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Abstract— We present distributed distance-based control (DDC),
a novel approach for controlling a multi-agent system, such
that it achieves a desired formation, in a resource-constrained
setting. Our controller is fully distributed and only requires local
state-estimation and scalar measurements of inter-agent distances.
It does not require an external localization system or inter-agent
exchange of state information. Our approach uses spatial-
predictive control (SPC), to optimize a cost function given strictly
in terms of inter-agent distances and the distance to the target
location. In DDC, each agent continuously learns and updates
a very abstract model of the actual system, in the form of a
dictionary of three independent key-value pairs (∆s⃗,∆d), where
∆d is the partial derivative of the distance measurements along
a spatial direction ∆s⃗. This is sufficient for an agent to choose
the best next action. We validate our approach by using DDC
to control a collection of Crazyflie drones to achieve formation
flight and reach a target while maintaining flock formation.

I. INTRODUCTION

Multi-agent systems (MASs) can collectively perform tasks
which are beyond the abilities of individual agents. For
search-and-rescue (SAR) applications, there is a wide variety
of multi-agent approaches using ground, aerial, floating, and
underwater vehicles [1]–[3]. MASs can also play a role in
environmental monitoring, space exploration, agriculture,
entertainment, and industrial maintenance [4]. All of these
applications require a coordination and control method for
formation establishment and maintenance.

MAS formations, such as flocking, can be described by a
(distributed) cost function c(x) over the state variables x of an
agent, such that when each agent minimizes this cost, the system
reaches the desired formation [5], [6]. We call cost functions
that are defined in terms of scalar distances d ⊂ x to other
agents only, distance-based cost functions. For flocking, formu-
lations using distance-based cost functions can be found in [7],
[8]. However, it turns out that controllers, such as potential-
field control (PFC) [7] and spatial-predictive control (SPC) [8],
choose their actions based on the cost-function’s spatial gradient.
Consequently, even for distance-based cost functions, existing
approaches require knowledge of relative-position vectors to
derive the spatial gradient, and subsequently the control actions.

A key challenge, therefore, is to determine if the controller
design for distance-based cost functions can be generalized
such that control actions are chosen based only on scalar
distances without knowledge of relative position vectors?

While global-navigation satellite systems (GNSS) and
comparable types of indoor localization systems [9], [10], can
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Fig. 1: Block diagram of our DDC distributed formation controller, running
locally on each agent. Grey blocks were developed by us; for the white
blocks, we use third-party state-of-the-art implementations.

determine relative position vectors, they might not be installed
or currently available at some locations, and they are unlikely
to be available in some applications (e.g., underwater SAR,
cave exploration). This further motivates the above challenge.

One approach to solve the above challenge is to estimate the
relative positions of other agents. This can be accomplished by
measuring distances only, and using a coordinated movement
schedule in each time step, as in [11]. One can then apply
methods such as PFC or SPC to derive the actions. However,
as shown by our experiments in Section V-B, this approach
is impractical, since it is slow (only a subset of agents can
move simultaneously), and susceptible to sensing noise.

In this work, we propose a novel approach, called DDC (for
distributed distance-based control), that obviates the estimation
of relative positions. Instead, it directly uses estimated distance
changes in the spatial gradient of the cost-function. A key idea
is to use a first order Taylor approximation of such changes. In-
tuitively, each agent maintains a dictionary of three independent
key-value pairs (∆s⃗,∆d), representing the partial derivative
∆d of distance measurements along spatial directions ∆s⃗.

During an initial startup-phase, agents perform exploration
in orthogonal (or independent) directions, to populate this
dictionary. Agents then exploit this dictionary to estimate the
expected change ∆̂d when they displace themselves by ∆u⃗,
as predicted by the Taylor approximation. This enables them
to estimate the new cost when moving by a certain vector.
As in [8], [12], to find the set-point with minimal cost, each
agent performs in every time-step, a search over a grid of
points surrounding the current location.

Importantly, each agent continuously updates its copy of
the dictionary at each time step with its last observation. In
particular, agents replace stale information with newer infor-
mation, and they also occasionally perform an exploration step,
where they take a potentially non-optimal action, to maintain
independence of the keys in this dictionary. The dictionary
is reminiscent of an attention layer used in transformers.

Note that each agent implicitly makes the simplifying, but
not generally accurate, assumption that other agents do not
move. Under the constrained setting, this is our only recourse.



