
Using Statistical Model Checking for
Measuring Systems?

Radu Grosu1, Doron Peled2, C. R. Ramakrishnan3, Scott A. Smolka3,
Scott D. Stoller3, and Junxing Yang3

1Vienna University of Technology
2Department of Computer Science, Bar Ilan University

3Department of Computer Science, Stony Brook University

Abstract. State spaces represent the way a system evolves through its
different possible executions. Automatic verification techniques are used
to check whether the system satisfies certain properties, expressed using
automata or logic-based formalisms. This provides a Boolean indication
of the system’s fitness. It is sometimes desirable to obtain other indi-
cations, measuring e.g., duration, energy or probability. Certain mea-
surements are inherently harder than others. This can be explained by
appealing to the difference in complexity of checking CTL and LTL prop-
erties. While the former can be done in time linear in the size of the
property, the latter is PSPACE in the size of the property; hence practi-
cal algorithms take exponential time. While the CTL-type of properties
measure specifications that are based on adjacency of states (up to a fix-
point calculation), LTL properties have the flavor of expecting some mul-
tiple complicated requirements from each execution sequence. In order to
quickly measure LTL-style properties from a structure, we use a form of
statistical model checking; we exploit the fact that LTL-style properties
on a path behave like CTL-style properties on a structure. We then use
CTL-based measuring on paths, and generalize the measurement results
to the full structure using optimal Monte Carlo estimation techniques.
To experimentally validate our framework, we present measurements for
a flocking model of bird-like agents.

1 Introduction

Model checking aims to check that a model of a system satisfies a given speci-
fication. Recent results [1, 7, 9] show how to extend model checking into a more
general method for measuring quantitative properties of a given system. Mea-
surements can provide information about time, energy, the probability of an
event occurrence, etc. In this paper, we explore the use of statistical model
checking techniques for measuring quantitative properties of systems. We illus-
trate the power of these techniques for measuring the aggregate behavior of a
flock of bird-like agents.

? The 2nd author is supported by ISF grant “Efficient Synthesis Method of Control
for Concurrent Systems”, award 126/12.

Techniques for the verification of quantitative properties have always relied
on the ability to measure the quantities of interest: clock values in real-time
systems, probabilities in stochastic systems, etc. There have been several efforts
to apply similar techniques for measuring more general quantitative properties
based on the operations needed to compute the measurements. For instance,
[1] addresses the problems associated with measurements involving operations
such as limit average, maximum and discounted sum; and [7] provides a logic
for expressing a generalized class of quantitative properties.

In [10], we showed a neighborhood-based measurement scheme that is based
on CTL-like specifications: creating a set of nodes in a graph corresponding to
each state in the state space, and performing a measurement in a distributed
manner propagating values from one node to its neighbors. When performing
real-valued measurements, that scheme was limited to finite structures (weighted
automata). The neighborhood-based measurement has the characteristic of CTL
specification in the sense that the measurement is based on values that can
be, temporarily or permanently, assigned to states. When the specification is
sequence-based (or path-based), as in the logic LTL, or similar specification
formalism that deal with quantitative real-time values that depend on the exe-
cution path, this technique does not work: the value of a state can depend on
some complicated information related to the path through which the state was
reached; states with different histories can have different values, and, to make
things more complicated, this is affected from the rest of the execution yet to
come. The difference is similar to the difference between CTL and LTL model
checking, e.g., see [6] and [8]. While in CTL, we can put a temporary Boolean
value per state while calculating subformulas, LTL model checking is done by
providing some product of the state space with an automaton representing some
essential summary of the sequence so far.

Since we are interested here in sequence based measuring, we make the fol-
lowing observation: on a single sequence, the neighborhood-based technique is
the same as for a structure. We thus make our measurement sequence by se-
quence. We are limited in doing so by the fact that there may be infinitely many
sequences and also the sequences themselves can be infinite. Hence, we measure
finitely many sequences, using statistical model checking Monte Carlo technique.
Moreover, we base our measurements on finite prefixes of executions.

While traditional model checking explores the state space exhaustively, sta-
tistical model-checking techniques sample from the state space, ensuring that
sufficient samples are drawn, in order to verify a given property with a de-
sired confidence level and error margin. Given a stochastic system S, a Boolean
(temporal) property φ, and a real-valued parameter θ, statistical model check-
ing determines whether pr(S |= φ) ≥ θ [14, 22]. This paper explores the use of
Monte Carlo techniques for simultaneously measuring Boolean and quantitative
properties, where the quantitative measures are dependent on the Boolean part.

Technical Approach and Contributions.

1. Specification of measurement computations. Following [10], we describe a
specification formalism closely resembling a synchronous dataflow language

for measurement computation. At a high level, we associate a set of measure-
ment variables with each state in the state space. We specify a mechanism for
computing the values of variables at a state, based on the values of variables
at the state’s neighbors. The formalism is general enough to encode bounded
model checkers (MCs) [13, 16] for Boolean temporal properties expressed in
CTL or LTL. The advantage of the proposed measurement specification and
related MC algorithm is in its simplicity and efficiency. It allows one to
assemble the measurement specification from subproperties, just as CTL
combines its temporal specification from its subformulas. The synchronous
dataflow framework can be viewed as a generalization of testers proposed
in [18]. Section 3 describes the specification formalism in greater detail.

