
Automated Analysis of Fault-Tolerance in Distributed

Systems†

Scott D. Stoller‡ (stoller@cs.sunysb.edu)
Computer Science Dept.
State University of New York at Stony Brook
Stony Brook, NY 11794

Fred B. Schneider§ (fbs@cs.cornell.edu)
Dept. of Computer Science
Cornell University
Ithaca, NY 14850

Abstract. A method for automated analysis of fault-tolerance of distributed sys-
tems is presented. It is based on a stream (or data-flow) model of distributed
computation. Temporal (ordering) relationships between messages received by a
component on different channels are not captured by this model. This makes the
analysis more efficient and forces the use of conservative approximations in analysis
of systems whose behavior depends on such inter-channel orderings. To further sup-
port efficient analysis, our framework includes abstractions for the contents, number,
and ordering of messages sent on each channel. Analysis of a reliable broadcast
protocol illustrates the method.

1. Introduction

As computers become integrated into critical systems, there is a grow-
ing need for techniques to establish that software systems satisfy their
requirements. This paper describes a method and automated tool for
checking whether a distributed system satisfies its requirements, with
a focus on fault-tolerance requirements.
The method uses a novel combination of stream-processing (or data-

flow) models of networks of processes (Kahn, 1974; Broy, 1987; Broy,
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1990) and abstract interpretation of programs (Cousot and Cousot,
1977; Jones and Nielson, 1994). An important feature of our method
is its emphasis on communication (rather than state), motivated by
the thesis that distributed systems often have natural descriptions in
terms of communication. This emphasis shapes both the representation
of system behavior and the method used to compute it.
In our framework, system behavior is represented by message flow

graphs (MFGs), which characterize the possible communication be-
haviors of the system. Each node of a MFG corresponds to a system
component, and each edge is labeled with a description of the sequence
of messages possibly sent from its source to its target. For simplic-
ity, this paper considers systems in which components interact only
by messages transmitted along unbounded FIFO channels; non-FIFO
channels could easily be accommodated, though.
Each system component is represented by one or more input-output

functions that describe its input/output behavior. An input-output
function that represents a component takes as arguments sequences
of messages received from different sources and returns the sequences
of messages sent to different destinations by that component. Stream-
processing models admit compact representations for sequences of mes-
sages, and those representations can be used directly in MFGs and as
inputs to input-output functions.
A failure scenario for a system is an assignment of failures to a subset

of the system’s components. A fault-tolerance requirement is a condi-
tion that the system’s behavior should satisfy in specified failure sce-
narios. Our analysis method is to compute, for each failure scenario for
which the user specified a fault-tolerance requirement, an MFG repre-
senting the system’s communication behaviors in that failure scenario.
Each MFG is then checked to determine whether the fault-tolerance re-
quirement for that failure scenario is satisfied. A more common method
is to model failures as events that occur non-deterministically during
a computation; system behavior in all failure scenarios is analyzed
together. We separate the analyses for different failure scenarios to
help keep the MFGs small and simple.
To reduce the computational cost of computing MFGs, our frame-

work supports flexible and powerful abstractions (approximations). Tra-
ditionally, stream-processing models have been used as mathematical
semantics and contained no abstractions. We use only conservative
abstractions, so the analysis never falsely implies that a system satisfies
its fault-tolerance requirement. Conservative abstractions do introduce
the possibility of false negatives: an analysis might not establish that a
system satisfies its fault-tolerance requirement, even though the system
does.
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Message sequence charts are a well-known notation for communi-
cation behavior (ITU-T, 1996). A message sequence chart typically
represents one possible communication behavior or a set of similar
behaviors, while an MFG succinctly and perhaps approximately repre-
sents all possible communication behaviors of a system (in a specified
failure scenario).
Our analysis does not construct global states of systems and does

not consider interleavings of messages sent by a component on dif-
ferent channels (to different destinations) or interleavings of messages
received by a component on different channels (from different sources).
This sometimes forces the use of conservative approximations, but it
makes our analysis more efficient than state-based or message-based
analyses that explicitly consider interleavings of behavior of different
components, because the number of possible interleavings is typically
large. Section 3 illustrates this point with an example.

