v1) | v2 ≤ 68.5}. This cor-
responds to a safety property that can be understood as the
neuron does not undershoot its resting-potential region of
[−68.5,−60]. The domain for sampling is 68.5 < v2 ≤
30 ∧ 0 ≤ v1 ≤ 25. The time bound for the reachability
property was set to T = 20.

C.2 Inverted pendulum

We consider the control system for an inverted pendulum on
a cart. This is a classic, widely used example of a nonlinear
system. As shown in Fig. 6, the control input F is a force
applied to the cart with the goal of keeping the pendulum in
upright position, i.e., θ = 0. The dynamics is given by

J · θ̈ = m · l · g · sin(θ) − m · l cos(θ) · F (28)

where J is the moment of inertia, m is the mass of the pen-
dulum, l is the length of the rod, and g is the gravitational
acceleration.

123

http://spaceex.imag.fr/
https://flowstar.org/examples/
https://en.wikipedia.org/wiki/Inverted_pendulum
https://en.wikipedia.org/wiki/Inverted_pendulum

L. Bortolussi et al.

0 2 4 6 8 10 12 14 16 18 20

Time

0

π/16

π/8

3π/16

π/4

5π/16
θ
(t
)

Fig. 7 An evolution of the inverted pendulum state variable θ from
initial state (θ0, ω0) = (0.5, 1.0)

We set J = 1, m = 1/g, l = 1, and let u = F/g. Eq. 28
becomes{

θ̇ = ω

ω̇ = sin(θ) − cos(θ) · u . (29)

We consider the control law of Eq. 30. Figure 7 shows
an evolution of θ under this control law. We consider the
unsafe state set D = {(θ, ω) | θ < −π/4 ∨ θ > π/4}. This
unsafe region corresponds to the safety property that keeps
the pendulum within 45◦ of the vertical axis. The domain for
sampling is θ ∈ [−π/4, π/4] ∧ ω ∈ [−1.5, 1.5]. We used
time bound T = 5.

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2 · ω + θ + sin(θ)

cos(θ)
, E ∈ [−1, 1], | ω | + | θ |≤ 1.85

0, E ∈ [−1, 1], | ω | + | θ |> 1.85
ω

1+ | ω | cos(θ), E < −1

−ω

1+ | ω | cos(θ), E > 1

(30)

where E = 0.5 · ω + (cos(θ) − 1) is the pendulum energy.

C.3 Cruise control

The cruise control is a non-deterministic HA with three
continuous variables, six modes, eleven transitions, and non-
linear polynomial dynamics. It is shown in Fig. 8. The
continuous variable v denotes the difference between the
vehicle’s speed and the cruise speed in m/s, x is the integral
term for the proportional-integral (PI) controller in mode 5,
and t is a clock.

In mode 5, the PI controller tries to stabilize v to zero, i.e.,
to match the vehicle’s speed with the cruise speed. Modes 3
and 4 represent the first level of brakes where deceleration
increases smoothly from 1.2 to 2.5m/s2 in mode 4 and stays
constant at 2.5 m/s2 in mode 3. Modes 1 and 2 represent
the second level of brakes and work in the same way but
with higher starting andpeakdeceleration.Mode6 constantly
accelerates the vehicle. The guards are designed to prevent
chattering or Zeno behavior.

Fig. 8 Hybrid automaton for the cruise control system. Invariants are
in blue, guards are in red, and reset mappings are in green

Fig. 9 Reverse hybrid automaton for the cruise control system. Invari-
ants are in blue, guards are in red, and reset mappings are in green

The unsafe set D is defined by v ≤ −1, which expresses
that the vehicle’s speed should not be below a reference speed
by 1 m/s or more. The reachability time bound is T = 10
(Fig. 9).

Appendix D Sensitivity analysis

Figure 10.

Fig. 10 Sensitivity analysis: for each model the width and depth of
the DNN has been varied. The colormap indicates the accuracy of the
predictive monitor

123

Neural predictive monitoring and a comparison of frequentist...

Appendix E Labeling data

Labeling a state x of an HA M means deciding whether
M |� Reach(D, x, T), i.e., solving a reachability check-
ing problem. For non-deterministic HAs, we use an SMT
solver that supports bounded model checking of hybrid sys-
tems. In particular, we choose dReal [12], which provides
sound unsatisfiability proofs, but approximates satisfiability
up to a user-defined precision (δ-satisfiability). So, we label
x as negative (positive) if M |� Reach(D, x, T) (M |�
¬Reach(D, x, T)) is unsatisfiable. If both Reach(D, x, T)

and ¬Reach(D, x, T) are δ-sat, then the model checker can-
not make a decision about x , and in this case, we choose
to be conservative and mark the state as positive. However,
choosing a small δ makes this situation less likely to happen.