2. Model measurement using Monte Carlo techniques. The computational mech-
anism described by the synchronous dataflow formalism associates a set of
measures with each system execution (which may be trace or tree, depend-
ing on whether the property is linear or branching-time). The quantity of
interest at a higher level may be an aggregate property covering the set of
possible system executions (e.g., the average over possible runs). To this end,
we develop a Monte Carlo technique (MCT) for generating a suitable set of
samples (traces or trees) so that aggregate quantities can be computed to
a desired confidence bound. The novelty of our MCT is that it jointly com-
putes Boolean (satisfaction) and real (e.g., mean) values, using information
from both strands to improve efficiency. Section 4 describes our MCT.

3. An integrated model of flocking. A number of different flocking models (FMs)
have been developed to describe and explain the flocking behavior of birds [19,
21, 15, 4, 3]. The FMs generally consider each bird as an agent, where all
agents are governed by the same control law. Certain input variables in the
law executed by each agent are based on the attributes (e.g., velocity, po-
sition) of other agents in the flock. Such FMs are useful in understanding
how emergent behaviors of the collection of agents arise from decisions made
individually by each agent. We consider an integrated FM that uses a control
law comprising a variety of terms from the existing literature. We consider
quantitative objectives for the flock’s behavior (e.g., velocity matching, the
extent to which the velocities of agents are aligned), given in our measure-
ment-specification formalism. The results of the measurement can be used to
synthesize parameters (e.g., weights of different terms in the flocking control
law) that optimize the objectives. Section 2 describes the FM in detail.

Section 5 reports preliminary results for measuring the velocity-matching objec-
tive of the flocking model. The results provide insight into the effectiveness of
two approaches to controlling the accuracy of the Monte Carlo estimation.

2 Flocking

We illustrate our method with measurements of the behavior of a flock of agents.
The flocking model is biologically inspired and may be useful in the design of

controllers for unmanned vehicles. In our flocking model, autonomous agents
move in 2-dimensional space; the generalization to 3 dimensions is straightfor-
ward. Each agent’s motion is determined by a locally executed control law. Every
agent runs the same control law. Each agent has sensors that report the positions
and velocities of all agents. The control law takes that information as input and
returns an acceleration (i.e., change in velocity) for the agent.

Our broader goal is to develop methods for the design of control laws that
cause the flock’s behavior to satisfy given Boolean and quantitative objectives.
An example of a Boolean objective is collision avoidance, i.e., that agents al-
ways maintain a specified minimum separation from each other. An example of
a quantitative objective is velocity matching (VM), i.e., that agents gradually
match velocities with each other, so the entire flock moves together. Note that
this is a quantitative objective when the goal is to maximize VM, and a Boolean
objective when the goal is to achieve VM above a specified threshold.

The control law typically contains several terms, each aimed at satisfying one
or more objectives, and numerous parameters, including a weight for each term.
Our broader goal is to develop methods that find values for the parameters
that best achieve the specified Boolean and quantitative objectives. The two
key components of the design method are an optimization framework and a
measurement framework, used to measure how well the behavior of a flock with
a given control law satisfies specified objectives.

There is some existing work on using genetic algorithms to adjust parameters
in flocking control laws [2, 20]. They consider relatively limited and specific forms
for the flocking control law and the objectives; in particular, the objective is
expressed as a fitness function that is simply hand coded in a programming
language. In contrast, our work aims to be more general and flexible, both in
terms of considering a larger variety of terms in the flocking control law, including
the terms in the flocking models in [19, 21, 15, 4, 3], and considering more varied
and complex objectives, expressed more abstractly in a measurement framework.

Running Example. To illustrate the ideas in this paper, we consider a control
law with a few selected terms. Let x(t) and v(t) be the vector of 2-dimensional
positions and velocities, respectively, of all agents at time t. Let xi(t) and vi(t) be
the position and velocity, respectively, of agent i at time t. Let k be the number
of agents. The equation of motion and the control law are given in Figure 1. The
acceleration is a weighted sum of the terms described next, with the speed limit
function spdLim (formal definition omitted) applied to the sum to ensure that
the magnitude of the velocity does not exceed vmax = 2.

The velocity-averaging term va, adopted from Cucker and Dong’s model [3], is
designed to align the velocities of all agents, by gradually shifting them towards
the flock’s average velocity. The strength function φ specifies the strength of the
velocity-matching influence between two agents as a function of the distance
between them; H, β, ..., are parameters of the model.

