Leader Election in Asynchronous Distributed Systems

Scott D. Stoller*

March 9, 2000

Abstract

In a previous paper, Garcia-Molina specifies the leader election problem for syn-
chronous and asynchronous distributed systems with crash and link failures and gives
an elegant algorithm for each type of system. This paper points out a flaw in Garcia-
Molina’s specification of leader election in asynchronous systems and proposes a new

specification.

Index terms: leader election, group membership, asynchronous distributed systems,

crash failures

In a previous paper, Garcia-Molina specifies the leader election problem for synchronous
and asynchronous distributed systems with crash and link failures and gives an elegant
algorithm for each type of system; the algorithm for asynchronous systems is called the
Invitation Algorithm [3]. The group communication system in Amoeba [5] uses the Invitation
Algorithm to reconfigure a group after a node crashes. In a recent textbook [1], Chow and
Johnson write: “We will examine the classic election algorithms of Garcia-Molina. Several
variations of election have been proposed, but the Garcia-Molina algorithm best defines and

handles the possible failures.”

*Email: stoller@cs.indiana.edu Web: http://www.cs.indiana.edu/"stoller/ Address: Computer Science
Department, Indiana University, Bloomington, IN 47405, USA



Garcia-Molina’s specification of leader election in asynchronous systems is based on the
idea of groups: a group is a set of nodes that agree on a leader. To prohibit trivial algorithms,
Garcia-Molina’s specification requires, roughly, that if a set R of nodes can all communicate
with each other during an election, then at the end of the election, the nodes in R are in a
single group. However, Garcia-Molina’s specification is unintentionally strong: contrary to
his Theorem A4, the Invitation Algorithm does not satisfy it. Furthermore, Garcia-Molina’s
specification is undesirably strong for some systems: it sometimes forces nodes that cannot
directly communicate to be in the same group. These problems are not mentioned in [1].
This paper proposes a new specification, which is satisfied by the Invitation Algorithm and
never forces nodes that cannot directly communicate to be in the same group.

The Invitation Algorithm works roughly as follows; for details, see [3] or [1]. Each node
has a unique priority. Each node ¢ maintains a variable status; containing its status, a
variable grp, identifying the group it is in, and a variable [dr; identifying the leader of that
group. A node’s status is Normal except while the node is in the process of joining a new
group. Periodically, each node that is not the leader of a group calls a Timeout procedure
that checks whether the leader of its group is still alive, by sending a message to the leader
and waiting for a reply. If the node does not receive a reply within the timeout period, the
node invokes a Recovery procedure. The Recovery procedure puts node ¢ into a singleton
group with node ¢ as the leader. Periodically, each leader i calls a Check procedure, which
sends messages to every other node asking whether that node is a leader. If one or more
other nodes replies that it is a leader, node 7 pauses for a time inversely proportional to its
priority (this helps prevent multiple nodes from initiating elections concurrently) and then
calls a Merge procedure. The Merge procedure sends messages to all of the other leaders,
inviting them to join a new group with the inviting node as leader. When a leader i receives
an invitation, it forwards the invitation to the other members of its group. A node 7 that

receives an invitation (directly or indirectly), sends an accept message to the proposed leader



of the group. If 7 receives a reply to its accept message within some timeout period, then

joins the new group; otherwise, ¢ calls the recovery procedure described above.
Garcia-Molina gives two correctness requirements for leader election in asynchronous

systems. The first requirement, called Assertion 3, says that if two nodes are in the same

group, then they have the same leader; we express this requirement as follows:

Assertion 3. At all times, for all operational nodes ¢ and j, if status; = Normal

and status; = Normal and grp; = grp;, then ldr; = ldr;.

Note that Assertion 3 is satisfied by algorithms that always leave each node in a singleton
group. To express that a good algorithm leaves the system in a state with a reasonably small
number of groups, Garcia-Molina proposes a second requirement, called Assertion 4. Two
nodes are connected in a time interval if all messages sent between them during that time

interval are delivered with bounded delay.

Assertion 4. Suppose there is a set R of nodes which are operational and pairwise
connected for the duration of an election. Suppose also that there is no superset
of R with this property. If no crashes occur during the election, then the election
leaves the system in a state in which there is a node 7 in R such that for every

node j in R, status; = Normal and ldr; =i and grp; = grp,.

At first glance, Assertion 4 seems to allow nodes that are not connected to end up in
different groups. Surprisingly, this is not always true. To see why, consider the system shown
in Figure 1. The number in each node indicates its priority; small numbers correspond to
high priorities. The edge between nodes 1 and 2 indicates that those nodes are connected.
Similarly, nodes 2 and 3 are connected, but nodes 1 and 3 are disconnected. Note that
Garcia-Molina explicitly considers non-transitive connectivity [3, page 52]. The dotted and
dashed lines indicate two sets Ry = {1,2} and Ry = {2,3} that meet the preconditions of

Assertion 4. Thus, Assertion 4 requires that nodes 1 and 2 end up in the same group, and



Figure 1: Scenario in which Assertion 4 requires disconnected nodes to be in the same group.

that nodes 2 and 3 end up in the same group, and hence that all three nodes end up in the
same group, even though nodes 1 and 3 are not connected.