In case of deterministic systems, it is sufficient to simulate
the system with an ODE solver and use an event-detection
method to check guard conditions and whether the trajectory
reaches D.

During dataset generation, we sample the HA states to
label using either a uniform sampling or a balanced sam-
pling strategy. The former ensures that all states in X \ D
are equiprobable. The latter produces a balanced amount of
positive and negative samples, and is used in cases when
the unsafe region D is a small subset of the state space,
where a uniform sampling strategy would result in imbal-
anced datasets with insufficient positive samples. See [61]
for more details.

References

1. Alur, R.: Formal verification of hybrid systems. In Proceedings of
the Ninth ACM International Conference on Embedded Software
(EMSOFT), pages 273–278, Oct (2011)

2. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decid-
able about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124
(1998)

3. Chen, X. and Sankaranarayanan, S.: Model predictive real-time
monitoring of linear systems. In Real-Time Systems Symposium
(RTSS), 2017 IEEE, pages 297–306. IEEE, (2017)

4. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4),
20–28 (2001)

5. Bartocci, E., Deshmukh, J., Donze, A., Fainekos, G., Maler, O.,
Nickovic, D. and Sankaranarayanan, S.: Specification-based mon-
itoring of cyber-physical systems: a survey on theory, tools and
applications. In Lectures on Runtime Verification, pages 135–175.
Springer, (2018)

6. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A. and
Stoller, S.D.: Neural state classification for hybrid systems. In
Automated Technology for Verification and Analysis, volume
11138 of Lecture Notes in Computer Science, pages 422–440,
(2018)

7. Vovk, V., Gammerman, A., Shafer G.: Algorithmic learning in a
random world. Springer Science & Business Media, Glenn (2005)

8. Neal, Radford M et al.: MCMC using Hamiltonian dynamics.
Handbook of markov chain monte carlo, 2(11):2, (2011)

9. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An intro-
duction to variational methods for graphical models. Mach. Learn.
37(2), 183–233 (1999)

10. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A. and Stoller,
S.D.: Neural predictive monitoring. In International Conference on
Runtime Verification, pages 129–147. Springer, (2019)

11. Bak, S., Beg, O.A., Bogomolov, S., Johnson, T.T., Nguyen, L.V.,
Schilling, C.: Hybrid automata: from verification to implementa-
tion. Int. J. Softw. Tools Technol. Transf. 21(1), 87–104 (2019)

12. Gao, S., Kong, S. andClarke, E.M.: dreal: An smt solver for nonlin-
ear theories over the reals. In International conference on automated
deduction, pages 208–214. Springer, (2013)

13. Chen, Xin, Ábrahám, Erika, Sankaranarayanan, Sriram: Flow*: An
analyzer for non-linear hybrid systems. In InternationalConference
on Computer Aided Verification, pages 258–263. Springer, (2013)

14. Althoff M.: An introduction to CORA 2015. In Proc. of the Work-
shop on Applied Verification for Continuous and Hybrid Systems,
(2015)

15. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K. and Schilling,
C,: Juliareach: a toolbox for set-based reachability. In Proceedings
of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, pages 39–44, (2019)

16. Hornik, K., Stinchcombe, M., White, H., et al.: Multilayer feed-
forward networks are universal approximators. Neural Netw. 2(5),
359–366 (1989)

17. Rumelhart, D.E., Hinton, G.E. and Williams, R.J.: Learning
internal representations by error propagation.Technical report,Cal-
ifornia Univ San Diego La Jolla Inst for Cognitive Science, (1985)

18. Papadopoulos, H.: Inductive conformal prediction: Theory and
application to neural networks. In Tools in artificial intelligence,
InTech (2008)

19. Vineeth B., Shen-Shyang H., Vladimir V.: Conformal prediction
for reliable machine learning: theory, adaptations and applications.
Newnes (2014)

20. Christopher M Bishop. Pattern recognition and machine learning.
Springer, 2006

21. Gal, Y.: Uncertainty in deep learning. PhD thesis, University of
Cambridge, (2016)

22. MacKay, D.J.C.: A practical bayesian framework for backpropa-
gation networks. Neural Comput. 4(3), 448–472 (1992)

23. Van der Vaart, A.W.: Asymptotic statistics. Cambridge University
Press, Cambridge (2000)

24. Rasch, D., Pilz, J., Verdooren L.R., and Gebhardt A.: Chapman and
Hall/CRC, Optimal experimental design with R (2011)

