
Mining Relationship-Based Access Control
Policies from Incomplete and Noisy Data?

Thang Bui, Scott D. Stoller, and Jiajie Li

Department of Computer Science, Stony Brook University, USA

Abstract. Relationship-based access control (ReBAC) extends attribute-
based access control (ABAC) to allow policies to be expressed in terms of
chains of relationships between entities. ReBAC policy mining algorithms
have potential to significantly reduce the cost of migration from legacy access
control systems to ReBAC, by partially automating the development of a
ReBAC policy. This paper presents algorithms for mining ReBAC policies
from information about entitlements together with information about entities.
It presents the first such algorithms designed to handle incomplete information
about entitlements, typically obtained from operation logs, and noise (errors)
in information about entitlements. We present two algorithms: a greedy search
guided by heuristics, and an evolutionary algorithm. We demonstrate the
effectiveness of the algorithms on several policies, including 3 large case studies.

1 Introduction

In relationship-based access control (ReBAC), access control policies are expressed in
terms of chains of relationships between entities. This increases expressiveness and of-
ten allows more natural policies. High-level access control policy models such as ABAC
and ReBAC are becoming increasingly important, as policies become more dynamic
and more complex. This is reflected in the widespread transition from access control
lists (ACLs) to role-based access control (RBAC), and more recently in the ongoing
transition from ACLs and RBAC to ABAC. High-level policy models allow concise
policies and promise long-term cost savings through reduced management effort.

Policy mining algorithms automatically produce a “first draft” of a high-level
policy from existing lower-level data. They promise to drastically reduce the cost for
an organization to migrate from a legacy access control technology to a high-level
policy model. There is a significant amount of research on role mining, and role
mining is supported by several commercial products, including IBM Tivoli Access
Manager and Oracle Identity Analytics. Research on ABAC policy mining is much
younger but growing as adoption of ABAC increases [14,13,7,4].

Mining of ReBAC policies, expressed as object-oriented ABAC policies with path
expressions, has been explored in recent work by Bui, Stoller, and Li [3]. They present
two algorithms, called the greedy algorithm and the evolutionary algorithm, to mine
a ReBAC policy from a set of entitlements, a class model, and an object model. An

? This material is based on work supported in part by NSF Grants CNS-1421893, and
CCF-1414078, ONR Grant N00014-15-1-2208, and DARPA Contract FA8650-15-C-7561.

2

entitlement is represented as a tuple 〈subject, resource,action〉, indicating that subject
is authorized to perform action on resource.

The meaning of a policy π, denoted [[π]], is the set of granted entitlements. Both al-
gorithms produce mined policies whose meaning is exactly the given set of entitlements.
Consequently, they do not handle cases where that set is incomplete or noisy, which is
often the case in practice. We propose more practical policy mining algorithms that do.

Incomplete information about entitlements is often readily available from operation
logs, even when complete information is not, e.g., because the policy is not enforced
by software, or because the policy is expressed using obscure ad hoc code. Many
systems produce operation logs, e.g., for auditing or accounting. A set of entitlements
can easily be extracted from a log. However, that set is typically incomplete, i.e., lacks
some entitlements granted by the policy, because those entitlements were not exercised
during the period covered by the log. We refer to these as missing entitlements. If
the log contains entries for access requests that were denied, a set of denials can also
be extracted from it. We represent denials as 3-tuples, just like entitlements.

Information about entitlements, even when nominally complete, is often noisy,
i.e., contains errors in the form of missing entitlements (i.e., entitlements that should
be present but aren’t) and excess entitlements (i.e., entitlements that should not be
present but are). Note that incomplete inputs typically have a much larger percentage
of missing entitlements than noisy inputs.

We modify Bui et al.’s algorithms to handle incomplete and noisy inputs. Our
algorithms identify suspected missing entitlements and add them to the meaning of
the mined policy, so we also call them added entitlements. Our algorithms identify
suspected excess entitlements and omit them from the meaning of the mined policy,
so we also call them omitted entitlements.

To handle excess entitlements, our algorithms, like [14], construct a candidate
policy, classify entitlements covered only by low-quality rules as suspected excess
entitlements, and omit them from the meaning of the mined policy by discarding
the low-quality rules.

We extend the greedy algorithm with two approaches for missing entitlements.
The validity-threshold (VT) approach [14] modifies the algorithm to keep rules that are
“almost valid”, i.e., whose meaning contains a percentage of added entitlements that is
below a specified threshold. The extended quality (EQ) approach [13] does not impose
a strict cutoff on the percentage of added entitlements in the meaning of a rule. Instead,
it extends the notion of rule quality with a term proportional to the percentage of
added entitlements in the meaning of the rule, allowing a smooth trade-off between this
and other aspects of quality. We refer to the versions of the greedy algorithm extended
with these approaches as VT greedy algorithm and EQ greedy algorithm, respectively.

