
1

Message-Efficient Uniform Timed Reliable Broadcast
Yu Ma and Scott D. Stoller

21 September 1998
1. Introduction

In distributed database systems, atomic commitment protocols ensure that
transactions leave the database in a consistent state even if failures occur during
transactions. As shown by Babaoglu and Toueg, the heart of the atomic commitment
problem is equivalent to uniform timed reliable broadcast (UTRB), which is a broadcast
primitive that provides the following guarantees [Babaoglu and Toueg]:
B1 (Validity): If a correct process broadcasts a message m, then all correct processes
eventually deliver m.
B2 (Integrity): For any message m, each process delivers m at most once, and only if
some process actually broadcasts m.
B3 (∆b-Timeliness): There exists a known constant ∆b such that if the broadcast of m is
initiated at real-time t, no process delivers m after real-time t+∆b.
B4 (Uniform Agreement): If any process (correct or not) delivers a message m, then all
correct processes eventually deliver m.

We consider two complexity metrics for UTRB algorithms: time and number of
messages. Let N be the number of processes. Assume that communication is FIFO and
reliable, and each message is received within δ time units (as measured in real-time) after
being sent. Local overhead of communication is captured by a parameter τ: after a
process sends a set of at most N-1 messages to different processes, τ time units elapse
before more messages can be sent.

It is easy to devise a time-optimal UTRB protocol, e.g., UTRB1 of [Babaoglu and
Toueg], which works as follows. Each process relays every message it receives to all
other processes before delivering the message; thus, if any process delivers a message,
then that message must have been sent to all processes. Let f denote the total number of
processes that crash during an execution of the protocol, then the worst-case time
complexity of UTRB1 is only (f+1)δ, but the worst-case number of messages is (N-1)2.

What about a message-optimal algorithm then? The most message-efficient algorithm
in the literature is UTRB2 [Babaoglu and Toueg], which uses three types of messages:
MSG announces a broadcast, DLV causes a delivery, and REQ requests help. The initial
broadcaster constructs a list of processes called cohorts that will cooperate in performing
the broadcast. The first process on this list is the broadcaster itself. To tolerate the failure
up to F processes, the list contains F+1 distinct process name. This list, along with the
index of the current cohort is included in MSG and REQ messages. Processes that
received MSG from the broadcaster but didn’t receive DLV after waiting for an additional
δ+τ time units would time out and send REQ to a cohort for help, and they wait for 2δ+τ
before sending REQ to the next cohort. This procedure repeats until either a DLV arrives
and causes delivery, or there are no more cohorts to ask for help. On receiving REQ, a
cohort send MSG and DLV in the same way as the initial broadcaster to all other
processes. In case of f failures (F>f >0) in an execution of the protocol, the worst-case
time complexity of UTRB2 is (f+1)(2δ+τ) and the worst-case number of messages is
2(f+1)(N-1).

2

This paper describes a new UTRB protocol, called UTRB4, which has worst-case
message complexity 2(N-1)+ f(f-1)/2, which is asymptotically better than UTRB2. We
conjecture that UTRB4 is asymptotically message-optimal. However, the worst-case time
complexity of UTRB4 is exponential in N. For example, when f = 1 and N > 3, the worst
case message and time complexities of UTRB4 are 2(N -1) and 2δ + τ + 2(N-1) δ + 2(N - 4)τ
respectively compared to 4(N-1) and 2(2δ + τ) for UTRB2. We are also studying the
trade-off between time and number of messages. We conjecture that no algorithm can be
optimal with respect to both metrics.

2. Description of UTRB4
Figure1 is the main structure of UTRB4.

Pi :: initially bcasting := true;
 do

[] bcasting→ bcast(msg); bcasting := false;
[] ¬ bcasting→ msg.data := new message; msg.src := i; bcasting := true

 or skip
[] S ? <MSG, m> → msg_rcvd ⊕ = m;
//By MP4, MSG cannot have been received before.
//S may be the broadcaster or the helper. By P2, if it is S’s turn to help with the
//MSG, lower-ranked processes must have crashed.