2. Communication-Based Analysis Framework

Section 2.1 introduces the running example used to illustrate our frame-
work. Sections 2.2–2.4 describe the abstractions used in our framework
to succinctly represent sets of sequences of messages that possibly flow
along a channel. The abstractions apply to values (the data transmitted
in messages),multiplicities (the number of times each value is sent), and
message orderings (the order in which values are sent). Sections 2.5 and
2.6 define input-output function and MFGs, which are the foundation
of our analysis method. Section 2.6 also describes how, given input-
output functions representing components, an MFG representing the
streams of messages sent on each channel during execution is computed
as a fixed-point. A detailed formal presentation of our analysis method
appears in (Stoller, 1997).

2.1. Reliable Broadcast Example

In a reliable broadcast, components of the system correspond to pro-
cesses. Clients C 1,C2, . . . ,CN broadcastmessages, and servers S1,S2, . . . ,

SN deliver messages to clients. Each client Ci communicates directly
only with a corresponding server Si. Following (Hadzilacos and Toueg,
1994, section 3.1), we assume that each message broadcast by a client is
unique. In an implementation, this assumption is normally discharged
by including the broadcaster’s name and a sequence number (or times-
tamp) in each message. The correctness requirements for reliable broad-
cast are (Hadzilacos and Toueg, 1994):
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Validity: If a client Ci broadcasts a message m and correspond-
ing server Si is non-faulty, then Si eventually delivers m.

Integrity: For each message m, every non-faulty server delivers
m at most once and does so only if m was previously broadcast by
some client.

Agreement: If a non-faulty server delivers a message m, then all
non-faulty servers eventually deliver m.

Send-omission failures cause a server to omit to send some (possibly
all) messages that it would normally send. The above Validity, Integrity,
and Agreement requirements must be satisfied in failure scenarios in
which some servers suffer send-omission failures and the network re-
mains connected (i.e., between each pair of clients, there is a path in
the connectivity graph containing only non-faulty servers).
The reliable broadcast protocol in (Hadzilacos and Toueg, 1994,

section 6) serves as a running example. The protocol works as follows.
A client Ci broadcasts a message m by sending m to its server Si.
When a server receives a message, it checks whether it has received
that message before. If so, it ignores the message; if not, it relays the
message to its neighboring servers and to its client.

2.2. Abstraction for Values

To analyze streams of messages, we need a notation to describe the
possible data values in each message. As in abstract interpretation, we
introduce a set AVal of abstract values. Each abstract value represents
a set of concrete values. For the reliable broadcast example, abstract
value Msg represents all messages, and MF (Ci) (mnemonic for “mes-
sage from Ci”) represents messages whose header indicates that they
were broadcast by Ci.
For our analysis goals, these abstract values alone capture too little

information about relationships between values. For example, to show
that Integrity holds for a reliable broadcast protocol, the analysis must
show that the messages delivered by two non-faulty servers are equal. If
those messages were represented only by an abstract value likeMF (Ci),
there would be no way to tell whether they are equal.
So, we introduce a set SVal of symbolic values, which are expressions

composed of constants, variables, and a wildcard symbol. All occur-
rences of a constant or variable in a single MFG represent the same
value. The wildcard symbol “ ” is used when a value is not known to
have any interesting relationships to other values. Different occurrences
of the wildcard in a MFG do not necessarily represent the same value.
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A constant represents the same value in every execution of a system.
In the reliable broadcast example, the constant max represents the
“maximum” function. A variable represents values that may be different
in different executions of a system. Variables are useful for modeling
outputs that are not completely determined by a component’s inputs.
Such indeterminacy commonly stems from intrinsic non-determinism of
the original system, non-determinism introduced in a model when some
aspects of the system or its environment are not modeled explicitly, or
non-determinism from failures. Each variable is local to (i.e., is associ-
ated with) one component and corresponds to a concrete value in that
component’s outputs (Stoller, 1997). Associating each variable with one
component makes it possible to check independently that each input-
output function faithfully represents the behavior of the corresponding
component.
A symbolic value and an abstract value together are often suffi-

cient to characterize possible data values in a message, so we define

Val
∆

= SVal × AVal . We usually write a pair 〈s, a〉 in Val as s : a.
In the reliable broadcast example, X : MF (C1) denotes a value in
MF (C1) that is represented by symbolic value X. A straightforward
generalization, useful for analysis of some non-deterministic systems,
is to represent the possible data values in a message by a set of such
pairs, each representing some of the possible values (Stoller, 1997). A
wildcard is similar in meaning to omission of a symbolic value, so we
usually elide wildcards. For example, 〈 ,Msg〉 would be written asMsg .