Our experiments show that our approach is able to tolerate this
inaccurate assumption. DDC passes the selected movement
action to the agent’s low-level controller that controls the
motor thrust. Low-level controllers for quadcopters and their
stability is studied in numerous works, such as [13]–[16].

MAS DDC is suitable in resource-constrained settings,
where individual agents: (1) Are only able to perform local
state-estimation with onboard sensors, (2) Do not communicate
any state information, and (3) Can only measure scalar
distances to other agents (and to the fixed target location). The
local state-estimation of an agent is comprised of its change
in position relative to a prior position, velocity, acceleration,
orientation and optionally altitude. For this, onboard sensors,
such as inertial-measurement units (IMUs), optical flow
modules, barometers, and altimeters are used. These sensors
do not provide any information about other agents.

As a consequence of (2), there is no central coordinator,
and we thus present a fully distributed approach. As another
consequence of (2), triangulation, multilateration, rigid graph
based methods and joint (global) state-estimation are not
applicable. Scalar distance measurements to other agents (and to
the fixed target location) contain significantly less information
than relative position, pose, or angle measurements would do.

In our hardware implementation, distance measurements
also turned out to be extremely noisy, providing only imperfect
measurements. In contrast to model-predictive control (MPC)
approaches, DDC does not need a physical model of the agents.

Summarising, the main contributions of this paper are:
• We introduce the concept of DDC, a novel formation control

method, which is solely based on onboard sensing, and on
scalar distance measurements.

• DDC is model-free, fully distributed, and does not require
internal-state information of other agents.

• We evaluate DDC on the drone-flocking problem with target
seeking, in a drone simulation environment.

• We experimentally validate our approach, by achieving flock-
ing with real off-the-shelf quadcopters, Crazyflie 2.1 [13].

II. RELATED WORK
In [17]–[21], agents are able to localize themselves with

cameras, LiDAR sensors and/or external systems. In our
setting, these sensors are not available. Other works [22]–[28],
including the survey [29], assume individual agents can sense
relative positions of their neighboring agents with respect to
their own local coordinate systems. This provides considerably
more information than scalar distance measurements.

Position estimation and control for 2D scenarios are
studied in [30], [31], but generalization to 3D is not trivial.
In [32]–[36], message exchange (transmitting acceleration,
angular velocity, or other data) is used between at least some
of the agents. DDC does not use such communication.

The work in [37] makes use of anchor nodes, with fully
known positions in a global reference frame. In [38], a
centralized approach to localization is presented. In contrast,
DDC is fully distributed. In [39], a single leader moving with
constant velocity is tracked by a single follower. In [40], one
leading and two following agents are described.

Formation control in [41] is based on distance measurements
involving sinusoidal perturbations to the agent’s actions. Pertur-
bation frequencies are assumed to be pairwise distinct, which
limits application to larger numbers of agents, if in practice
the allowed range for frequencies is bounded by the agent’s
mechanical limitations. Our previous work in [12] sketched the
idea of distance-based flocking using precise distance values,
but it could not handle imperfect measurements due to signif-
icant sensor noise and it performed no hardware experiments.

In this paper, we therefore introduce DDC, which features
a different method of data accumulation, additional signal
filtering, the use of exploration steps to assure an orthogonal
basis, and a new slack parameter for the separation term.
We evaluated DDC for altitude-aided drone flocking on real
hardware. The work in [11] proposes a control scheme with
three alternating periods: identification, control, and resting
(where the agent needs to remain stationary). In Section V-A
we provide a comparison of DDC to this method, which turns
out to be very susceptible to sensing noise and much slower.

III. FORMATION CONTROLLER

Consider a collection of |A| agents. Each agent i, where
i ranges from 1 to |A|, runs a controller, consisting of the
following blocks, as shown in Figure 1:

• Distance filter: As measurements of the scalar inter-agent
distances coming from real hardware are imperfect
(noisy), the raw measurements draw

ij,t of the distance
between agents i and j at time t are filtered.

• State estimator: All sensor data that is available for
the individual agent i (e.g. acceleration a⃗t, rotational
velocity ω⃗t) is processed by a standard Kalman filter
(using the state-of-the-art implementation available for
Crazyflies [13]) for local state estimation. This is used
to estimate relative position s⃗t (for Agent i), i.e., relative
to its position at t = 0. Additional optional sensors that
can directly measure displacement ∆s⃗t and/or absolute
elevation zt can be incorporated when available.