//The next process’s rank to ask for help is stored in r[m];
r[m] = rank(S, m.src) + 1;
//k is the rank difference of the two processes that are
//communicating.
k = rank(i,m.src) − rank(S,m.src);
create_timer(m);
set_timer(m, Tm(k)); (1)

[] S?<DLV, m> → deliver(m); dlvd ⊕ =m;
 delete_timer(m);

[] Timer[m] → if r[m] = rank(i, m.src) then
helpi(m, i)

else
k = rank(i, m.src) − r[m];
rank-1(r[m], m.src) ! <REQ, m>;
set_timer(m, Tr(k)); (2)
r[m]++;

fi
[] S?<REQ, m>→ if m ∉ helped then

helpi(m,S);
 fi

 od

Figure 1. UTRB4: A Message-Efficient UTRB Algorithm

3

To reduce the message complexity from UTRB2, we arrange for a process to assume
the role of the initial broadcaster only in case of certain failures.

The algorithm also uses three types of messages: MSG announces the message, DLV
causes a delivery, and REQ is used to request help. Every process has its own process
identifier (PID). Let N be the number of processes, then PID = [0, N-1]. Each process is
also assigned a unique rank according to its PID and the PID of the initial broadcaster.
Function rank converts a PID into a rank. For all i, s ∈ PID, rank (i, s) = (i - s) mod N is
the rank of the process with PID i with respect to the sender s. For any r, rank-1(r, s) = (r +
s) mod N is the PID of the process of rank r with respect to sender s. Each message m
indicates the PID of the sender with a special field in the message, m.src. Statement
create_timer(m) creates a timer m. set_timer(m, t) sets timer m to length t of time.
delete_timer(m) deletes timer m regardless of whether m has timed out yet.

Figure 2 is the broadcast procedure called in the algorithm. It indicates the order that
MSG and DLV messages are sent.

procedure bcast(m)
for d := N-1 downto 1

rank-1(d, m.src)!<MSG,m>;
for d := 1 to N-1

rank-1(d, m.src)!<DLV, m>;
deliver(m);

Figure 2. Broadcast Procedure of UTRB4

If the broadcaster fails, a helper helps processes deliver the message by sending MSG
and DLV to appropriate processes. Both the initial broadcaster and helpers send MSG to
processes in decreasing order by rank, and DLV in increasing order by rank.

If some process p received MSG from a process ranked q but timed out while waiting
for DLV, by careful selection of time-outs, p knows that the sender of MSG must have
crashed and sends REQ for help to the process with rank q+1. If this helper is correct, on
receiving the REQ, it helps all correct processes deliver the message. Otherwise, p again
times out waiting for DLV and sends REQ to the next higher-ranked process. If all
processes ranked lower than p crashed, p eventually times out after having sent a REQ
message to the process with rank rank(p,m.src)-1. In this case, p becomes a helper.

Figure 3 shows the help procedure described above, which is very important in
reducing the message complexity of the algorithm.

3. Selecting Time-Outs for UTRB4
We can obtain the following properties by selecting time-outs carefully, in order to

use as few REQ messages as possible and to avoid sending redundant MSG and DLV
messages as much as possible. The order that MSG, DLV and REQ are sent, namely, in
order of decreasing, increasing, and increasing rank, respectively, is also essential.

Without loss of generality, we assume in the following discussion that process 0 is the
broadcaster; thus the rank of each process is the same as its PID, so we use them
interchangeably.

4

//j asked i to help with message m
procedure helpi(m, j)
// It’s clear that rank(j, m.src) ≥ rank(i, m.src).

helped ⊕ = m;
if m ∈ msg_rcvd then
// By R1 and R2, if j ≠ i, then rank (j, m.src) > rank (i, m.src) and i received //DLV
already, otherwise i would time out and ask for help earlier than j.

//0 to rank (i, m.src)-1: By P2, processes in this range have crashed.

//rank (i, m.src)+1 to rank (j, m.src): This range is empty when j = i. Consider the
//case where j ≠ i, then i received DLV already. By P5, MSG must have been sent
//to all correct processes ranked in this range. By R1 and R2, correct processes in
//this range should time out and ask for help earlier than j did. So all processes
//ranked in this range must have crashed.