The collision avoidance term ca, adopted from Cucker and Dong’s model [3],
is designed such that the separation between every pair of agents is always larger
than d2ca . The velocity matching function VM (called alignment measure in [3])
measures the alignment the velocities of all agents (smaller values indicate better

ẋi(t) = vi(t) (1)

v̇i(t) = spdLim(wva · vai(t) + wca · cai(t) + wctr · ctr i(t) + wrpl · rpl i(t)) (2)

vai(t) =

k∑
j=1

φ(||xi(t)− xj(t)||)(vj(t)− vi(t)) (3)

φ(r) =
H

(1 + r2)β
(4)

cai(t) = VM (t)
∑
j 6=i

f(||xi(t)− xj(t)||2)(xi(t)− xj(t)) (5)

VM (t) = (
1

k

∑
i>j

||vi(t)− vj(t)||2)
1
2 (6)

f(r) = (r − dca)−2 (7)

ctr i(t) =
||vi(t)||

||relCtr i(t)||
· relCtr i(t)− vi(t) (8)

nborsi(t, d) = {j | j 6= i ∧ ||xj(t)− xi(t)|| ≤ d} (9)

relCtr i(t) =

 1

|nborsi(t)|
∑

j∈nborsi(t,dctr)

xj(t)

− xi(t) (10)

rpl i(t) =
||vi||

||offset i(t)||
· offset i(t)− vi (11)

offset i(t) =
1

|nborsi(t, drpl)|
∑

j∈nborsi(t,drpl)

(xj − xi) (12)

Fig. 1. Flocking model

alignment). The repelling function f specifies the strength of the collision-avoi-
dance influence between two agents as a function of the distance between them.

The centering term ctr , adopted from Reynolds’ model [19], causes agents
to form cohesive groups (sub-flocks), by shifting each agent’s velocity to point
towards the centroid (i.e., average) of the positions of its dctr -neighbors, where an
agent’s d-neighbors are the agents within distance d of the agent. The function
nborsi(t, d) returns the set of indices of d-neighbors of agent i at time t. The
function relCtr i(t) returns the relative position (i.e., relative to agent i’s current
position) of the centroid of its dctr -neighbors at time t. The definition of ctr i(t)
applies a scaling factor to relCtr i(t) that yields a vector with the same magnitude
as vi(t) and pointing in the same direction as relCtr i(t).

The repulsion term, adopted from Reynolds’ model [19], causes agents to
move away from their drpl -neighbors. The function offset i(t) returns the average
of the offsets (i.e., differences in position) between agent i and its drpl -neighbors.
The scaling factor applied to the offset in the definition of rpl i(t) is similar to
the scaling factor used in the centering term.

The initial state is chosen stochastically. In our experiments, agents’ initial
positions are chosen uniformly at random in the box [0..k, 0..k], and their initial
velocities are chosen uniformly at random in [0..1, 0..1]. In more detailed models,
stochastic environmental factors (e.g., wind) can be modeled with probabilistic
transitions. In this case, the simulator would select from the corresponding prob-
ability distribution when the transition is taken.

Our experiments use the following parameter values: k = 10, wva = 0.6, wca =
0.1, wctr = 0.2, wrpl = 0.1, H = 0.1, β = 1/3, d2ca = 0.1, dctr = 5, drpl = 3. We
simulate the behavior of the flock using discrete-time simulations with a time
step of 1 second and a duration of 50 seconds of simulation time. We chose this
duration since we experimentally observed that the velocity-matching objective
function stabilizes within 50 steps (a larger value had little effect).

Objective: Velocity Matching. We consider velocity matching as an objective for
the running example. We use the velocity-matching function VM in equation (6)
to measure how well the velocities are aligned in a state. Note that smaller values
indicate better alignment. We consider two aspects of how well velocity matching
is achieved: (1) how long it takes for VM to fall below a specified threshold θ
and remain below θ for the rest of the execution; we measure this time as a
fraction of the duration of the simulated execution, so the value is between 0
and 1; and (2) the average value of VM after it falls below the threshold θ and
remains there; we measure this as a fraction of the maximum possible value of
VM , so the value is also between 0 and 1. To combine these two quantities into
a single fitness measure suitable for use in an optimization framework, we take
a linear combination of them, with weights 0.01 and 0.99, respectively, so that
these two quantities are of the same scale. In Section 3, we describe how to
formally compute this linear combination using an LTL-style measurement.

3 Neighborhood-based and Sequence-based
Measurements

In this section, we provide a formalism for expressing neighborhood-based mea-
surements. Our formalism is state-based: each state is assumed to contain a
tuple of constants and measurement variables. The variables are initiated, then,
at each clock tick, the states, synchronously, exchange their values with their
neighbor states, and apply an update function to obtain a new measurement.
An expression over the state variables is assigned to each state, and its value
is calculated at each tick. The value of the expression must decrease with each
update, so that it bounds the amount of steps that can be performed by each
state.

Definition 1. A state space S is a triple 〈S, s0, R〉 where

S is a finite set of states.
s0 ∈ S is the initial state.
R ⊆ S × S is a relation over S, where if (s, s′) ∈ R, then s′ is the successor of
s.

Let R•(s) = {q|R(s, q)} be the successors of s, •R(s) = {q|R(q, s)} its predeces-
sors, and N(s) = •R(s)∪R•(s). Let n(s) = |N(s)| be the number of neighbors
of S. We assume that the size z of the state space, and the length of its maximal
path (its width) w are known.

