
Leader Election in Asynchronous Distributed Systems

Scott D. Stoller�

March 9, 2000

Abstract

In a previous paper, Garcia-Molina speci�es the leader election problem for syn-

chronous and asynchronous distributed systems with crash and link failures and gives

an elegant algorithm for each type of system. This paper points out a 
aw in Garcia-

Molina's speci�cation of leader election in asynchronous systems and proposes a new

speci�cation.

Index terms: leader election, group membership, asynchronous distributed systems,

crash failures

In a previous paper, Garcia-Molina speci�es the leader election problem for synchronous

and asynchronous distributed systems with crash and link failures and gives an elegant

algorithm for each type of system; the algorithm for asynchronous systems is called the

Invitation Algorithm [3]. The group communication system in Amoeba [5] uses the Invitation

Algorithm to recon�gure a group after a node crashes. In a recent textbook [1], Chow and

Johnson write: \We will examine the classic election algorithms of Garcia-Molina. Several

variations of election have been proposed, but the Garcia-Molina algorithm best de�nes and

handles the possible failures."

�Email: stoller@cs.indiana.edu Web: http://www.cs.indiana.edu/~stoller/ Address: Computer Science
Department, Indiana University, Bloomington, IN 47405, USA

1



Garcia-Molina's speci�cation of leader election in asynchronous systems is based on the

idea of groups: a group is a set of nodes that agree on a leader. To prohibit trivial algorithms,

Garcia-Molina's speci�cation requires, roughly, that if a set R of nodes can all communicate

with each other during an election, then at the end of the election, the nodes in R are in a

single group. However, Garcia-Molina's speci�cation is unintentionally strong: contrary to

his Theorem A4, the Invitation Algorithm does not satisfy it. Furthermore, Garcia-Molina's

speci�cation is undesirably strong for some systems: it sometimes forces nodes that cannot

directly communicate to be in the same group. These problems are not mentioned in [1].

This paper proposes a new speci�cation, which is satis�ed by the Invitation Algorithm and

never forces nodes that cannot directly communicate to be in the same group.

The Invitation Algorithm works roughly as follows; for details, see [3] or [1]. Each node

has a unique priority. Each node i maintains a variable status i containing its status, a

variable grpi identifying the group it is in, and a variable ldr i identifying the leader of that

group. A node's status is Normal except while the node is in the process of joining a new

group. Periodically, each node that is not the leader of a group calls a Timeout procedure

that checks whether the leader of its group is still alive, by sending a message to the leader

and waiting for a reply. If the node does not receive a reply within the timeout period, the

node invokes a Recovery procedure. The Recovery procedure puts node i into a singleton

group with node i as the leader. Periodically, each leader i calls a Check procedure, which

sends messages to every other node asking whether that node is a leader. If one or more

other nodes replies that it is a leader, node i pauses for a time inversely proportional to its

priority (this helps prevent multiple nodes from initiating elections concurrently) and then

calls a Merge procedure. The Merge procedure sends messages to all of the other leaders,

inviting them to join a new group with the inviting node as leader. When a leader i receives

an invitation, it forwards the invitation to the other members of its group. A node i that

receives an invitation (directly or indirectly), sends an accept message to the proposed leader

2



of the group. If i receives a reply to its accept message within some timeout period, then i

joins the new group; otherwise, i calls the recovery procedure described above.

Garcia-Molina gives two correctness requirements for leader election in asynchronous

systems. The �rst requirement, called Assertion 3, says that if two nodes are in the same

group, then they have the same leader; we express this requirement as follows:

Assertion 3. At all times, for all operational nodes i and j, if status i = Normal

and statusj = Normal and grpi = grpj, then ldr i = ldr j.

Note that Assertion 3 is satis�ed by algorithms that always leave each node in a singleton

group. To express that a good algorithm leaves the system in a state with a reasonably small

number of groups, Garcia-Molina proposes a second requirement, called Assertion 4. Two

nodes are connected in a time interval if all messages sent between them during that time

interval are delivered with bounded delay.

Assertion 4. Suppose there is a set R of nodes which are operational and pairwise

connected for the duration of an election. Suppose also that there is no superset

of R with this property. If no crashes occur during the election, then the election

leaves the system in a state in which there is a node i in R such that for every

node j in R, statusj = Normal and ldr j = i and grpj = grpi.

At �rst glance, Assertion 4 seems to allow nodes that are not connected to end up in

di�erent groups. Surprisingly, this is not always true. To see why, consider the system shown

in Figure 1. The number in each node indicates its priority; small numbers correspond to

high priorities. The edge between nodes 1 and 2 indicates that those nodes are connected.