//max (rank(i, m.src)+1, rank(j, m.src)) to N-1: By P3 and R1,R2, processes in
//this range either crashed or received MSG but did not time out on DLV yet;

for d := max (rank(i, m.src)+1, rank(j, m.src)) to N-1
rank-1(d, m.src) ! <DLV, m>;

else

//N-1 downto rank(j, m.src)+1: By P3 and R1,R2, processes in this range either
//crashed or received MSG but did not time out on DLV yet;

//rank(j, m.src)-1 downto rank(i, m.src)+1: By P4 , processes ranked in this range
//either crashed or didn't receive MSG;

//rank(i, m.src)-1 downto 0: By P2, processes in this range have crashed.

for d := rank(j, m.src)-1 downto rank(i, m.src) +1 (3)
rank-1(d, m.src) ! <MSG, m>;

msg_rcvd ⊕ = m;
for d := rank(i, m.src)+1 to N-1

rank-1(d, m.src) ! <DLV, m>;

fi

if m∉ msg_dlvd then
dlvd⊕ = m;
deliver(m);

fi
Figure 3. Help Procedure of UTRB4

5

P1 All correct processes that receive MSG or REQ eventually deliver the message.
P2 If a process p starts to execute the help procedure, then all processes ranked lower
than p have crashed.
P3 If a process p receives MSG, then MSG has been sent to all processes ranked
higher than p.
P4 If a process p receives REQ from q, then q is ranked higher than p and if p didn’t
receive MSG from any process, then all processes ranked between p and q either crashed
or didn’t receive MSG.
P5 If a process p receives DLV, then MSG must have been sent to all correct
processes, and all correct processes ranked lower than p have delivered or will deliver the
message.

We give mutually recursive rules R1 and R2 that define time-outs Tm (used in line (1) of
the algorithm) and Tr (used in line (2) of the algorithm) respectively. We prove below that
this choice of time-outs ensures properties P1-P5.

R1.a If process p receives MSG from the broadcaster, the time p should wait
before timing out waiting for DLV from the broadcaster or a helper and sending a REQ
message is Tm(p) = T1(p) +T2(p) +T3(p)+ T4(p), where :

1. T1(p): time for all MSG’s sent by the broadcaster to processes ranked lower
than p to be received, i.e. time from when p received MSG from the
broadcaster until all MSG’s sent by the broadcaster to processes ranked lower
than p have been received.

If p = 1, then p is the last process the broadcaster sends MSG to, so T1(p) =
0;
Else T1(p) = δ;

2. T2(p): time from when processes ranked lower than p received MSG from the
broadcaster until they have all timed out waiting for DLV from the broadcaster
or a helper and sent some REQ’s.

If p = 1, then p should allow τ time units to elapse before the broadcaster
sends the first DLV message and δ time units for that message to arrive, so
T2(p) = δ+τ;
Else T2(p) is the maximum time-out of processes ranked lower than p after
receiving MSG from the broadcaster, which by induction is Tm(p-1).

3. T3(p): time from when processes ranked lower than p timed out waiting for
DLV from the broadcaster or a helper and sent their first REQ’s until one of
those processes starts to provide help if it doesn’t crash. In the worst case, one
of these processes repeatedly sends a REQ and times out waiting for DLV and
then finally starts to provide help itself.

If p = 1 or 2, no process ranked lower than p needs to send any REQ's, so
T3(p) = 0;
Else T3(p) is the maximum for processes ranked lower than p of the sum
of the time-outs after the sending of each REQ, as discussed in R2, which
by induction is Σj=1..p-2Tr(p-1, j), where Tr is defined below in R2.

6

4. T4(p): time from when process p-1 started to provide help itself (since this was
the worst case for T3(p)) until a DLV message arrives at process p. Note that
when process p-1 started to provide help itself, it must have timed out waiting
for DLV messages from all processes ranked lower than it, and MSG must
have been sent to all processes ranked higher than it (because MSG is sent to
processes in the decreasing order by rank). Thus, in the help procedure, DLV
messages need to be sent only to processes ranked higher than p-1.