• Data accumulation: As the system operates, historical
data of the change in inter-agent distances ∆dij,t for
displacements ∆s⃗t is stored in two matrices D,S.

• Distance estimator: The data stored in S and D is used
to (linearly) estimate the change in distances ∆̂dij (for
all j) for any given candidate displacement q⃗.

• High-level controller: The cost c(d) is evaluated on a set
of candidate displacements {q⃗}. The best is chosen as u⃗.

• Low-level controller: We use a PID controller (as
implemented in [13], [42]) to set the motor thrust for u⃗.

Low-
passin +

−

−
+

thr
Low-
pass out1

out2

Fig. 2: Rejection filter: When the input is within threshold thr of the
low-passed signal, the signal is fed through. Otherwise the filter outputs the
low-passed signal (out2). Finally there is an optional second low-pass (out1).



A. Outlier Detection and Noise Filtering

Our hardware experiments use a collection of Crazyflie 2.1
quadcopters [13], equipped with the DWM1000 ultra-wideband
(UWB) hardware module [43] on Loco-positioning deck with
the software implementation of [44], to sense the inter-agent
distances. The radio signals are used solely for inter-agent
distance measurements. No internal state information is
exchanged over this channel. There are no fixed UWB beacons.

As noise in distance measurements is a critical concern
for our system, we did an analysis of the noise model. It
turns out that outliers are common, and there is some additive
random noise. When looking at its energy spectrum, we found
higher energy in low-frequency ranges, as compared to white
noise. Such a noise profile was also reported in [44].

Our filter tracks the input in, using an infinite impulse
response (IIR) low-pass filter; see Figure 2. To detect outliers,
we subtract the input in from the output of this low-pass and
compare it with a threshold thr. If it is below the threshold,
we directly use in as output; otherwise, we feed the low-passed
signal to the output out2. After this rejection filter, we use an
optional IIR low-pass filter to produce out1. Cutoff frequencies
and threshold were determined empirically. In order to retain
changes due to real movements, the cutoff frequency must
not be too low. Therefore low-frequency components of noise
cannot be filtered effectively. We observe, however, that higher-
frequency noise is also effectively suppressed by linear regres-
sion in our data accumulation block (step 3a in Section III-B).

B. Data Accumulation in Key-Value Dictionary

Each agent i measures the current distances to neighboring
agents (and the target) and estimates it’s local position. For
simplicity, we describe the distance estimation process from
the perspective of agent i, only. The same procedure is
analogously applied for estimating distance to the target.

Agent i stores the relevant data history in two matrices, a (3×
3)-matrix S and a (3×|A|)-matrix D. Row-k of S is a key dis-
placement vector ∆s⃗ (in 3-dimensional space) for agent i. Row-
k of D is a value vector ∆d of change in distances to every
other agent, as seen by agent i when it moved by displacement
∆s⃗. In particular, Dkj is the change in distance to agent j as
seen by agent i, when it moved by the vector Sk∗ (Sk∗ is S’s k-
th row vector). The dictionary thus represents partial derivatives
Dk∗ of distance measurements along spatial directions Sk∗.

Let dij,t be the distance to agent j at time t. Each agent’s
local state estimator is capable of estimating its own position
s⃗t relative to its initial position at t=0. Agent i continuously
updates the matrices S and D as follows:
0) Set t0 and s⃗t0 to be the initial time and position of Agent i.

1) Initialize empty sets T and Mj for all j ∈ A.

2) Save the current time t and distances in sets: T = T ∪{t},
Mj = Mj ∪ {dij,t}. Calculate the displacement vector
∆s⃗t based on relative position information:

∆s⃗t = s⃗t − s⃗t0 (1)

3) a) If the norm of this displacement vector is larger than
a given threshold, i.e. if ||∆s⃗t|| > sthr, calculate the

changes in distances by linear regression over the saved
measurements within ∆t = t− t0 as follows:

d̄ij =
1
|T |

∑
r∈T dij,r (2)

t̄ = 1
|T |

∑
r∈T r (3)

∆dij =

∑
r∈T (r − t̄) (dij,r − d̄ij)∑

r∈T (r − t̄)2
∆t (4)

Note, that |T | = |Mj |. Go to Step (4).

b) If ∆t is larger than a threshold ∆t > tthr, set t0 to be
t and st0 to be st, and go back to Step (1). In this case
the agent did not move considerably within ∆t, and
we therefore discard such measurements.

c) Otherwise, go back to Step (2). Continue measuring.