The following scenario shows that the Invitation Algorithm does not satisfy Assertion
4, despite Theorem A4 in [3]. Consider a system consisting of nodes 1, 2, and 3. Initially,
all nodes are operational, and all pairs of nodes can communicate; also, all nodes are in the

same group, and node 1 is the leader. The following events occur:

1. Node 1 crashes.
2. Nodes 2 and 3 each call Timeout and then Recovery; each forms a singleton group.

3. Node 1 recovers, but communication between nodes 1 and 3 has been lost. Communi-

cation between all other pairs of nodes works normally.

4. Node 1 calls Recovery and then Check. Since nodes 1 and 2 can communicate, node 1

calls Merge.

The outcome is that nodes 1 and 2 are in one group, and node 3 is in a singleton group (node
3 sends an accept message to node 1 but does not receive a reply, so it calls Recovery). If
no more failures occur, these groups will not change. The set {2, 3} satisfies the hypotheses
on set R in Assertion 4, so Assertion 4 requires that node 2 have a node in {2,3} as its
coordinator. Node 2 has node 1 as its coordinator, so Assertion 4 is violated.

Next, we propose a weaker requirement that never forces disconnected nodes to be in
the same group. Two nodes are disconnected in a time interval if all messages sent between

them during that time interval are lost. A system is stable in a time interval if, during

4



that interval, no crashes or recoveries occur and every pair of nodes is either connected or
disconnected.! When a system is stable, its connectivity graph is the undirected graph whose
vertices correspond to the nodes of the computer system and with an edge between vertices
¢ and j iff nodes ¢ and j are connected. A clique cover of a graph is a partition of that
graph’s nodes into cliques (i.e., fully connected components). The predicate up, is true in a
state iff node 7 is operational in that state. For a relation E, let £* denote the reflexive and

transitive closure of E. The requirement is:

Assertion 4. For a given system, there exists a constant ¢ such that if the
system is stable for a time interval of duration at least ¢, then by the end of
that interval, letting (V, E') denote the system’s connectivity graph, the system
reaches a state such that: (a) (Vi € V' : (status; = Normal) A upy,.. A (grp,, =
grp;) A ((i,ldr;) € E*)), and (b) the number of groups is at most the size of a
minimum-sized clique cover of (V, E). Furthermore, the system remains in that

state as long as the system remains stable.

Assertion 4’ allows the number of groups to equal the size of a minimum clique cover; this
ensures that disconnected nodes are never forced to be in the same group. Assertion 4’ does
not force the number of groups to equal the size of a minimum-sized clique cover; this is
important, because we do not want leader election to be NP-hard (recall that computing a
minimum-sized clique cover is NP-complete [4]). When the connectivity graph is transitive,
Assertion 4’ is equivalent to Assertion 4.

We sketch a proof that the Invitation Algorithm satisfies part (b) of Assertion 4'; the
proof that it satisfies part (a) is straightforward. An independent set in a graph is a set S
of vertices such that no two vertices in S are connected by an edge. Under the hypotheses

of Assertion 4', when the Invitation Algorithm quiesces, the number of groups is at most

'This definition of stability is based on [2]. The definition of stability in [2] is stronger because it requires
transitive connectivity.



the size of a maximum-sized independent set in (V, E'), because the leaders must form an
independent set, because if any two leaders were connected, one of them would call Merge.
Let S be an independent set in (V) E). Note that, in every clique cover for (V| E), each
element of S must be in a different clique. Thus, the size of a minimum-sized clique cover

for (V, E) is greater than or equal to the size of a maximum-sized independent set in (V) E).

References

[1] Randy Chow and Theodore Johnson. Distributed Operating Systems and Algorithms.
Addison Wesley, 1997.

[2] Flaviu Cristian and Frank Schmuck. Agreeing on processor group membership in asyn-
chronous distributed systems. Technical Report CSE95-428, University of California, San

Diego, 1995.

[3] Hector Garcia-Molina. Elections in a distributed computing system. IEEE Transactions

on Computers, C-31(1):47-59, January 1982.

[4] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[5] M. F. Kaashoek and A. S. Tanenbaum. Group communication in the Amoeba distributed
operating system. In Proc. IEEE 11th International Conference on Distributed Comput-

ing Systems (ICDCS), pages 222-230. IEEE Computer Society Press, 1991.