If p = 1, T4(p) = 0;
Else T4(p) = δ.

R1.b If process p receives MSG from a helper q, the time p should wait before
timing out waiting for DLV from q or another helper is Tm(p,q), defined as follows. Since
helpers send messages in the same order as the initial broadcaster, selecting time-outs
Tm(p, q) for p is the same as described above, except that now we should consider the
"relative" rank of p to the helper q, which is reflected by the rank difference of p and q.
Note that q<p. Thus Tm(p, q) = T1(p, q) +T2(p, q) +T3(p, q)+ T4(p, q), where:

1. T1(p, q): If p-q = 1, T1(p, q) = 0; Else T1(p, q) = δ;
2. T2(p, q): If p-q = 1, T2(p, q) = δ+τ; Else T2(p, q) = Tm(p-1, q);
3. T3(p, q): If p-q = 1 or 2, T3(p, q) = 0;

 Else T3(p, q) = Σj=q+1..p-2 Tr(p-1, j);
4. T4(p, q): If p-q = 1, T4(p, q) = 0; Else T4(p, q) = δ.

Note that Tm(p) = Tm(p, 0). Thus we can summarize R1.a and R1.b with the formulas
below:

If p-q = 1, Tm(p,q) = δ+τ;
Else if p-q = 2, Tm(p,q) = δ+Tm(p-1, q)+ δ = δ+δ+τ+δ;
Else Tm(p,q) = δ+Tm(p-1, q)+Σj=q+1..p-2 Tr(p-1, j)+δ.

R2. If process p sends REQ to process q, where q<p, the time Tr(p, q) that p
should wait before sending next REQ to q+1 includes:

1. Time δ for q to receive the REQ message, i.e. time from when p sent the REQ
message until this message arrived at q.

2. Time T’r(p, q) from when q received REQ until some process q’, where q≤ q’<
p, sent DLV to p. It is possible that q crashes during the help procedure, so
some process q’ is involved. Recall that time-outs reflect the maximum
waiting time needed. In the worst case, process q crashes immediately after
sending MSG to process p-1; this causes the longest waiting time of all
processes ranked between q and p on receiving MSG from q as discussed in
R1, because Tm(p,q) is an increasing function of p. So q’ = p-1, and we have:

If p-q = 1, no process is ranked between p and q, so T’r(p, q) = 0;
Else if p-q = 2, it takes δ time units for the MSG to arrive at q’ = p-1, and
Tm(p-1, q) before q’ timed out waiting for DLV from q and started to
provide help itself, so T’r(p, q) = δ + Tm(p-1, q) = δ+δ+τ;
Else we also need to include the time q’ needs to send all necessary REQ
messages and time out waiting for DLV from each before it starts to

7

provide the help itself, in which case T’r(p, q) = δ + Tm(p-1, q) + Σj = q+1..p-2

Tr(p-1, j).
3. Time δ for DLV sent to p to arrive, i.e. time from when q' sent the DLV

message to p until this message arrived at p.

Summarizing item 1-3, we have:
If p-q = 1, Tr(p,q) = δ+δ;
Else if p-q = 2, Tr(p,q) = δ+δ+δ+Tm(p-1, q) = δ+δ+δ+δ+τ;
Else Tr(p,q) = δ+δ+δ+Tm(p-1, q)+Σj=q+1..p-2 Tr(p-1, j).

Now it’s easy to get the relation between Tm(p, q) and Tr(p, q) as follows:
If p-q = 1, Tr(p, q) = Tm(p, q) + δ - τ;
Else Tr(p, q) = Tm(p, q) + δ. (3)

These rules guarantee that at most one process is qualified to send the REQ message at
any particular time. Thus by looking at the rank of the process that sent the REQ message,
a helper is able to tell whether each correct process has received MSG and DLV or not. A
helper thus can avoid sending unnecessary MSG and DLV to correct processes. This is
important in reducing the message complexity.