4) Select the row k in S, which is most similar to ∆s⃗t, by
k = argmaxr∈{1,2,3}{|Sr∗ • ∆s⃗t|}.
Replace row k in matrix S with the normalized
displacement vector ∆s⃗t

∥∆s⃗t∥ , and replace row k in matrix

D with the vector ⟨ ∆di1

∥∆s⃗t∥ , . . . ,
∆di|A|
∥∆s⃗t∥ ⟩.

5) Set t0 to t and st0 to st, and start again at (1) and keep
updating rows in the matrices S and D, representing
recent displacements of agent i and associated changes
in distance measurements.

Note that relative position s⃗t is obtained by a state estimator
based on IMU data and similar sensors. State estimation is
therefore prone to sensor noise, and might drift over time.
However, our overall approach is immune to such drifts since
it only depends on displacements ∆s⃗t that happen in time
duration ∆t, which is bounded by tthr.

C. Exploration

As the matrices S and D are initially empty, the agents
first need to perform some exploration: move in some non-
optimal direction, measure inter-agent distances, and populate
the matrices with that information. This is done mainly in the
startup phase. Later, the moves are the computed control actions.
We also keep track of when each row was updated. If a row be-
comes older than some threshold told, it is deleted. Exploration
is performed according to the following rules (× denotes the
cross product of two vectors, and • denotes the dot product):
1) If all rows of S and D are empty: Sample three random

variables as the components of vector r⃗. Apply action
q⃗expl,1 = wexpl

r⃗
∥r⃗∥ , where wexpl is a scaling parameter.

2) Only S1∗ is not empty: Sample random vector r⃗ as in step
(1). Apply the vector q⃗expl,2 = wexpl

S1∗×r⃗
∥S1∗×r⃗∥ as action

(which is by construction orthogonal to S1∗).

3) Only S1∗, and S2∗ are not empty: Apply the vector
q⃗expl,3 = wexpl

S1∗×S2∗
∥S1∗×S2∗∥ as action (which is by con-

struction orthogonal to S1∗ and S2∗).

4) All entries in S are non-empty:
a) If there exist two dependent rows k and m ̸= k (pointing

in a similar direction (|Sk∗ • Sm∗| > κthr), where κthr

is a parameter to quantify this similarity): Apply the



vector q⃗expl,4 = wexpl
Sk∗×Sm∗

∥Sk∗×Sm∗∥ as action (which is
by construction orthogonal to these row vectors).

b) If such rows do not exist, the vectors S1∗, S2∗, S3∗ are
linearly independent; i.e. they are all different (S1∗ ̸=
S2∗ ̸= S3∗, ensured by 4a), nonzero (S1∗ ̸= 0⃗, S2∗ ̸= 0⃗,
S3∗ ̸= 0⃗, ensured by ||∆s⃗t|| > sthr), and not in a com-
mon plane ((S1∗×S2∗)•S3∗ ̸= 0⃗, ensured by 2, 3, and 4).
0⃗ is used as shorthand notation for (0, 0, 0)T . Exploration
is finished and the controller can go to exploitation mode.

D. Exploitation

The dictionary represents the partial derivative of distance
measurements along spatial directions Sk∗,k∈{1,2,3} yielding
associated values Dk∗. For any displacement vector q⃗, we
compute the estimated change in distances to each other agent
∆̂di∗(q⃗) by a first order Taylor approximation:

∆̂di∗ = λ1 D1∗ + λ2 D2∗ + λ3 D3∗ (5)

(here, addition and multiplication are applied element-wise).
Since S1∗, S2∗, S3∗ form a basis, the unique coefficients λ1,
λ2, λ3 of the linear combination are given by:

q⃗ = λ1 S1∗ + λ2 S2∗ + λ3 S3∗ (6)

Likewise we can compute the estimated distances after the
agent i would have moved by displacement vector q⃗:

d̂ij(q⃗) = dij + ∆̂dij(q⃗) (7)