Similarly, nodes 2 and 3 are connected, but nodes 1 and 3 are disconnected. Note that

Garcia-Molina explicitly considers non-transitive connectivity [3, page 52]. The dotted and

dashed lines indicate two sets R1 = f1; 2g and R2 = f2; 3g that meet the preconditions of

Assertion 4. Thus, Assertion 4 requires that nodes 1 and 2 end up in the same group, and

3



1
2

3

Figure 1: Scenario in which Assertion 4 requires disconnected nodes to be in the same group.

that nodes 2 and 3 end up in the same group, and hence that all three nodes end up in the

same group, even though nodes 1 and 3 are not connected.

The following scenario shows that the Invitation Algorithm does not satisfy Assertion

4, despite Theorem A4 in [3]. Consider a system consisting of nodes 1, 2, and 3. Initially,

all nodes are operational, and all pairs of nodes can communicate; also, all nodes are in the

same group, and node 1 is the leader. The following events occur:

1. Node 1 crashes.

2. Nodes 2 and 3 each call Timeout and then Recovery; each forms a singleton group.

3. Node 1 recovers, but communication between nodes 1 and 3 has been lost. Communi-

cation between all other pairs of nodes works normally.

4. Node 1 calls Recovery and then Check. Since nodes 1 and 2 can communicate, node 1

calls Merge.

The outcome is that nodes 1 and 2 are in one group, and node 3 is in a singleton group (node

3 sends an accept message to node 1 but does not receive a reply, so it calls Recovery). If

no more failures occur, these groups will not change. The set f2; 3g satis�es the hypotheses

on set R in Assertion 4, so Assertion 4 requires that node 2 have a node in f2; 3g as its

coordinator. Node 2 has node 1 as its coordinator, so Assertion 4 is violated.

Next, we propose a weaker requirement that never forces disconnected nodes to be in

the same group. Two nodes are disconnected in a time interval if all messages sent between

them during that time interval are lost. A system is stable in a time interval if, during

4



that interval, no crashes or recoveries occur and every pair of nodes is either connected or

disconnected.1 When a system is stable, its connectivity graph is the undirected graph whose

vertices correspond to the nodes of the computer system and with an edge between vertices

i and j i� nodes i and j are connected. A clique cover of a graph is a partition of that

graph's nodes into cliques (i.e., fully connected components). The predicate upi is true in a

state i� node i is operational in that state. For a relation E, let E� denote the re
exive and

transitive closure of E. The requirement is:

Assertion 40. For a given system, there exists a constant c such that if the

system is stable for a time interval of duration at least c, then by the end of

that interval, letting hV;Ei denote the system's connectivity graph, the system

reaches a state such that: (a) (8i 2 V : (status i = Normal) ^ up
ldr i

^ (grp
ldr i

=

grpi) ^ (hi; ldr ii 2 E�)), and (b) the number of groups is at most the size of a

minimum-sized clique cover of hV;Ei. Furthermore, the system remains in that

state as long as the system remains stable.

Assertion 40 allows the number of groups to equal the size of a minimum clique cover; this

ensures that disconnected nodes are never forced to be in the same group. Assertion 40 does

not force the number of groups to equal the size of a minimum-sized clique cover; this is

important, because we do not want leader election to be NP-hard (recall that computing a

minimum-sized clique cover is NP-complete [4]). When the connectivity graph is transitive,

Assertion 40 is equivalent to Assertion 4.

We sketch a proof that the Invitation Algorithm satis�es part (b) of Assertion 40; the

proof that it satis�es part (a) is straightforward. An independent set in a graph is a set S

of vertices such that no two vertices in S are connected by an edge. Under the hypotheses

of Assertion 40, when the Invitation Algorithm quiesces, the number of groups is at most

1This de�nition of stability is based on [2]. The de�nition of stability in [2] is stronger because it requires
transitive connectivity.

5



the size of a maximum-sized independent set in hV;Ei, because the leaders must form an

independent set, because if any two leaders were connected, one of them would call Merge.

Let S be an independent set in hV;Ei. Note that, in every clique cover for hV;Ei, each

element of S must be in a di�erent clique. Thus, the size of a minimum-sized clique cover

for hV;Ei is greater than or equal to the size of a maximum-sized independent set in hV;Ei.

References

[1] Randy Chow and Theodore Johnson. Distributed Operating Systems and Algorithms.

Addison Wesley, 1997.

[2] Flaviu Cristian and Frank Schmuck. Agreeing on processor group membership in asyn-

chronous distributed systems. Technical Report CSE95-428, University of California, San

Diego, 1995.

[3] Hector Garcia-Molina. Elections in a distributed computing system. IEEE Transactions

on Computers, C-31(1):47{59, January 1982.

[4] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[5] M. F. Kaashoek and A. S. Tanenbaum. Group communication in the Amoeba distributed

operating system. In Proc. IEEE 11th International Conference on Distributed Comput-

ing Systems (ICDCS), pages 222{230. IEEE Computer Society Press, 1991.

6