3.1 Computation of Time-outs
Now we compute the general expression for recursively defined time-outs, based on

R1 and R2. For simplicity, let Tm(k) and Tr(k) represent Tm(p, q) and Tr(p, q)
respectively, where k is the rank difference between p and q.

Tm(k) = δ+Tm(k-1)+ Σj=1..k-2 Tr(j) +δ;
We use (3) to eliminate Tr.

Tm(k) = 2δ + Tm(k-1) + Σj=1..k-2(δ+Tm(j))-τ
Tm(k) = 2δ+(k-2)δ+ Σj=1..k-1 Tm(j) - τ
Tm(k) = kδ + Σj=1..k-1Tm(j) - τ
Tm(k-1) = (k-1)δ + Σj=1..k-2 Tm(j) - τ
Tm(k) - Tm(k-1) = δ + Tm(k-1)
Tm(k) - 2Tm(k-1) = δ = Tm(k-1) - 2Tm(k-2)
Tm(k) - 3Tm(k-1) + 2Tm(k-2) = 0

The solution to this recurrence relation has the form
Tm(k) = C1 + C2 2

k where C1 and C2 are some constants.
From Tm(1) = δ+τ; Tm(2) = 3δ+τ; Tm(3) = 7δ+τ; Tm(4) = 15δ+2τ, we can solve for C1 and
C2, obtaining C1 = -δ and C2 = δ+ τ/8. Thus

Tm(1) = δ+τ; Tr(1) = 2δ;
Tm(2) = 3δ+τ; Tr(2) = 4δ+τ;
For k ≥ 3,
Tm(k) = 2kδ + 2k-3τ - δ; Tr(k) = 2kδ + 2k-3τ.
Note that the time complexity of this algorithm is exponential in the rank of the

lowest-ranked correct process.

8

3.2 Proofs of Properties
P1: Clear from the structure of the algorithm.

P2: It’s clear from the structure of the algorithm that a process p starts to provide help
only when p receives REQ from some process q, or p times out and becomes a helper by
itself.

Case 1 If process p receives REQ from some process q, since REQ’s are sent to processes
in the increasing order by rank, q must have sent REQ’s to all processes ranked lower
than p and timed out waiting for help before sending this one. From the discussion in R2,
if some process p' ranked lower than p is correct, then q will receive DLV from p' before
timing out waiting for help from p', so q would not send REQ to p, which is a
contradiction.

Case2 If process p times out and becomes a helper by itself, then either p sent REQ to all
lower-ranked processes and timed out waiting for help or p is ranked 1 and didn't send
any REQ before starting to provide help. From the discussion in R1 and R2, in both cases
all processes ranked lower than p must have crashed, otherwise they would have provided
help before p timed out.

P3: It's clear from the structure of the algorithm that process p receives MSG only
from the broadcaster or some helper q, where q < p.

Case 1 If process p receives MSG from the broadcaster, the broadcaster must have sent
MSG to all processes ranked higher than p because MSG's are sent to processes in
decreasing order by rank.

Case 2 If process p receives MSG from some helper q, where q < p, q either timed out
and became a helper by itself or received REQ from some process p’≥ p+1 (the upper
bound of the loop in line (3) implies q would not send MSG to p if p’ ≤ p). If q timed out
and became a helper itself, it’s clear from the structure of the algorithm that q would not
send any MSG, a contradiction. If q received REQ from some process p’≥ p+1, q must
have sent MSG to all processes ranked between p and p’ because MSG's are sent to
processes in decreasing order by rank. Since a process sends REQ only when it received
MSG but timed out waiting for DLV, p’ must have received MSG before sending the
REQ. If p’ received MSG from the broadcaster, MSG must have been sent to all
processes ranked higher than p’ as proved in Case 1. If p’ received MSG from some
helper that is different from q, following the same procedure as described above, we can
prove (if p’ < N-1) that process p’’≥ p’+1 also received MSG.

Thus, by induction, if a process p receives MSG, then MSG has been sent to all processed
ranked higher than p.