2.3. Abstraction for Multiplicities

We refer to the number of times a message is sent as itsmultiplicity. Our
framework includes abstractions for multiplicities that allow compact
descriptions of the possible behaviors of systems in which messages have
different multiplicities in different executions. Such variation in multi-
plicities commonly stems from the same sources of non-determinism
mentioned in Section 2.2. In the reliable broadcast example, a server
subject to send-omission failures might emit outputs with a multiplicity
of zero or one. A component subject to Byzantine failures (Lamport
et al., 1982) might emit outputs with an arbitrary multiplicity.
We think of multiplicities as natural numbers and therefore rep-

resent them in the same way as data values. Thus, we define Mul
∆

=
SVal×AMul , where the set AMul of abstract multiplicities is a subset of
AVal and contains abstract values that represent subsets of the natural
numbers. For the reliable broadcast example, we assume AMul contains
the following: 1, denoting {1}, and ?, denoting {0, 1}. The notational
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conventions for Val also apply to Mul . For example, 〈 , ?〉 ∈ Mul may
be written as ?.
Symbolic values in multiplicities naturally express correlations be-

tween multiplicities of different events. In the reliable broadcast exam-
ple, the essence of the Agreement requirement is that the multiplicities
with which any two non-faulty servers deliver a message should be
equal. Send-omission failures by a server may cause the abstract values
in those multiplicities to be ?. From that alone, we cannot determine
whether the multiplicities are equal, but if the multiplicities contain the
same non-wildcard symbolic value, then they are equal. More generally,
symbolic multiplicities support efficient analysis of systems with atom-
icity requirements of the form: “All non-faulty components perform
some action, or none of them do.”

2.4. Abstraction for Sequences of Messages

The set of sequences of messages possibly sent along a channel is rep-
resented by a partially ordered set (poset) 〈S,≺〉, where S is a set,
and ≺ is an acyclic transitive binary relation on S. Each element of
S represents a set of messages, as detailed below. The meaning of the
partial order is: for x, y ∈ S, if x ≺ y, then the messages represented by
x are sent (and received, since channels are FIFO) before the messages
represented by y. If the exact order in which the messages are sent is
known during the analysis, then the poset is totally ordered, i.e., it is
a sequence.
Partial orders allow compact representation of the set of possible

sequences of messages when orderings between some messages are un-
certain. For the reliable broadcast example, consider a scenario in which
a server receives two messages broadcast by different clients. If the order
in which the server receives those two messages is undetermined, then
the order in which it relays them is also undetermined, and the server’s
outputs are succinctly represented by a partially (not totally) ordered
set.
Each element of the poset represents a set of messages. We call

these elements ms-atoms (mnemonic for “message-set atoms”) . Each
ms-atom uses an element of Val to characterize the data in the messages
and an element of Mul to characterize the number of messages in the

set. Thus, the signature of ms-atoms is MSA
∆

= Val ×Mul . To promote
the resemblance between ms-atoms and regular expressions, we write an
ms-atom 〈val ,mul〉 as valmul , and if the multiplicitymul is 1, we usually
elide it. For example, the ms-atom X : MF (C1)

M :? represents a set
containingM messages with data represented by the value X :MF (C1),
where the value of M is zero or one.
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A notation based on finite automata, rather than regular expres-
sions, could be used to represent sets of sequences of messages, as
in (Boigelot and Godefroid, 1999; Bouajjani and Habermehl, 1999).
Automata might provide a more efficient basis for the implementation,
but using them would probably make input-output functions harder to
write. This would not be an obstacle if automated support for generat-
ing input-output functions from state-based descriptions of components
were available. Developing such support is an interesting open problem.