We extend the evolutionary algorithm to handle missing entitlements using a
combination of the above approaches. We modify the fitness function so that, when
the fraction of added entitlements in a rule’s meaning is below a threshold, the added
entitlements do not affect the rule’s fitness, and when that fraction is above the
threshold, the rule’s fitness is redued proportionally to that fraction. We tried simpler
approaches, but they produced worse results. We also modify the algorithm to use
a validity threshold when deciding whether to add a candidate rule to the policy.

3

We evaluate our algorithms on four relatively small but non-trivial sample policies
and three larger and more complex case studies. One sample policy is for electronic
medical records (EMR), based on the EBAC policy in [2], translated to ReBAC; the
other three are for healthcare, project management, and university records, based
on ABAC policies in [14], generalized and made more realistic by translation to
ReBAC. Two of the case studies are based on Software-as-a-Service (SaaS) applica-
tions offered by real companies [5,6]; one is based on a university’s grant proposal
workflow management system [10]. More details about these policies (other than the
last one, which is new) appear in [3]. Our evaluation methodology is to start with
a ReBAC policy π0, compute the set [[π0]] of granted entitlements, create from it
a set of entitlements E0 that is either incomplete (by pseudorandomly removing a
significant percentage of the entitlements) or noisy (by pseudorandomly adding and
removing small percentages of entitlements), run a policy mining algorithm on E0

(along with the class model and object model from π0), and compare the meaning
[[π]] of the mined ReBAC policy π with [[π0]]. If the algorithm correctly compensates
for the incompleteness or noise, they will be the same.

In our experiments with the greedy algorithm, the VT approach achieves better
results than the EQ approach. We initially expected the EQ approach to be superior,
because its quality metric is sensitive to the exact number of added entitlements. We
now believe that the VT approach achieves better results because the goal is not to
minimize the added entitlements, but rather to add just the right ones.

In our experiments comparing the VT greedy algorithm with the evolutionary
algorithm, the VT greedy algorithm runs faster and achieves slightly to moderately
better results. This is somewhat surprising, considering that, in Bui et al.’s experiments
for ReBAC policy mining without incompleteness or noise [3], the evolutionary
algorithm achieved somewhat better results than the greedy algorithm. It will be
interesting to see if one of the algorithms can be improved to match or beat the other
in both settings. One reason for favoring improvement of the evolutionary algorithm
(e.g., by experimenting with new mutations) is its superior extensibility: it relies less
on language-specific heuristics and hence is easier to extend to handle additional policy
language features, e.g., additional data types (numbers, sequences, etc.) and associated
relational operators. We plan to investigate extensibility in future work. We also plan
to try to get real-world logs and associated policies to further evaluate our approach.

We also evaluated Rhapsody’s approach to handling missing entitlements in the
context of mining ABAC policies from logs [4]. There is no easy way to combine
Rhapsody’s approach with our algorithms, so we evaluate Rhapsody by running it
and Xu and Stoller’s EQ greedy algorithm for mining ABAC policies from logs [13]
on the same data sets. We find that Rhapsody is much slower and would be usable
for ReBAC mining only on small problem instances.

2 Policy Language

Since our algorithms are based on Bui et al.’s, we also adopt their ReBAC policy
language, ORAL (Object-oriented Relationship-based Access-control Language)[3].
It formulates ReBAC as an object-oriented extension of ABAC. Relationships are

4

expressed using attributes that refer to other objects, and path expressions are used
in conditions and constraints to follow chains of relationships between objects. We
describe the language briefly and refer the reader to [3] for details.

A ReBAC policy is a tuple π = 〈CM ,OM ,Act,Rules〉, where CM is a class
model, OM is an object model, Act is a set of actions, and Rules is a set of rules.

A class model is a set of class declarations. Each field has a multiplicity that
specifies how many values may be stored in the field and is “one” (also denoted “1”),
“optional” (also denoted “?”), or “many” (also denoted “*”, meaning any number).
Boolean fields always have multiplicity 1. Every class implicitly contains a field “id”
with type String and multiplicity 1. A reference type is any class name (used as a type).

An object model is a set of objects whose types are consistent with the class model.
Let type(o) denote the type of object o. The value of a field with multiplicity “many”
is a set. The value of a field with multiplicity “optional” may be a single value or
the placeholder ⊥ indicating absence of a value.