P4: Each process sends REQ only to lower-ranked processes, so it's clear that if
process p receives REQ from some process q, q is ranked higher than p. And if process p

9

didn’t receive MSG from any process before receiving this REQ, from the discussion in
R1 and R2, processes ranked between p and q either crashed or didn’t receive MSG,
otherwise they would have asked p for help and p would have sent DLV to q in time to
prevent q from timing out and sending REQ to p.

P5: It’s clear from the structure of the algorithm that a process p receives DLV only
from lower-ranked processes, either the broadcaster or some helper.

Case 1 If process p receives DLV from the broadcaster b, then b sent MSG to all
processes before sending that DLV. DLV’s are sent in increasing order by rank, so the
broadcaster sent DLV to all processes ranked lower than p, so all correct processes ranked
lower than p have delivered or will deliver m.

Case 2 If process p receives DLV from some helper q, by P2, processes ranked lower
than q have crashed. If q received MSG before executing the help procedure, by P3, MSG
had been sent to all processes ranked higher q. If q didn’t receive MSG, q must have
received REQ from some process p’. Since a process sends REQ only when it received
MSG but timed out waiting for DLV, p’ received MSG before sending the REQ. By P3,
MSG had been sent to all processes ranked higher than p’, and it's clear from the structure
of the algorithm that q would send MSG to all processes ranked between q and p’ before
sending any DLV. Thus MSG must have been sent to all correct processes. Note that
helper q sends all messages in the same order as the broadcaster. DLV must have been
sent to all correct processes ranked between q and p before being sent to p. By P1, all
correct processes ranked between q and p, including q, eventually deliver the message.
Thus, all correct processes ranked lower than p have delivered or will deliver the
message.

4. Correctness of UTRB4
We now prove the correctness of algorithm UTRB4.

Theorem: Algorithm UTRB4 satisfies properties B1-B4.

Proof:
Validity: Assume that the broadcaster b is correct. It sends MSG at real time tb to all
other processes, and DLV by time tb+τ to all other processes. Since the channels are
FIFO, all correct processes other than b will first receive MSG and then receive DLV at
most δ+τ time units later, which is the smallest value of Tm(p) for all p ∈ PID\{b}. Thus,
every correct process other than b delivers the message m without timing out while
waiting for DLV from b. Clearly, b delivers m.

Integrity: Clear from the structure of the algorithm and the assumptions about the
network.

 ∆b-Timeliness: Assume that totally f processes, including the broadcaster, crash during
an execution of the protocol. From the discussion in section 3, we know that the time

10

when all correct processes deliver the message depends on the rank of the first correct
process that received MSG or REQ. The worst case for the time complexity occurs when
the broadcaster crashes immediately after sending MSG to the process ranked N-1 and the
processes ranked 1..f-1 crash before they can provide help. In the worst case, it takes δ
time units for the MSG sent by the broadcaster to arrive at the process ranked N-1, and
this process waits until it times out after sending REQ to each process ranked 1..f-1,
which takes time Tm(N-1)+Σj=1..f-1Tr(N-1-j). Then it either delivers by itself (if N-f =1) or
asks the process ranked f for help and delivers on receiving DLV from that process. When
N-f >2, process ranked f needs to help processes ranked between f and N-1 by sending
MSG before sending any DLV.

Summarizing the above, we see that if f processes crash then any message
broadcast at time t cannot be delivered after time t+∆b, where:

If N-f = 1 then ∆b = δ + Tm(N-1)
Else if N-f =2 then ∆b =δ + Tm(N-1) +Σj=1..f-1Tr(N-1-j)+2δ
Else ∆b =δ + Tm(N-1) +Σj=1..f-1Tr(N-1-j)+ 2δ + τ

Uniform Agreement: This requirement is trivially satisfied if no process ever delivers a
message. Suppose some process d delivers a message m. Note that d either delivered the
message itself without receiving DLV, or received a DLV sent by another process p. By
Integrity, m was broadcast by some process b. We need to show that all correct processes
eventually deliver m. For contradiction, let q be a correct process that never delivers m.

Case 1: d delivered the message itself without receiving DLV. Then either d is b or d has
received MSG or REQ before this delivery.
Case 1.1: d is b. i.e. d is the broadcaster. d must have sent MSG and DLV to all

other processes before this self-delivery, so all correct processes receive
MSG and DLV, thus eventually deliver m, including q, a contradiction.