Often, the state space is generated from some given system, where the states
represent, e.g., the assignment of values to variables, and a successor state is
generated from its predecessor by firing some atomic transition. The connection
between a system and its state space is orthogonal to the focus of this paper.

3.1 Neighborhood-based measurement

In [10], we propose a measuring specification based on neighborhoods for a state
space. We associate with each state the following components:

– A tuple of measurement variables V over some finite domains.
– Initial value for each measurement variable from its domain.
– A well founded set 〈W,<〉, where W is a set of values and < is a partial

order on W where no infinite decreasing chain exists.
– An expression E, based on the variables V that results in values from W .

We denote the current value of E at state s as E(s).
– Each state may have some constants assigned to it (this can be extended so

that constants are assigned also to edges).
– An update function f for the variables V . It can be based on the current

version T of the variables (denoted by T (s)), the constants on the state,
and a version V q for each neighbor q of s (also, constants on the edges to
and from neighbors). For some purposes, it is sufficient to use updates based
only on successors or on predecessors. The update function must satisfy that
E > E′, where E′ is the expression E after applying the update.

The measuring specification is, in itself, also an algorithm, which can be
implemented directly. Basically, it consists of the following:

With each tick of the clock, execute per each state of the state s space:
If E(s) is not minimal, then do
Send T (s) to all neighbors.
Receive T q(s) from the neighbors, q ∈ {q1, q2, . . . qn(s)} of s.
Let V := f(V, V q1 , . . . , V qn(s)) od

Note that with the recalculation of the values of V in the state, the expression
E would decrease.
Example. An example of measuring is to find what is the maximal value as-
signed to any node reachable from the current node. We set up the following:

– A constant c per each state (denoted c(s)) representing the measured value.
– A variable m that contains the current calculated maximum, initialized to
c.

– A counter d initialized to w, the width of the structure.

– The well founded domain is the natural numbers with the usual <. The
decreasing expression E assigned to each state is simply d.

– The update function takes the values of successor states R• and calculates
the multiple assignment

(m, d) := (max(m,m1,m2, . . .mn(s)), d− 1)

We show now (see also [10]) an implementation of CTL model checking us-
ing our measuring principles. This algorithm resembles the original Clarke and
Emerson algorithm [6], with the help of bounded model checking. This is just
an example to show that the power of our measuring formalism exceeds that
of CTL model checking. However, one may want to use the formalism without
fixing a different temporal property as the basis for measurements.

Recall that the syntax of the CTL formulas is as follows:

ϕ := p|¬ϕ|(ϕ ∨ ϕ)|EXϕ|(ϕ ∧ ϕ)|(ϕEUϕ)|(ϕAUϕ)

The semantics is as usual, see [6].
First, the variables for model checking a CTL property ϕ include for each

subformula η a variable vη. These variables have three possible values: U, T
and F, where U (for undefined) being the initial value. There is also a phase
counter variable pc, which is set initially to the number of subformulas in ϕ, and
a downcounter dc. The downcounter is set to 1 at the beginning phases that are
associated with Boolean subformulas or EX, and to w (or to z) when the phase
is associated with EU or AU . This is because information as far as s state away
from the current state may affect the value of the EU or AU formula.

Now, at each step, we decrement one from dc, and if it reaches 0, decrement
one from pc, unless it is zero, and then we terminated. When we move to a
new phase, we set dc to 1 or w, according to the type of the subformula. We
handle the subformulas according to their size. In this way, when dealing with
some subformula η, the measurement variables for its subformulas are already
calculated and set to T or F. Depending on the type of the subformula, we
perform an action. For a Boolean operators, we perform the same operator on
the values of the corresponding measurement variables, e.g., if the subformula is
(η ∨ ρ) then we set v(η∨ρ) to vη ∨ vρ. Since we use three valued logic, we need to
extend the Boolean operators. Accordingly, we have (T∨U) = T, (F∧U) = F,
and the symmetric situations. For the other cases involving at least one U, the
result is U.

For the subformula (ηEUρ), we obtain at each step the values of vqi(ηEUρ)
from each successor q ∈ N(s). The values vρ and vη are calculated in a previous
phase. Then we set up

v(ηEUρ) := vρ ∨ (vη ∧
∨

q∈N(s)

vq(ηEUρ))

For (ηAUρ), just replace in the formula above
∨
i∈1..m with

∧
i∈1..m. Now, if we

finished the current phase (dc becomes 0) and v(ηEUρ) is still U, then we set it
to F.

In [10], we showed how to use such a measuring specification for calculating
whether a robot can be reached into some docking station before its battery
is critically discharged. There, we used the backwards propagation of values to
check whether the shortest paths from each state are still short enough we used
forwards propagation to check whether critical discharge (including over cycles
in the path of the robot) occur.