E. High-Level Controller

Our high-level controller works with any distance-based
cost function. It makes use of distance measurements provided
by our distance estimator to choose the best action from a
set of candidate actions as the resulting action.
The set of candidate actions Q is defined as follows:

E =
{
(x, y, z)T

∣∣x, y, z ∈ {−1, 0, 1}
}
\ 0⃗ (8)

Q =

{
ϵQ n

q⃗

∥q⃗∥

∣∣∣∣ q⃗ ∈ E,n ∈ {1, .., NQ}
}
∪ 0⃗ (9)

This gives a set of 26 ·NQ + 1 points which are spaced by
a distance of ϵQ each in every direction, including diagonals.
The estimated distances, if action q⃗ is taken, are estimated
by Eq. (7). Over the set Q, the best action q⃗best is chosen
by minimizing cost function c:

q⃗best = argmin
q⃗∈Q

{c(d̂i∗(q⃗))} (10)

Each agent computes the desired position set-point at every
time s.t. its local cost function (Eq. 10) is minimized. This
set-point is passed as input to a low-level controller to control
the drone’s propeller motors, as it is also done in [8].

IV. APPLICATION TO DRONE FLOCKING

In this section, we introduce a distance-based cost function
for flocking and describe quality metrics of flock formations.

a)                                                  b)

c)                                                  d)
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Fig. 3: Cost-function terms for drone flocking: a: cohesion, b: separation,
c: target-seeking, and d: elevation.

A. Drone Flocking

Let A denote the set of agents. They are in flock formation
if the distance between every pair of agents is range bounded;
that is, the agents are neither too close to each other nor too
far apart. To formulate this concept, we define a cost function
that each agent tries to minimize in order to achieve the
formation. Cost function based formulations for flocking were
studied in [5], [7], [45]. These works show the usefulness of
such a formulation for achieving flock formations and discuss
properties w.r.t. to non-collision and non-dispersion.

Consider drones i and j. Let dij denote the distance between
drones i and j, as it appears to drone i (measured from their
centers of mass). Let li denote the distance between drone
i and the target location ptar . The radius of the circumscribed
sphere of a drone is denoted by rdrone . Drone i has only
access to distances of a subset Hi ⊆ A of the drones, called its
neighbourhood. Hence, the local cost function is parameterized
by i, and uses only the distances to drones in Hi. We define
Hi using a neighborhood radius parameter rH , as follows:

Hi = {j | dij < rH , j ∈ A \ {i}} (11)

The tuple of distances from drone i to drones in Hi is
denoted by dHi . Our cost function ca (a for aerial) is defined
for every drone i ∈ A as follows:

ca(dHi , li) = ccoh(dHi) + csep(dHi) + ctarA(li) (12)

a) Cohesion term:

ccoh(dHi) =
ωcoh

|Hi|
∑
j∈Hi

dij
2 (13)

As ccoh(dHi) increases when drones drift apart, this term keeps
drones together. Each term includes a subscripted ω as a weight.

b) Separation term:

csep(dHi) =
ωsep

|Hi|
∑
j∈Hi

1

max(dij−2rdrone−χsep, 0̂)
2 (14)

The separation term keeps drones apart, as it increases when
drones get closer. Here 0̂ denotes a very small positive value.
Function max(., 0̂) ensures a strictly positive denominator.
The slack parameter χsep is used to influence the minimum
distance between two drones. This parameter is different from
previous works [5], [8], [12]. During experimental validation,
this showed significant impact on avoiding collisions.
c) Aerial target-seeking term:

ctarA(li) = ωtar li (15)



Our aerial target-seeking lets us move the flock towards a
specified target location. In simulation, we move the target
location, while on real hardware, we switch between different
targets, where only the active one is used in the cost function.
As all agents have the same target location, we assume shared
knowledge of that information. However, the control algorithm
itself is still fully distributed. Instead of a target location, one
of the drones could be designated as a leader. This leader
could have additional sensors to obtain information about its
absolute position, to employ an alternative control scheme.