25. Massart, P.: The tight constant in the dvoretzky-kiefer-wolfowitz
inequality. The annals of Probability, pages 1269–1283, (1990)

26. Deodato, G., Ball, C. and Zhang, X.: Bayesian neural networks
for cellular image classification and uncertainty analysis. bioRxiv,
page 824862, 2019

27. Jordaney, R., Sharad, K., Dash, S.K., Wang, Z., Papini, D., Nouret-
dinov, I. and Cavallaro, L.: Transcend: Detecting concept drift in
malware classification models. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 625–642, (2017)

28. Guo, C., Pleiss, G., Sun, Y. andWeinberger, K.Q: On calibration of
modern neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1321–1330.
JMLR. org, (2017)

29. Bortolussi, L., Cairoli, F., Paoletti, N. and Stoller, S.D.: Conformal
predictions for hybrid system state classification. In From Reac-
tive Systems to Cyber-Physical Systems, pages 225–241. Springer,
(2019)

30. Brefeld, U., Geibel, P. and Wysotzki, F.: Support vector machines
with example dependent costs. In European Conference on
Machine Learning, pages 23–34. Springer, (2003)

123

L. Bortolussi et al.

31. Batuwita, R., Palade, V.: Class imbalance learning methods for
support vector machines, chapter 5, pages 83–99. John Wiley &
Sons, Ltd, (2013)

32. Rasmussen, C.E.,Williams,C.K.I:Gaussian processes formachine
learning, volume 1. MIT press Cambridge, (2006)

33. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for
imbalanced data using matthews correlation coefficient metric.
PloS one 12(6), e0177678 (2017)

34. Paoletti, N., Liu, K.S., Smolka, S.A. and Lin, S.: Data-driven robust
control for type 1 diabetes under meal and exercise uncertainties.
In International Conference onComputationalMethods in Systems
Biology, pages 214–232. Springer, (2017)

35. Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin
M., Ghemawat S., Irving G., Isard M., et al.: Tensorflow: A system
for large-scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pages
265–283, (2016)

36. Paszke,A.,Gross, S.,Massa, F., Lerer,A., Bradbury, J., Chanan,G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A.
et al.: Pytorch: An imperative style, high-performance deep learn-
ing library. InAdvances inNeural Information Processing Systems,
pages 8024–8035, (2019)

37. Chollet, F. et al.: Keras: The Python deep learning library. Astro-
physics Source Code Library, (2018)

38. Tran, D., Kucukelbir, A., Dieng, A.B., Rudolph, M., Liang, D. and
Blei, D.M.: Edward: A library for probabilistic modeling, infer-
ence, and criticism. arXiv preprint arXiv:1610.09787, (2016)

39. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan,
N., Karaletsos, T., Singh, R., Szerlip, P., Horsfall, P., Goodman,
N.D.: Pyro: deep universal probabilistic programming. J. Mach.
Learn. Res. 20(1), 973–978 (2019)

40. Yoon, H., Chou, Y., Chen, X., Frew, E. and Sankaranarayanan, S.:
Predictive runtime monitoring for linear stochastic systems and
applications to geofence enforcement for uavs. In International
Conference on Runtime Verification, pages 349–367. Springer,
(2019)

41. Stanley B., Taylor J.T., Marco C., Lui S.: Real-time reachabil-
ity for verified simplex design. In Real-Time Systems Symposium
(RTSS), 2014 IEEE, pages 138–148. IEEE, (2014)

42. Sauter, G., Dierks, H., Franzle, M. and Hansen, M.R.: Lightweight
hybrid model checking facilitating online prediction of temporal
properties. In Proceedings of the 21st Nordic Workshop on Pro-
gramming Theory, pages 20–22, 2009

43. Djeridane, B. and Lygeros, J.: Neural approximation of PDE solu-
tions: An application to reachability computations. In Proceedings
of the 45th IEEEConference onDecision andControl, pages 3034–
3039. IEEE, (2006)

44. Royo, V.R., Fridovich-Keil, D., Herbert, S. and Tomlin,
C.J.: Classification-based approximate reachability with guar-
antees applied to safe trajectory tracking. arXiv preprint
arXiv:1803.03237, (2018)