A path is a sequence of field names, written with “.” as a separator. A condition is
a set, interpreted as a conjunction, of atomic conditions. An atomic condition is a tuple
〈p,op, val〉, where p is a non-empty path, op is an operator, either “in” or “contains”,
and val is a constant value, either an atomic value or a set of atomic values. For exam-
ple, an object o satisfies 〈dept.id, in,{CompSci}〉 if the value obtained starting from
o and following (dereferencing) the dept field and then the id field equals CompSci.

A constraint is a set, interpreted as a conjunction, of atomic constraints. Informally,
an atomic constraint expresses a relationship between the requesting subject and the
requested resource, by relating the values of paths starting from each of them. An
atomic constraint is a tuple 〈p1,op, p2〉, where p1 and p2 are paths (possibly the empty
sequence), and op is one of the following four operators: equal, in, contains, supseteq.
Implicitly, the first path is relative to the requesting subject, and the second path is
relative to the requested resource. The empty path represents the subject or resource
itself. For example, a subject s and resource r satisfy 〈specialties, contains, topic〉 if
the set s.specialties contains the value r.topic.

A rule is a tuple 〈subjectType, subjectCondition, resourceType, resourceCondition,
constraint,actions〉, where subjectType and resourceType are class names, subjectCon-
dition and resourceCondition are conditions, constraint is a constraint, actions is a
set of actions. For a rule ρ = 〈st, sc, rt, rc, c,A〉, let sType(ρ) = st, sCond(ρ) = sc,
rType(ρ) = rt, rCond(ρ) = rc, con(ρ) = c, and acts(ρ) = A.

For readability, we may prefix paths with “subject” or “resource”, to indicate
the object from which the path starts. For example, our e-document case study
involves a large bank whose policy contains the rule: A project member can read
all sent documents regarding the project. This is expressed as 〈Employee, sub-
ject.employer.id = LargeBank, Document, true, subject.workOn.relatedDoc 3 re-
source,{read}〉, where Employee.workOn is the set of projects the employee is working
on, and Project.relatedDoc is the set of sent documents related to the project.

The type of a path p (relative to a specified class), denoted type(p), is the type of
the last field in the path. Given a class model, object model, object o, and path p, let
nav(o, p) be the result of navigating (a.k.a. following or dereferencing) path p starting
from object o. The result might be no value, represented by ⊥, an atomic value, or

5

(if a field in p has multiplicity many) a set of values. This is like the semantics of
path navigation in UML’s Object Constraint Language.

An object o satisfies an atomic condition c = 〈p,op, val〉, denoted o |= c, if
(op = in ∧ nav(o, p) ∈ val) ∨ (op = contains ∧ nav(o, p) 3 val). Objects o1 and o2
satisfy an atomic constraint c = 〈p1,op, p2〉, denoted 〈o1, o2〉 |= c, is defined in a
similar way.An entitlement 〈s, r, a〉 satisfies a rule ρ = 〈st, sc, rt, rc, c,A〉, denoted
〈s, r, a〉 |= ρ, if type(s) = st ∧ s |= sc ∧ type(r) = rt ∧ r |= rc ∧ 〈s, r〉 |= c ∧ a ∈ A.
The meaning of a rule ρ, denoted [[ρ]], is the set of entitlements that satisfy it. The
meaning of a ReBAC policy π, denoted [[π]], is the union of the meanings of its rules.

3 Problem Definition

A ReBAC policy that grants a given setE0 of entitlements can be trivially constructed,
by creating a separate rule that grants each entitlement in E0, using conditions on
the “id” field to specify the relevant subject and resource. Such a ReBAC policy is
no better than ACLs.

We adopt two criteria to specify which ReBAC policies are most desirable. One
criterion is to use “id” field only when necessary, i.e., only when every ReBAC
policy consistent with π0 contains rules that use it, because rules that use the “id”
field are identity-based, not attribute-based or relationship-based. The other is to
maximize a policy quality metric, which is a function Qpol from ReBAC policies to a
totally-ordered set, e.g., natural numbers. For generality, we parameterize the policy
mining problem by the policy quality metric, with the convention that smaller values
indicate higher quality.

The extended ReBAC policy mining problem is: given a set E0 of entitlements,
a set D0 of denials, an object model OM , and a class model CM , find a set Rules of
rules such that the ReBAC policy π = 〈CM ,OM ,Act,Rules〉 that uses the “id” field
only when necessary, denies all requests in D0, and has the best quality, according
to Qpol, among such policies. Here, Act is the set of actions that appear in E0.

We call this the “extended” problem to distinguish it from the ReBAC policy
mining problem in [3], which requires [[π]] = E0 and can be viewed as a special case
corresponding to policy quality metrics that give overwhelming penalty to mismatches
between [[π]] and E0.