2.5. Input-Output Functions

In our framework, inputs to a component are characterized by the
possible sequences of messages received on its incoming channels. Out-
puts of a component are characterized by the possible sequences of
messages sent on its outgoing channels. For simplicity, we assume a
component has one incoming channel from (and hence one outgoing
channel to) each component. We assume a system comprises a set of
named components, with names from the set Name. Thus, inputs and
outputs of a component are both represented by functions with signa-
ture Name → POSet(MSA), where POSet(MSA) is the set of (strict)
partial orders 〈S,≺〉 such that S ⊆ MSA. We call such a function a

history and define Hist
∆

= Name → POSet(MSA).
When a history h is used to represent the inputs to a component y,

h(x) represents the messages from x to y. When a history h is used to
represent the outputs of a component y, h(x) represents the messages
from y to x. The behavior of a component y is represented (possibly
with approximations) by an input-output function fy such that, for
every history h, fy(h)(x) represents the outputs of y to x for input
history h. If we temporarily ignore failures, the signature of input-
output functions is Hist → Hist .
Recall from Section 1 that we analyze different failure scenarios sep-

arately. To achieve this separation, we parameterize each input-output
function by the possible failures of the corresponding component. Thus,

input-output functions are elements of IOF
∆

= Fail ⇀ (Hist → Hist),
where Fail is the set of all possible failures, and one-hooked arrow ⇀

indicates partial functions. For the reliable broadcast example, Fail
contains an element sendOm corresponding to send-omission failures.
For f ∈ IOF , domain(f) is the set of failures that the component
might suffer, and for each fail ∈ domain(f), f(fail) characterizes the
component’s behavior when failure fail occurs. By convention, Fail
contains an element OK that indicates absence of failure. A failure
scenario is a function in FS

∆

= Name → Fail that maps each component
to one of its possible failures (possibly OK ).
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The input-output function f for a server in the reliable broadcast
protocol works roughly as follows; details appear in (Stoller, 1997).
f(OK )(h) first collects all the data values in ms-atoms in h. Each such
data value X corresponds to a broadcast message possibly received
by the server. For each such data value X, f(OK )(h) symbolically
computes the maximum of the multiplicities of all ms-atoms in h that
contain X and then outputs X to all of its neighbors (i.e., its client and
neighboring servers) with the resulting multiplicity M , because if the
server receives X even once, it will relay X. A few straightforward rules
are used to simplify M ; for example, if any ms-atom in h that contains
X has abstract multiplicity 1 (and the other ms-atoms that contain
X have abstract multiplicity ?), then M has abstract multiplicity 1.
f(sendOm)(h) is similar except, for each of the server’s neighbors y,
the multiplicity with which the server sends X to y is the symbolic
minimum ofM (which is computed as above) and a unique variable V .
Thus, V being equal to 0 or 1 corresponds to a send-omission failure
occurring or not occurring, respectively, when X is relayed to y. The
input-output function for server S uses the following naming scheme
for these unique variables: the value of M

C,i
S ,y indicates whether a send-

omission failure occurs when server S tries to relay to component y the
i’th message broadcast by client C. Some straightforward simplifica-
tions are used; for example, the minimum of the multiplicities :1 and
V :? is simplified to V :?.
In our framework, one can associate with each system component

constraints on the values of the component’s local variables. This is
useful in the reliable broadcast example to model the assumption that
each message broadcast by a client is unique. Specifically, inclusion of
a sequence number (or timestamp) in each message broadcast by a
client is modeled by associating with each client the constraint that
variables used to represent messages broadcast by that client have
unique values. For example, if variables X and Y represent the data in
different messages broadcast by client C1, then we have the constraint
X 6= Y .

2.6. Message Flow Graphs and Fault-Tolerance

Requirements

In our framework, system behavior is represented by message flow

graphs (MFGs). Each node of a MFG corresponds to a system compo-
nent, and each edge 〈x, y〉 is labeled with a description of the sequence
of messages possibly sent from its source x to its target y. An MFG
is formulated as a function: for an MFG g and components x and y,
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Figure 1. Failure-free behavior of reliable broadcast protocol.

g(x, y) is the label on the edge from x to y. The signature of MFGs is

MFG
∆

= (Name ×Name)→ POSet(MSA).
The MFG in Figure 1 represents the failure-free behavior of the

reliable broadcast protocol in a system with three clients for executions
where client C1 broadcasts a single message. Variable X represents the
data that is broadcast. We describe below how this MFG is computed.
A system is represented by a function nf ∈ Name → IOF , which

gives the input-output function for each component. The behavior
of a system nf in a failure scenario fs is computed using a function
stepnf ,fs ∈ MFG → MFG , defined by