45. Yel, E., Carpenter, T.J., Di Franco, C., Ivanov, R., Kantaros, Y., Lee,
I., Weimer, J., Bezzo, N.: Assured runtime monitoring and plan-
ning: toward verification of neural networks for safe autonomous
operations. IEEE Robotics Automation Magazine 27(2), 102–116
(2020)

46. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J. and Lee, I.: Verisig:
verifying safety properties of hybrid systems with neural net-
work controllers. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pages
169–178, (2019)

47. Babaee R., Gurfinkel A., Fischmeister S.: Predictive run-time
verification of discrete-time reachability properties in black-box
systems using trace-level abstraction and statistical learning. In
International Conference on Runtime Verification, pages 187–204.
Springer, (2018)

48. BabaeeR.,GaneshV., Sedwards S.: Accelerated learning of predic-
tive runtime monitors for rare failure. In International Conference
on Runtime Verification, pages 111–128. Springer, (2019)

49. Qin, X. and Deshmukh, J.V.: Predictive monitoring for signal tem-
poral logic with probabilistic guarantees. In Proceedings of the
22nd ACM International Conference on Hybrid Systems: Compu-
tation and Control, pages 266–267. ACM, (2019)

50. Dokhanchi, A., Hoxha, B. and Fainekos,G.:On-linemonitoring for
temporal logic robustness. In International Conference on Runtime
Verification, pages 231–246. Springer, (2014)

51. Deshmukh J.V., Donze A., Ghosh S., Jin X., Juniwal G., Seshia
S.A. (2017) Robust online monitoring of signal temporal logic.
Formal Methods in System Design 51(1), 5–30

52. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothedmodel check-
ing for uncertain continuous-time Markov chains. Inf. Comput.
247, 235–253 (2016)

53. Pop, R. and Fulop, P.: Deep ensemble bayesian active learning:
Addressing the mode collapse issue in monte carlo dropout via
ensembles. arXiv preprint arXiv:1811.03897, (2018)

54. Gal, Y., Islam, R. and Ghahramani, Z.: Deep bayesian active learn-
ing with image data. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1183–1192.
JMLR. org, (2017)

55. Dayoub, F., Sunderhauf, N. and Corke, P.I.: Episode-based active
learningwith bayesian neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Work-
shops, pages 26–28, (2017)

56. Makili, Lázaro Emílio., Vega Sánchez, Jesús A., Dormido-Canto,
Sebastián: Active learning using conformal predictors: application
to image classification. FusionScience andTechnology 62(2), 347–
355 (2012)

57. Toccaceli, P.,Gammerman,A.:Combinationof inductivemondrian
conformal predictors. Mach. Learn. 108(3), 489–510 (2019)

58. Gammerman, A., Vovk, V.: Hedging predictions in machine learn-
ing. Comput. J. 50(2), 151–163 (2007)

59. Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach.
Learn. Res. 9, 371–421 (2008)

60. Balasubramanian, V.N., Gouripeddi, R., Panchanathan, S., Vermil-
lion, J., Bhaskaran, A., & Siegel, R. M.: Support vector machine
based conformal predictors for risk of complications following a
coronary drug eluting stent procedure. In 2009 36th Annual Com-
puters in Cardiology Conference (CinC), pages 5–8. IEEE, (2009)

61. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S. A., Stoller,
S.D.: Neural state classification for hybrid systems.ArXiv e-prints,
July (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1610.09787
http://arxiv.org/abs/1803.03237
http://arxiv.org/abs/1811.03897

	Neural predictive monitoring and a comparison of frequentist and Bayesian approaches
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Uncertainty-based error detection
	List of notation

	3 Uncertainty quantification in neural predictive monitoring
	3.1 Conformal prediction
	3.2 Bayesian neural networks

	4 Uncertainty-based rejection criteria
	4.1 Frequentist error detection via support vector classification (SVC)
	4.2 Bayesian error detection via Gaussian process classification (GPC)

	5 Active learning
	5.1 General active learning algorithm
	5.2 Frequentist active learning algorithm

	6 Experimental results
	6.1 Experimental settings
	6.2 Performance measures
	6.3 Computational performance
	6.4 Experiments
	6.5 CP over the error detection rule

	7 Related work
	8 Conclusion
	Acknowledgements
	Appendix A conformal predictions on SVC
	A.1 Mondrian approach in conformal predictions
	A.2 SVC non-conformity measure

	Appendix B Proofs
	Appendix C Models and case studies
	C.1 Spiking neuron
	C.2 Inverted pendulum
	C.3 Cruise control

	Appendix D Sensitivity analysis
	Appendix E Labeling data
	References