B. Altitude-Aided Drone Flocking
The size of the indoor space constrains movement in all

three dimensions, but typical-room height is most restrictive.
We also want to place our target on the ground; as such, the
flock should reach this target indirectly, at a certain altitude.
We therefore describe an alternative cost function cg (Eq. 16)
for altitude-aided drone flocking. In real-world environments,
altitude measurements can be gathered by barometers or
altimeters (e.g. downward-facing range sensors).

cg(dHi
, li, zi) = ccoh(dHi

) + csep(dHi
)+

ctarG(li, zi) + celev(zi)
(16)

d) Elevation term:

celev(zi) = ωelev (ζelev − zi)
2 (17)

Here zi denotes the z-coordinate of the position of agent i,
which is it’s altitude. This term keeps the flock at a certain
altitude, which is determined by the reference elevation ζelev .

e) Ground target-seeking term:
The distance li of drone i to the current target is projected
to the x-y plane to compute the cost term ctarG:

l̃i(li, zi) =

√
max(li

2 − zi2, 0) (18)

ctarG(li, zi) = ctarA(l̃i(li, zi)) (19)

C. Flock-Formation Quality Metrics
We define metrics, and associated constraints, to assess the

flock quality achieved by DDC.

a) Collision avoidance: The distance between all pairs of
drones dist(A) must remain above a specified threshold
distthr = 2 · rdrone + rsafety , where rsafety is a safety margin.

dist(A) = min
i,j∈A;i ̸=j

dij (20)

dist(A) ≥ distthr (21)

b) Compactness: The radius of the sphere circumscribing
all agents would be the ideal metric. This would require us,
however, to know each agent’s position in a global coordinate
system, which we do not have. We thus instead use the maxi-
mum radius of the pairwise inter-agent circumscribed spheres:

comp(A) =
1

2
max

i,j∈A;i ̸=j
dij (22)

c) Target reaching: To assess the quality of target-seeking, we
determine, for each target k, the average distance to the target:

tark(A) =
1

|A|
∑
i∈A

lik (23)

When using ground a target-seeking term, lik is replaced by l̃ik.

 0

 2

 4

 6

 8

 10

 12

 50  100  150  200

D
is

ta
nc

e 
[m

]

Time [s]

a)
|A|=9, rH =∞

 0

 2

 4

 6

 8

 10

 12

 50  100  150  200

D
is

ta
nc

e 
[m

]

Time [s]

b)
|A|=15, rH =3m

 0

 2

 4

 6

 8

 10

 12

 50  100  150  200

D
is

ta
nc

e 
[m

]

Time [s]

c)
|A|=5, rH =∞, altitude-aided

 0

 2

 4

 6

 8

 10

 12

 50  100  150  200

D
is

ta
nc

e 
[m

]

Time [s]

d)
|A|=15, rH =3m, altitude-aided

comp(D): compactness dist(D): collision avoidance tar(D): target reaching distthr

Fig. 4: Metrics over time for representative simulation experiments. The target
is updated with a new position at t1 = 20 s and t2 = 120 s, resulting in
a saw-tooth shape. a: drone flocking with 9 agents and global neighborhood,
b: 15 agents and local neighborhood, c: altitude-aided drone flocking with
5 agents and global neighborhood, d: 15 agents and local neighborhood.

V. EVALUATION

We evaluate DDC’s performance in simulation and on real
hardware using Crazyflie 2.1 quadcopters [13]. In both cases,
we use the same software implementation, with only minor
adjustments of empirically determined parameters.

A. Simulation Experiments

As simulation environment for our experiments, we used
crazys [42]. This is based on the Gazebo [46] physics and
visualization engine and the Robotic Operating System (ROS)
[47]. We implemented DDC (the gray blocks shown in
Figure 1) in C++, as a separate ROS node. DDC receives
measured distances draw

ij,t, and relative position information
s⃗t. Based on the cost function, it calculates the next action u⃗
and passes it to the low-level controller. Controller parameters
were determined empirically from a range of values for each
parameter by manual inspection of performance metrics.

As noise is critical (cf. III-A), we modeled it in simulation
by a sum of low-passed white noise plus additional white noise.
We tested different noise levels to assess DDC’s robustness.

For evaluation, we used two positions sequentially supplied
as target location: After the drones formed a flock around
the starting position (x, y, z) = (0, 0, ζelev), they move to
(10m, 0, ζelev) and then to (10m, 10m, ζelev). We performed
simulations with |A|=5, 9, and 15 drones. Quality metrics over
time for representative simulation runs are shown in Figure 4.
The metrics for compactness (blue) and collision avoidance
(orange) show that DDC successfully maintains a stable flock
without collisions. The flock moves towards the target locations,
as shown by the decreasing target-reaching metric (green).
While moving, compactness (blue) is temporarily degraded.