stepnf ,fs(g)
∆

=
the MFG g′, where g′(x, y) =

let f = nf (x)(fs(x)) (∗ f is input-output function for x ∗)
and h(z) = g(z, x) (∗ h is input history of x ∗)
and h′ = f(h) (∗ h′ is output history of x ∗)
in h′(y) (∗ h′(y) represents messages from x to y ∗)
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Informally, the MFG stepnf ,fs(g) represents the result of each compo-
nent processing its inputs in the possibly-incomplete executions repre-
sented by the MFG g and producing possibly-extended outputs. For
each failure scenario fs for which the user specified a fault-tolerance re-
quirement, an MFG representing the behavior of a system is computed
by starting from the empty MFG empty , defined by empty(x, y) =
〈∅, ∅〉, and repeatedly applying stepnf ,fs until a fixed-point is reached.
Repeated application of stepnf ,fs corresponds to continued execution of
the system being analyzed. This fixed-point calculation is essentially
the same as in other stream-processing frameworks, such as (Kahn,
1974; Broy, 1987; Broy, 1990).
To illustrate the fixed-point calculation, we consider the reliable

broadcast protocol in the same scenario as for Figure 1 except with
server S1 being faulty with possible send-omission failures. Let MS ,y

abbreviate M
C1,0
S ,y . The fixed-point calculation proceeds as follows.

1. Client C1 initiates a broadcast by sending a message, represented
by X :MF (C1)

1, to S1.

2. S1 would normally relay the message to its neighbors. But a faulty
S1 might omit to do so. This is represented by S1 sending X :
MF (C1)

MS1,x:? to each neighbor x ∈ {C1,S2,S3}.

3. If S2 receives the message, then it relays the message to its neigh-
bors. S3 does the same. The resulting MFG appears in the top part
of Figure 2.

4. If S2 received the message from either of its neighboring servers,
then it relays the message to its neighbors; this is reflected by the
use of max in its outputs, as described above. S3 does the same. The
resulting MFG, which is the fixed-point, appears in the bottom part
of Figure 2.

For a system with arbitrary input-output functions, iterative calcu-
lation of the fixed-point is not guaranteed to terminate. The possibility
of non-termination is unavoidable—asynchronous distributed systems
with unbounded channels are infinite-state and verification for them is
(in general) undecidable. In practice, for analysis of systems with finite
executions, the fixed-point calculation terminates. Analysis of systems
with infinite executions is discussed in Section 5.3.
A fault-tolerance requirement is expressed in our framework as a

predicate b on MFGs, together with a set of failure scenarios for which
the system’s behavior should satisfy the predicate. For the reliable
broadcast example, Agreement is expressed by the following predicate
on MFGs: for each data value X broadcast by any client, either all
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Figure 2. MFGs for reliable broadcast protocol when S1 is faulty. Top: the MFG
obtained after three applications of the step function. Bottom: the fixed-point.
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channels from non-faulty servers to their clients contain an ms-atom
with X as the data value and with abstract multiplicity 1, or all of
those channels contain an ms-atom with X as the data value and with
the same non-wildcard symbolic multiplicity. The system’s behavior
should satisfy this condition for failure scenarios in which some servers
suffer send-omission failures and the network remains connected.
A system nf satisfies a fault-tolerance requirement b for failure

scenario fs if the fixed-point of stepnf ,fs satisfies b. For the reliable
broadcast example, one can see from the final MFG in Figure 2 that the
correctness requirements are satisfied in this failure scenario. Validity
is vacuous in this scenario, because C1 is the only client that sends a
message and S1 is faulty. Integrity holds because all the ms-atoms on
inedges of clients have symbolic value X, which was broadcast by C1.
Agreement holds because the same non-wildcard symbolic multiplicity
appears in the ms-atoms with data value X on edges 〈S2,C2〉 and
〈S3,C3〉.