3.2 Path measurements

We discuss now measurements that depends on the history of the execution, as
well as its future. While our measurement formalism does not depend on a logic,
it is easy to explain the different characterization of such measurement using
the different requirements between verifying the temporal logics CTL and LTL.
The temporal logic LTL [17] has a different characterization than CTL, since it
can claim multiple properties for each single execution path. In fact, there is an
exponential number of ways, in the size of the LTL property, in which a state can
evolve to satisfy the property, depending on its history. Model checking of LTL
properties is facilitated by a product of the state space with an automaton that
represents updating and memorizing the available possibilities. For this reason,
the neighborhood based measurement we proposed in [10] would make very little
sense for path based properties (such as LTL formulas).

There are two problems that we need to face in such measuring:

1. The paths that are measured may be infinite. Although it is known that if
there is an execution that satisfies an LTL property then there is one that is
ultimately periodic (see, e.g., [8]), i.e., consists of a finite prefix, and a finite
part that repeats indefinitely. However, measuring non-Boolean properties
may have different results where ultimately periodic sequences are not good
representatives (see, e.g., [1] for measuring the limit of the average of values
along a sequence).

2. There are multiple paths in the structure (possibly infinite), and we are
interested to give a measurement of all the paths, or sufficiently many of
them.

In order to tackle problem 1, we assume measurements that are affected
mainly by a finite prefix of sequences. We may then decide to use some limit on
the length of a sequence, and show, separately, how measurements are affected by
changing this limit. In order to tackle problem 2, we use generalized Monte-Carlo
measurements, and are satisfied when we can conclude that a large enough num-
ber of executions (defined as a parameter), has guaranteed some measurement
threshold. This means that we have to provide the threshold (some value that
the measurements either surpass or do not reach), and a the level of confidence
required for this threshold.

3.3 Example: Velocity Matching Based Measurement

As an example, we show how to measure the objective of velocity matching in
Section 2 using our measurement formalism. Although the measurement does not

necessarily depend on having a temporal property associated with the measure
(e.g., calculating the average, the sum, etc.) we can, in this case look at the
LTL property ϕVM := FGp, (eventually always p), where p is the proposition
VM ≤ θ, and VM is the (normalized) velocity matching in a state.

Note that since in path measurement we have only a single successor and a
single predecessor, we can distinguish them, e.g., denote the successor version of
v by v′ (and if we look at the predecessors, denote the predecessor of v by v′′).

The variables we use are as follows:

– Boolean variables: Bp, BGp and BFGp, all initialized to U.
– Real variables:
• vm: the velocity matching value, initialized to 0.
• avg: the average velocity matching when Gp holds, initialized to 0.
• step: the number of steps from current state to the first state where Gp

holds, initialized to ∞.
• lc: the linear combination of avg and step, initialized to 0.

– Down counter: l, which is initialized to w, the length of the paths we use (we
use a constant length, which is 50)

– The values got from the successor are marked by a prime, i.e., BGp
′, BFGp

′,
avg′, etc. For the tester corresponding to the last state of the path who has
no successor, we assume the following: BGp

′ = T, BFGp
′ = F, avg′ = 0,

step′ =∞.

At each step, we calculate the following:

– If l > 0:
• Bp = p.
• BGp = Bp ∧BGp′.
• BFGp = BGp ∨BFGp′.
• vm = VM (s), the velocity matching value in current state s. The calcu-

lation of VM (s) is explained in Section 2.
• avg = if (BGp = T) then (avg′ ∗ (w − l) + vm)/(w − l + 1) else avg′.
• step = if (BGp = T) then 1 else (step′ + 1).
• lc = 0.99 ∗ avg + 0.01 ∗ (step/w).
• l := l − 1.

The well founded ordering is the value of l. That is, we terminate when l = 0.
At this point, we can take values (BFGp, lc) from the initial node of the sequence.

4 Generalized Monte-Carlo Measurements

The formalism discussed in Section 3 takes as input a bounded sequence s1:n and
returns a measure of it. For example, for the flocking model (FM) we presented in
Section 2, we return a pair (b, r) of a Boolean and real value, respectively, where
b is the value of FG(VM ≤ θ), and r is the weighted sum of two quantities: how
long it takes (as a fraction of n) for VM to fall below threshold θ and remain
there; and, when b is true, the average of VM for the (maximal) subsequence
where G(VM ≤ θ) holds.

A particular sequence s1:n is generated by running a k-agent FM for a given
initial state, which is assumed to be distributed in the box [0..k, 0..k], for agent
positions, and in the box [0..1, 0..1], for agent velocities. The FM assumes that
these distributions are uniform, but, in general, they can be any arbitrary dis-
tribution, including Gaussian.

Since each pair (b, r) is the result of an initialized execution of the FM, both b
and r are the values of independent, identically distributed (IID) random variables
Z = (B,R). Assuming that r belongs to the interval [0, 1] is not a limitation, as
one can always normalize the values of R, provided that one knows its range. We
do exactly this in Sections ??-3, where the fitness value of the flock we compute
is the weighted sum of two [0, 1]-normalized quantities.