B. Comparison to Cyclic Stop-And-Go Strategy

We compared DDC to the cyclic stop-and-go strategy [11],
consisting of three alternating periods: identification, control,
and resting. This method allows only a subset of agents, which
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comp(D): compactness dist(D): collision avoidance tar(D): target reachingcyclic stop-and-go strategy:

Fig. 5: Comparison of DDC and cyclic stop-and-go strategy [11], for
simulations of drone flocking with local neighborhood. For the latter, target
reaching (green) decays much more slowly, and compactness (blue) is
considerably worse, than for DDC. a: 9 agents without distance measurement
noise, b: 15 agents with same noise level as in all other simulations of DDC.

are not neighbours of each other, to move simultaneously (i.e.
to perform identification or control). At the same time, all other
agents are in resting phase, where they need to remain stationary.
This is easy in simulation, but hard to achieve in the real world.

As [11] does not provide an implementation, we took it upon
ourselves to implement it: In the identification phase, we use
three orthogonal movements and true-range multilateration [48]
to estimate other agent’s relative positions. For the control phase,
we use a variant of SPC [8], with the same parameters and cost
function weights as in DDC. For arbitration of the different
phases, we allowed for central coordination,even though in our
problem statement agents are not able to exchange such informa-
tion. In our DDC approach, such coordination is not necessary.
Comparison in Fig. 5 shows that this method is susceptible
to sensing noise and much slower in reaching the target.

C. Hardware Experiments

We experimented with Crazyflie 2.1 quadcopters [13] with
Loco-positioning deck, featuring DWM1000 UWB modules [43]
for distance measurements and Flow deck v2 (with z-ranging
altimeter and optical flow module); see Figure 6. To determine
inter-drone distances, we used a ranging software implementa-
tion [44]. For each drone, the measured distances draw

ij,t and rela-
tive position information s⃗t are transmitted to a computer. There,
DDC is executed in a separate ROS node for each drone (same
as in simulation), the next action u⃗ is computed, which is then
transmitted to the drone. Even though it is executed on the same
computer for all drones, DDC is fully distributed, as there is no
additional information exchange between the individual nodes.

We evaluated DDC in three scenarios. In Figure 7, the
starting locations and traces of representative experiments
are visualized. In scenario LINE, the drones start in a line.
As the drones move into a more compact formation, the
compactness metric improves (becomes lower) over time. For
JOIN, two drones start further away from target 0. They join
the other three, which are already closer to the target. For
MOVE, the drones start around target 0, indicated by forming
flock. Then, when moving towards target 1 in the next section,
the average distance to the target continuously decreases. In
the last section, the flock returns to target 0. While moving,
compactness is temporarily degraded. In all of these scenarios,
the metric for collision avoidance stays above the threshold.
A video of these hardware experiments is appended.

a) b)

Fig. 6: Drones used for hardware experiments: a: Crazyflie 2.1 quadcopter
b: Five drones (highlighted in red circles) while testing scenario JOIN.
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Fig. 7: Hardware experiments. a Scenarios: LINE, forming a flock from starting
positions along a line; JOIN, two agents joining three agents at the target
location; MOVE, a flock moves between two alternating target locations. Plots of
metrics and inter-agent distances for scenarios b: LINE, c: JOIN, and d: MOVE.

VI. CONCLUSION

We introduced DDC, a MAS-formation-control approach
which is fully distributed, and solely based on scalar-distance
measurements, and local-position estimation. We demonstrated
DDC on drone-flocking with target-seeking. To validate DDC,
we took a two-pronged approach: (1) We performed simulation
experiments using a physics engine with a detailed drone
model, and (2) We performed experiments with real drones,
specifically, Crazyflie 2.1 quadcopters. Our results demonstrate
DDC’s ability to form and maintain a flock, and move towards
a target location. To the best of our knowledge, we are the first
to demonstrate such a controller on aerial MASs. While DDC
is able to satisfy the specified performance metrics, future
work will focus on ensuring that the flock reaches the target
location by a given deadline and extending it with obstacle
avoidance capabilities. We plan to perform analysis on stability
and guarantees for non-collision and non-dispersion. We will
also explore replacing our dictionary structure with more
general attention-based models and learning techniques.
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