3. Comparison to State-Space Exploration

It is instructive to compare the compactness of MFGs and the effi-
ciency of our analysis to state-space exploration optimized with partial-
order methods. For concreteness, we compare with Spin (Holzmann
and Peled, 1995; Holzmann, 1997). Transitions of the same process are
always dependent (Holzmann and Peled, 1995), due to control depen-
dencies, so Spin explores all reachable interleavings of the inputs to each
component. In contrast, our method does not consider interleavings of
messages received by a component on different channels. This difference
often causes the size of the state space explored by Spin (measured by
the number of states) to be significantly larger than the size of the MFG
(measured by the number of occurrences of constants and variables in
ms-atoms). For the reliable broadcast example with N servers in a fully
connected network, the explored state space would be a factor of 2N−1

larger than the MFG for scenarios involving a single broadcast. Since
there are (N −1)! interleavings of the inputs to each server, generating
the state space takes Ω((N − 1)!) time, whereas generating the MFG
takes O(N2) time.
Symbolic multiplicities further improve the efficiency of the analysis

for failure scenarios involving crash failures or send-omission failures,
because omissions of different sets of messages lead (at least tem-
porarily) to different states, while symbolic multiplicities avoid explicit
branching based on whether a message is sent or omitted. For the
reliable broadcast protocol example with N servers in a fully connected
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network, this difference causes an exponential factor in the ratio of the
size of the explored state space to the size of the MFG, in addition to the
exponential factor described in the previous paragraph. The arithmetic
constraints in constrained queue-content decision diagrams (Bouajjani
and Habermehl, 1999) can express relationships between multiplicities,
as our symbolic multiplicities do. The symbolic state-space exploration
algorithm in (Bouajjani and Habermehl, 1999) uses arithmetic con-
straints only to succinctly represent the effects of repeated execution of
cycles in the control graph. For analysis of the reliable broadcast proto-
col, their algorithm does not provide the exponential savings achieved
by our method, mainly because the protocol contains no control cycle
that contains both send operations and receive operations. Similar com-
ments apply to the symbolic state-space exploration algorithm based
on queue-content decision diagrams in (Boigelot and Godefroid, 1999),
which is a special case of the algorithm in (Bouajjani and Habermehl,
1999).
We implemented the reliable broadcast example in Spin, using the

largest possible atomic blocks and using a single input channel for each
process; both of these choices reduce the number of explored states.
For N = 3 with no failures, the MFG in Figure 1 has size 30 (note that
Mx,y is a single constant), while Spin stores 224 states. For N = 4 with
S1 and S2 having send-omission failures, the MFG in (Stoller, 1997,
Figure 4.7), which is similar to the MFG on the bottom of Figure 2,
has size 100, while Spin stores 3778 states.

4. An Implementation

We implemented our analysis method in a prototype tool using CAML
Light (Leroy, 1997). The graphical interface is implemented using the
Tk widget library (Ousterhout, 1994). The tool provides a collection of
CAML types and functions used to express input-output functions and
compute fixed-points, libraries of pre-defined input-output functions,
and a graphical interface to facilitate entry of systems and inspection of
analysis results. Users familiar with CAML can define new input-output
functions by writing them directly in CAML.

5. Related Work and Discussion
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5.1. Abstraction

Our abstractions are, in some ways, similar to those proposed by Clarke,
Grumberg, and Long (Clarke et al., 1994) and to those proposed by
Kurshan (Kurshan, 1989; Kurshan, 1994).
Clarke et al. (Clarke et al., 1994) developed a method for using ab-

stractions to reduce the complexity of temporal-logic model-checking.
The class of abstractions they consider corresponds roughly to ab-
stract interpretation and to our abstract values. They also propose
so-called symbolic abstractions, which are convenient abbreviations for
finite families of abstractions. Our symbolic values are closer to the
technique they sketch at the conclusion of their paper for dealing with
infinite-state systems than to their “symbolic abstractions”.
In Kurshan’s automata-based verification methodology, approxima-

tions are embodied in reductions between verification problems (Kur-
shan, 1989; Kurshan, 1994). A typical reduction might collapse multiple
states of an automaton to form a single state of some reduced automa-
ton; this is analogous to introducing abstract values. Relationships
between concrete values can be captured using (implicitly) parame-
terized families of reductions, reminiscent of Clarke, Grumberg, and
Long’s “symbolic abstractions”.
For problems involving related values, the family of reductions must