A generalized measurement aims to efficiently obtain a joint estimate µZ = (µB , µR)
of the mean values E[B], E[R] of B and R, respectively. Since an exact compu-
tation of µZ is almost always intractable (e.g. NP-hard), a Monte Carlo (MC)
approach is used to compute an (ε, δ)-approximation of this quantity.

The main idea of MC is to use N random variables (RVs) Z1, . . . , ZN , also
called samples, IID distributed according to Z and with mean µZ , and to take
the sum µ̃Z = (Z1 + . . . + ZN)/N as the value approximating the mean µZ .

While MC techniques were used before to measure the satisfaction probability
of temporal logic formulas [11, 9, 14], or to compute the mean of an RV [5, 12],
the main novelty of this paper is to jointly measure the Boolean satisfaction and
the mean real value. The Boolean-value computation is informing the real-value
computation and vice versa, thereby increasing the efficiency of our approach.

Additive approximation. An important issue in an MC approximation scheme is
to determine an appropriate value for N . If µZ is expected to be large, then one
can exploit the Bernstein inequality and fix N to be Υ ∝ ln(1/δ)/ε2. This results
in an additive or absolute-error (ε, δ)-approximation scheme:

Pr[µZ − ε ≤ µ̃Z ≤ µZ + ε] ≥ 1− δ

where µ̃Z approximates µZ with absolute error ε and with probability 1− δ.
If Z is assumed to be a Bernoulli RV, then one can use the Chernoff-Hoeffding

instantiation of the Bernstein inequality, and further fix the proportionality con-
stant to Υ = 4 ln(2/δ)/ε2, as in [11]. This bound can also be used for the joint
estimation of RV Z = (B,R), as B is a Bernoulli RV, and the proportionality
constraint of the Bernstein inequality is also satisfied for RV R. This results in
the additive approximation algorithm (AAA) below.

AAA algorithm
input: (ε, δ) with 0 < ε < 1 and δ > 0.
input: Random vars Zi with i > 0, IID.

output: µ̃Z approximation of µZ.

(1) Υ = 4 ln(2 / δ) /ε2;
(2) for (N = 0; N≤ Υ; N++) S = S +ZN;
(3) µ̃Z = S/N; return µ̃Z;

It is important to note that in AAA, the number of samples N depends only on
ε and δ, and is totally oblivious to the mean value µZ to be computed.

Multiplicative approximation. In case the mean value µZ is very low, the additive
approximation µ̃Z may be meaningless, as the absolute error may be considerably
larger than the actual value µZ . In such cases, a multiplicative or relative-error
(ε, δ)-approximation scheme is more appropriate:

Pr[µZ −µZε ≤ µ̃Z ≤ µZ +µZε] ≥ 1− δ

where µ̃Z approximates µZ with relative error µZε and with probability 1− δ.
In contrast to the Chernoff-Hoeffding bound Υ = 4ln(2/δ)/ε2, required to

guarantee an absolute error ε with probability 1− δ, the zero-one estimator the-
orem in [12] requires a bound proportional to N = 4ln(2/δ)/µZε

2 to guarantee
a relative error µZε with probability 1− δ.

When applying the zero-one estimator theorem, one encounters, however,
two main difficulties. The first is that N depends on 1/µZ , the inverse of the
value that one intends to approximate. This problem can be circumvented by
finding an upper bound κ of 1/µZ and using κ to compute N . Finding a tight
upper bound is, however, in most cases very difficult, and a poor choice of κ
leads to a prohibitively large value for N .

An ingenious way of computing N without relying on µZ or κ is provided by
the Stopping Rule Algorithm (SRA) of [5]. When E[Z] = µZ > 0 and Σi=1Zi ≥
Υ , the expectation E[N] of N equals Υ .

SRA algorithm
input: (ε, δ) with 0 < ε < 1 and δ > 0.
input: Random vars Zi with i > 0, IID.

output: µ̃Z approximation of µZ.

(1) Υ = 4 (e - 2) ln(2 / δ) /ε2; Υ1 = 1 + (1 + ε)Υ;
(2) for (N = 0, S = 0; S≤Υ1; N++) S = S +ZN;
(3) µ̃Z = S/N; return µ̃Z;

The second difficulty in applying the zero-one estimator theorem is the factor
1/µZε

2 in the expression for N , which can render the value of N unnecessarily
large. A more practical approach is offered by the generalized zero-one estimator
theorem of [5] which states that N is proportional to Υ ′ = 4ρZ ln(2/δ)/(µZε)

2,
where ρZ = max{σ2

Z , εµZ} and σ2
Z is the variance of Z. Thus, if σ2

Z , which
equals µZ(1− µZ) for Z a Bernoulli random variable, is greater than εµZ , then
σ2
Z ≈ µZ , ρZ ≈ µZ and therefore Υ ′ ≈ Υ . If, however, σ2

Z is smaller than εµZ ,
then ρZ = εµZ and Υ ′ is smaller than the Υ by a factor of 1/ε.

To obtain an appropriate bound in either case, [5, 9] have proposed the opti-
mal approximation algorithm (OAA) shown above. This algorithm makes use of
the outcomes of previous experiments to compute N , a technique also known as
sequential MC. The OAA algorithm consists of three steps. The first step calls
the SRA algorithm with parameters (

√
ε, δ/3) to obtain an estimate µ̂Z of µZ .