Case 1.2: d received MSG before this delivery.
If rank (d, m.src) = rank (q, m.src), then d = q, so q delivered m, a
contradiction.

If rank (d, m.src) < rank (q, m.src), by P3, MSG must have also been sent
to q. Since q is correct, by P1, q eventually delivers m, a contradiction.

If rank (d, m.src) > rank (q, m.src), d must have sent REQ messages to all
processes ranked lower than d before this self-delivery, so q must have
received REQ from d. By P1, q eventually delivers m, a contradiction.

Case 1.3: d received REQ but didn’t receive MSG before this delivery.
If rank (d, m.src) = rank (q, m.src), then d = q, so q delivered m, a
contradiction.

11

If rank (d, m.src) < rank (q, m.src). Since d sent DLV messages to all
processes ranked higher than d before this self-delivery, q received DLV
and thus delivered m, a contradiction.

If rank (d, m.src) > rank (q, m.src), by P2, all processes ranked lower than
d have crashed, including q, a contradiction.

Case 2: d received a DLV sent by another process p. It’s clear from the structure of the
algorithm that a process can only receive DLV from lower-ranked processes, so rank (p,
m.src) < rank (d, m.src).
Case 2.1: p is b. p must have sent MSG to all processes before sending DLV to d,

so all correct processes receive MSG. By P1, all correct processes
eventually deliver the message m, including q, a contradiction.

Case 2.2: p is a helper (i.e. p≠ b) and rank (q, m.src) < rank (p, m.src) < rank (d,
m.src). By P2, q must have crashed, a contradiction.

Case 2.3: p is a helper and rank (p, m.src) ≤ rank (q, m.src) < rank (d, m.src). Since
q is correct, by P5, q delivers m, a contradiction.

Case 2.4: p is a helper and rank (p, m.src) < rank (d, m.src) ≤ rank (q, m.src). Before
providing help, p either timed out without receiving REQ from any
process or received a REQ sent by some process r.

Case 2.4.1: p timed out without receiving REQ from any process.
In this case, p must have received MSG before providing help. By P3,
MSG must have been sent to all processes ranked higher than p, including
q. Since q is correct, by P1, q eventually delivers m, a contradiction.

Case 2.4.2: p received REQ from r and rank (r, m.src) ≤ rank (q, m.src).
r must have received MSG before sending the REQ message. By P3, MSG
was sent to all processes ranked higher than r, including q. Since q is
correct, by P1, q eventually delivers m, a contradiction.

Case 2.4.3: p received REQ from r and rank(r, m.src) > rank (q, m.src).
By R1 and R2, p didn't receive MSG, otherwise p would time out earlier
than r, as discussed in Case 2.4.1. By P4, processes ranked between p and
r either crashed or didn't receive MSG. So before sending DLV to any
process, p must have sent MSG to all processes ranked between p and r,
including q, so q received MSG. By P1, q eventually delivers m, a
contradiction.

5. Message Complexity of UTRB4
Assume that including the broadcaster (ranked 0), totally f processes crash during an

execution of the protocol. The following properties are useful in the analysis of the
message complexity of UTRB4.

12

MP1 A process can only receive MSG and DLV from lower-ranked processes and REQ
from higher-ranked ones.
MP2 A process sends REQ messages only if it did not receive DLV after receiving
MSG, and only to those processes ranked between itself and the sender of the MSG it
received.
MP3 DLV is sent to each process at most once.
MP4 Each correct process receives MSG and REQ each at most once.

Proofs:
MP1, MP2: Clear from the structure of the algorithm.

MP3: Proof by contradiction. Suppose two DLV messages are sent to some process p,
then the second DLV must be sent by some helper q because both the broadcaster and
helpers send DLV at most once to each other process. By MP1, q is ranked lower than p.
Clearly q was alive when p received the first DLV. Let s be the process that sent the first
DLV to p; as argued above, s≠ q.

Case 1 If s is ranked higher than q, then s is a helper. By P2, q had crashed by the time s
sent DLV to p, which is a contradiction.