introduce an abstract value representing each of these values. For exam-
ple, in our analysis of the Oral Messages algorithm for Byzantine Agree-
ment (Lamport et al., 1982), which uses majority voting, related values
include X1, X2, X3, and maj(X1, X2, X3) (Stoller, 1997). In effect, all
relevant symbolic values must somehow be identified in advance, and
an abstract value must be introduced for each of them. In contrast,
with our method, the user need only determine for each component
how constants and how its local variables are used to represent compu-
tations performed by that component. Symbolic values are constructed
dynamically by input-output functions as part of the fixed-point calcu-
lation. Our notion of local variables supports modular introduction of
symbolic values. In Clarke et al.’s and Kurshan’s methods, the abstract
values that correspond to our symbolic values—and in particular those
that correspond to expressions (such as maj(X1, X2, X3)) that contain
variables associated with different components—must all be introduced
together in the definition of the reduction (or the “abstraction”, in the
terminology of (Clarke et al., 1994)). In contrast, our framework often
allows a user to introduce an input-output function representing a pro-
cess (in other words, the input-output function is a reduced version of
the process or an abstraction of the process) independently of the other
processes and input-output functions, though sometimes information
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provided by an invariant constraining the values of non-local variables
is needed.
An attractive feature of Clarke et al.’s work and Kurshan’s work

is that abstractions (or reductions) are specified as homomorphisms
and applied to programs (or automata) automatically. Our framework
does not currently provide such a convenient method for specifying
abstractions; this is a direction for future work.

5.2. Inter-Channel Orderings

Our analysis does not construct global states or consider interleavings
of messages sent (or received) by a component on different channels.
Indeed, such inter-channel orderings cannot be represented directly in
MFGs. In effect, our analysis suffers from the merge anomaly (Keller,
1978; Broy, 1988). Specifically, an input-output function represent-
ing a component whose behavior depends on inter-channel orderings
among its inputs cannot (in general) represent the component’s behav-
ior exactly; generally, the input-output function must be a conservative
approximation. One way to remedy this would be to augment MFGs
with a partial ordering that can express inter-channel orderings; this is
reminiscent of Brock and Ackermann’s scenarios (Brock and Ackerman,
1981; Brock, 1983) and Pratt’s model of processes (Pratt, 1982).
Many distributed systems can be analyzed precisely with our current

framework. Examples include the three leader election algorithms for
rings in (Lynch, 1996, section 15.1), two-phase commit and three-phase
commit (Bernstein et al., 1987), the Timewheel atomic broadcast and
group membership protocols (Mishra et al., 1997; Mishra et al., 1998)
(real-time aspects can be modeled by introducing messages that rep-
resent passage of time, as in (Broy and Dendorfer, 1992)), the Oral
Messages and Signed Messages algorithms for Byzantine agreement
(Lamport et al., 1982), and some protocols for Byzantine-fault-tolerant
moving agents (Schneider, 1997). Details of our analyses of the Oral
Messages algorithm and a protocol for Byzantine-fault-tolerant moving
agents appear in (Stoller, 1997).
Systems that cannot be analyzed precisely, because they depend

on inter-channel orderings, include typical distributed spanning-tree
algorithms and distributed mutual-exclusion algorithms.

5.3. Infinite Executions

Our framework is not suitable for analyzing systems with infinite be-
haviors, such as reliable communication protocols that may re-transmit
a message infinitely often (note that our framework does not currently
include fairness assumptions). Multiplicities are defined to represent
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subsets of the natural numbers, so they can represent unbounded but
not infinite sequences. One approach to analyzing systems with infinite
executions is to generalize multiplicities along the lines of ω-regular-
expressions. However, with this approach, termination of the analysis
for most interesting systems will require approximations too coarse for
checking whether the fault-tolerance requirement is satisfied.
Another approach is based on “factoring” of system behavior into fi-

nite subcomputations. Many fault-tolerant distributed systems perform
(potentially infinite) sequences of independent or mostly independent
finite subcomputations. For example, the reliable broadcast protocol
described Section 2.1 can perform an arbitrary number of broadcasts,
and each broadcast is handled independently. For such systems, it is
sufficient to analyze computations containing only one (or a small num-
ber) of such subcomputations. This technique is common: it can be seen
in the analysis of the arithmetic pipeline in (Clarke et al., 1994) and in
the analysis of the queue in (Kurshan, 1994, Appendix D), as well as
in our analysis of reliable broadcast, where we consider computations
involving a single broadcast.
Many fault-tolerant systems have statically-determined periodic sched-

ules, so it is natural to factor (decompose) the executions into periods
and analyze one period. An approach along these lines to verification
of aircraft control systems is described in (Di Vito et al., 1991; Rushby,
1993). Although that work uses a theorem prover, the same ideas could
be used in our framework to verify whether a control system tolerates
a specified rate of failures.
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