The choice of parameters is based on the assumption that ρZ = εµZ , and ensures

OAA algorithm
input: Error margin ε and confidence ratio δ with 0 < ε ≤ 1 and 0 < δ ≤ 1.
input: Random vars Zi, Z

′
i with i > 0, IID.

output: µ̃Z approximation of µZ.

(1) Υ = 4 (e - 2) ln(2 / δ) /ε2; Υ2 = 2 (1 +
√
ε) (1 + 2

√
ε) (1 + ln(3/2) / ln(2/δ))Υ;

(2) µ̂Z = SRA(min{1/2,
√
ε}, δ/3,Z);

(3) N =Υ2 ε / µ̂Z; S = 0;

(4) for (i =1; i≤ N; i++) S = S + (Z′2i−1 -Z
′
2i)

2 / 2;

(5) ρ̂Z = max{S/N, ε µ̂Z};

(6) N =Υ2 ρ̂Z / µ̂2
Z; S = 0;

(7) for (i =1; i≤ N; i++) S = S +Zi;

(8) µ̃Z = S / N; return µ̃Z;

that SRA takes 3/ε less samples than would otherwise be the case. The second
step uses µ̂Z to obtain an estimate of ρ̂Z . The third step uses ρ̂Z to obtain the
desired value µ̃Z . Should the assumption ρZ = εµZ fail to hold, the second and
third steps will compensate by taking an appropriate number of additional sam-
ples. As shown in [5], OAA runs in an expected number of experiments that is
within a constant factor of the minimum expected number.

For simplicity, both in SRA and in OAA, we only showed the joint variable
Z = (B,R), and used a generic RV ρ̂Z . In our implementation, however, we
distinguish between the mean and the variances of B and R, and if we observe
that the variance of R is very low, we stop, even if the variance of B is larger,
as R is determining the value of B.

5 Experimental Results

We have implemented our flocking model presented in Section 2 in MATLAB.
Recall that the property we measure is ϕVM defined in Section 3.

In order to get an approximate measure for the flocking model, within a re-
quired error margin ε and confidence level δ, we applied the generalized Monte-
Carlo estimation (GMCE) algorithms discussed in Section 4. The GMCE algo-
rithms use both the the boolean values b and the real values r obtained from
the path measurements (b, r), in order to determine the stopping time, and to
compute the mean values µB and µR of interest.

Every path measurement (b, r) is obtained by running the measurement al-
gorithm defined in Section 3.3, over a random execution of the flocking model.
This execution is generated by our discrete-time simulator, by first choosing the
initial state uniformly at random and then integrating the differential equations
given in Section 2, Figure 1

Table 1 shows the results of 5 runs of OAA with θ = 0.05, ε = 0.3 and
δ = 0.3. In the table, µR is the real part of the output of OAA; it estimates the
mean of the quantitative measurement we defined in Section 3.3 for ϕVM . N is
the number of samples used to compute µR.

We omit the boolean part µB because it is always one for this example. We
also show the average (Avg) and the standard deviation (Std) of the results. We

compare our results with the AAA algorithm where a fixed number of samples
N is used, N = 4log(2/δ)/ε2, as shown in Table 2. The OAA algorithm requires
significantly more samples, but considerably reduces the standard deviation.

Table 1. Results obtained from OAA

Runs µR N
1 0.00644 66846
2 0.00651 65592
3 0.00646 66696
4 0.00648 66173
5 0.00646 66588
Avg 0.00647 66379
Std 2.659e-05 505.9

Table 2. Results obtained from AAA

Runs µR N
1 0.00681 84
2 0.00685 84
3 0.00589 84
4 0.00630 84
5 0.00585 84
Avg 0.00634 84
Std 0.00047 0

Note that, in Table 2, we use the same error margin and confidence level as
in Table 1. This additive approximation is, however, meaningless, because the
additive error is much greater than µR itself. If we want to achieve the same
accuracy as OAA, the error margin for AAA should be set to ε′ = µR ∗ ε ≈
0.00194. This results in the sample size N = 4log(2/δ)/ε′2 = 2, 016, 282, which
is significantly larger than the sample size used in OAA.

Table 3 shows the results when we choose different values of ε and δ for the
OAA algorithm. It is clear that choosing smaller values of ε and δ results in
smaller standard deviations at the expense of a larger sample size. We obtain
values of µR that are, however, highly consistent with one another from different
values of ε and δ.

Table 3. OAA with different ε and δ

ε = 0.1, δ = 0.3 ε = 0.1, δ = 0.5 ε = 0.3, δ = 0.3 ε = 0.3, δ = 0.5
Avg µR 0.00647 0.00648 0.00646 0.00648
Std µR 1.816e-05 2.370e-05 2.659e-05 3.267e-05
Avg N 131861 102412 66379 51410
Std N 326.2 447.7 505.9 216.8

6 Conclusions

Algorithmic methods for checking the consistency between a system and its
specification [6] have been generalized into measuring properties of systems [1].
The study of such measurement techniques provided interesting algorithmic,
complexity and computability results.