Case 2 If s is ranked lower than q and s sent DLV to q before sending DLV to p (because
DLV can only be sent in increasing order by rank), then q would start to provide help only
if q received REQ from some correct process ranked higher than p. It’s clear from the
structure of the algorithm that q doesn’t send DLV to process p in this case. That’s a
contradiction.

Case 3 If s is ranked lower than q and s didn’t send DLV to q before sending DLV to p,
then s is a helper and clearly s received MSG before receiving REQ from some process r
that is ranked higher than q. Since MSG’s are sent to processes in decreasing order by
rank, q also received MSG. Since q was still alive at that time, from the discussion in R1
and R2, we know that q would time out and send REQ to s earlier than r. That’s a
contradiction.

MP4: On receiving REQ, a correct process helps all correct processes deliver the
message. By R1 and R2, a helper has enough time to finish the help procedure before the
next REQ is sent. By MP2, this helper receives REQ at most once.

Both the broadcaster and helpers send MSG’s to other processes at most once. A
helper q sends MSG only when it received REQ from some process p but didn’t receive
MSG before, and to processes ranked between q and p. By P4, all correct processes in
this range didn’t receive MSG before. So a correct process receives MSG at most once.

5.1 Computation of Message Complexity
Worst Case: Note that in the case of no failures, totally 2(N-1) messages are sent per
broadcast. By MP1 and MP2, for a process ranked i, the numbers of REQ’s it sends and

13

extra MSG’s that are sent to it sum to at most i-1. By MP3, at most N-1 DLV’s are sent in
this system.

In the worst case, the f lower-ranked processes crash one by one in increasing order by
rank and just at the time that causes the maximum number of extra messages. Thus the
process of rank f (note that the broadcaster has rank 0) is the first correct process that
takes the role of the initial broadcaster. It sends f-1 REQ messages before becoming a
helper by itself.

Totally, the maximum number of messages is:
2(N-1)+1+2+...+(f-1) =2(N-1)+ f(f-1)/2;

Best Case:
Case f < N: The best case occurs when the process of ranked 0 or 1 is correct. It times out
first after receiving MSG from the initial broadcaster and becomes a helper immediately.
In this case, total number of messages that are sent in the system is the same as the case of
no failures, that is: 2(N-1).

Case f = N: The best case occurs when all processes fail at the start of execution, in
which case the number of messages sent is 0.

5.2 Message Complexity assuming Correlated Failures
We would like to argue that in practice, the situation as described in the worst case

seldom happens. If multiple processes crash, they are likely to crash at about the same
time. We analyze the message complexity under this assumption.
Worst Case:

The process of rank f is the first correct process that takes the role of the initial
broadcaster, and all f lower-ranked processes crashed immediately after the broadcaster
sent DLV to the process of rank f-1. Maximum number of messages here is: 2(N-1)+ f-1.

Best Case:
Case f < N: The best case occurs when the process of rank 0 or 1 is correct. Total number
of messages that are sent here is the same as the case of no failures, that is: 2(N-1).

Case f = N: The best case occurs when all processes fail at the start of execution, in
which case the number of messages sent is 0.

Average Case:
We can see that under this restriction, the number of extra messages only depends on

the number of REQ messages sent by the first correct process that eventually takes the
role of the initial broadcaster. If this first correct process has rank x, then the total number
of extra messages is x-1. Consider all possible combinations of the f crashed processes,
we get the average number of messages that are sent is: 2N+Σ(x-1)(f-x

n-x-1
)/(

n
f), where x

ranges from 1 to f.

14

BIBLIOGRAPHY

[Babaoglu and Toueg] Ozalp Babaoglu and Sam Toueg, Non-Blocking Atomic
Commitment. Chapter 6 of Sape Mullender, editor, Distributed Systems, 2nd edition.
Addison-Wesley, 1993. An extended version appeared as: Ozalp Babaoglu and Sam
Toueg, Understanding Non-Blocking Atomic Commitment. University of Bologna,
Laboratory for Computer Science, Technical Report UBLCS-93-2, 1993.