In a previous work [10] we proposed a simple formalism for fast measurement,
based on repeatedly observing the neighborhood of the states of the system.

Information about partial measurements flow through the states to and from
its neighbor states. Instead of providing a global logic base specification, which
assert about the different paths of the state space, and their interconnection,
our formalism is based on the view of a state and the information that flows
through it from its predecessors and successors. An expression over some well
founded set is used to control the termination of the accumulative data flow based
measuring. This setting is quite general, and allows measurements that combine
different arguments, both Boolean and numeric. The formalism is simple, and
the measurement is efficient. If the measurement is provided in terms of some
logic formalism, then it needs to be translated into our formalism.

Our measurement formalism is not appropriate for any formalism. An im-
portant class of such formalisms are those that are dependent on some memory
accumulated on the execution path. In such specification, different paths that
lead to the same state may result in differemt measurements. Even if the amount
of memory needed to keep track of the history of the path is finite, the measure-
ment is not unique per given state (as it depends on the history of the path).
Performing the measurement path by path is often not feasible as there can be
infinitly many or prohibitly many paths. We propose here a tradeoff between ac-
curacy and exhastiveness, based on statistical model checking [9, 11, 12, 20]. We
neighborhood measurement techniques to a statistically big enough sample of
paths, and use statistical inference to conclude the measurement of the system.

Such complex measurements can appear naturally in systems that combine
physical parameters and in biological systems. As a running example we used
models for birds flocking [19, 21, 15, 4, 3, 2, 20]. Based on several researched mod-
els for flocking, we want to measure the well behavior of their combination. In
particular, the eventual well matching of speads among birds. We cast the even-
tual spead matching measurement in terms of our formalism. Then we make
experiments based on statistical model checking implemented using MATLAB.

References

1. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. Logical Methods in Computer Science 6(3) (2010)

2. Conley, J.F.: Evolving boids: Using a genetic algorithm to develop boid behaviors.
In: Proceedings of the 8th International Conference on GeoComputation (Geo-
Computation 2005) (2005), http://www.geocomputation.org/2005/

3. Cucker, F., Dong, J.G.: A general collision-avoiding flocking framework. IEEE
Trans. on Automatic Control 56(5), 1124–1129 (2011)

4. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. on Automatic
Control 52(5), 852–862 (2007)

5. Dagum, P., Karp, R., Luby, M., Ross, S.: An optimal algorithm for Monte Carlo
estimation. SIAM Journal on Computing 29(5), 1484–1496 (2000)

6. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel pro-
grams using fixpoints. In: ICALP. pp. 169–181 (1980)

7. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. Formal Methods in System Design 27(3), 253–274 (2005)

8. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: PSTV. pp. 3–18 (1995)

9. Grosu, R., Smolka, S.: Quantitative model checking. In: Proc. of the 1st Interna-
tional Symposium on Leveraging Applications of Formal Methods (ISOLA’04). pp.
165–174. Paphos, Cyprus (Nov 2004)

10. Grosu, R., Peled, D., Ramakrishnan, C., Smolka, S.A., Stoller, S.D., Yang, J.:
Compositional branching-time measurements. In: From Programs to Systems—
The Systems Perspective in Computing, Proceedings of ETAPS Workshop in honor
of Joseph Sifakis. Lecture Notes in Computer Science, vol. 8415. Springer (2014)

11. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Proc. Fifth International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2004) (2004)

12. Karp, R., Luby, M., Madras, N.: Monte-Carlo approximation algorithms for enu-
meration problems. Journal of Algorithms 10, 429–448 (1989)

13. Latvala, T., Biere, A., Heljanko, K., Junttila, T.: Simple bounded ltl model check-
ing. In: IN: FMCAD. VOLUME 3312 OF LNCS. pp. 186–200. Springer (2004)

14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
RV. pp. 122–135 (2010)

15. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Trans. on Automatic Control 51(3), 401–420 (2006)

16. Penczek, W., Wozna, B., Zbrzezny, A.: Bounded model checking for the universal
fragment of ctl. Fundam. Inf. 51(1), 135–156 (Mar 2002)

17. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57 (1977)
18. Pnueli, A., Zaks, A.: Psl model checking and run-time verification via testers. In:

The 14th International Symposium on Formal Methods. LNCS, vol. 4085, pp. 573–
586. Springer Berlin / Heidelberg (Aug 2006)

19. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 1987). pp. 25–34. ACM (1987)

20. Stonedahl, F., Wilensky, U.: Finding forms of flocking: Evolutionary search in
abm parameter-spaces. In: Multi-Agent-Based Simulation XI, Lecture Notes in
Computer Science, vol. 6532, pp. 61–75. Springer (2011)

21. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Physical Review Letters 75, 1226–
1229 (Aug 1995)

22. Younes, H.K.L.: Verification and Planning for Stochastic Processes. Ph.D. thesis,
Carnegie Mellon (2005)