The policy quality metric that our algorithms aim to optimize is a sum of three
terms. Our algorithms do not guarantee to optimize it; that is NP-hard even for ABAC
mining [13]. The first term is weighted structural complexity (WSC), a generalization
of policy size. It is the same as in [3]. Minimizing policy size is consistent with prior
work on ABAC mining and role mining and with usability studies showing that
concise policies are easier to manage [1]. The WSC of a policy, denoted WSC(π), is
the sum of the WSCs of its rules. The WSC of a rule ρ, denoted WSC(ρ) is a weighted
sum of the WSCs of its components, ignoring the two types, because they always have
the same size. We ignore the weights hereafter, because we always set them to 1. The
WSC of an atomic condition 〈p,op, val〉 is |p|+ |val|, where |p| is the length of path p,
and |val| is 1 if val is an atomic value and is the cardinality of val if val is a set. The

6

WSC of a condition is the sum of the WSCs of the atomic conditions in it. The WSC
of a constraint is defined similarly [3]. The WSC of an action set is its cardinality.

The second and third terms measure differences between [[π]] and E0. They are
not needed in [3], which requires [[π]] = E0. They measure the numbers of addeed and
omitted entitlements, respectively. We divide them by |OM | (the number of objects),
because incompleteness and noise are typically characterized by percentages, not
absolute numbers, of affected entitlements, and the number of granted entitlements
is typically proportional to the size of the object model.

In summary, policy quality is Qpol(π) = wwscWSC(π) +wadd| [[π]] \E0|/|OM |+
womit|E0 \ [[π]] |/|OM |, where the weights are user-specified.

4 Greedy Algorithm

Our VT and EQ greedy algorithms are based on the greedy algorithm for ReBAC
policy mining (without incompleteness or noise) in [3]. It has three phases. The first
phase iterates over the given entitlements, uses selected entitlements as seeds for
constructing candidate rules, and attempts to generalize each candidate rule to cover
more of the given entitlements, greedily selecting the highest-quality generalization
according to a heuristic rule-quality metric. The second phase improves the policy by
merging and simplifying candidate rules. The third phase selects the highest-quality
candidate rules for inclusion in the mined policy.

4.1 Validity-threshold (VT) Approach

Top-level pseudocode appears in Figure 1. It returns a rule set Rules′. Entitlements
covered by Rules′ and not in E0 are the suspected missing entitlements. Entitlements
in E0 not covered by Rules′ are the suspected excess entitlements. It calls several
functions, described below, after a summary of how missing and excess entitlements
are handled. Note that function names hyperlink to descriptions of the functions.

Missing entitlements. The algorithm has a parameter α that bounds the acceptable
fraction of added entitlements (i.e., entitlements not in E0) for a rule. A rule ρ is
α-valid iff the fraction of added entitlements is at most α (i.e., | [[ρ]] \E0|÷ | [[ρ]] | ≤ α)
and the rule does not cover any denials (i.e., [[ρ]] ∩D0 = ∅). The usual notion of
validity [3] corresponds to α = 0. Candidate rules are checked for α-validity at several
places in the algorithm, as discussed below.

Excess entitlements. Excess entitlements typically result from individual errors in
policy administration and hence do not fit any pattern that can be expressed concisely
as rules. Consequently, excess assignments lead to the creation of low-quality candidate
rules. As described in Section 1 and embodied in the last line in Figure 1, our algorithm
drops rules whose quality is below a threshold τ , which is a parameter of the algorithm.

The function candidateConstraint(s, r) returns a set containing all the atomic
constraints that hold between subject s and resource r and that satisfy specified limits
on the lengths of the path expressions. It first computes all candidate constraints

7

// Phase 1: Create a set Rules of candidate rules that covers E0.
Rules = ∅
// uncov contains entitlements in E0 that are not covered by Rules
uncov = E0.copy()
while uncov is not empty
// Use highest-quality uncovered entitlement as a “seed” for rule creation. Quality
// of 〈s, r, a〉 is proportional to the number of occurrences in E0 of 〈r, a〉 and s.
〈s, r, a〉 = highest-quality entitlement in uncov
cc = candidateConstraint(s, r)
// ssub contains subjects with permission 〈r, a〉 and with same candidate constraints as s
ssub = {s′ ∈ OM | type(s′) = type(s)∧ 〈s′, r, a〉 ∈ E0 ∧ candidateConstraint(s′, r) = cc}
// Add candidate rule that covers at least permission 〈r, a〉 for subjects in ssub
addCandidateRule(type(s), ssub, type(r),{r}, cc,{a},uncov,Rules)
// sact is set of actions that s can perform on r
sact = {a′ ∈ Act | 〈s, r, a′〉 ∈ E0}
// Add candidate rule that covers at least permissions {〈r, a′〉 | a′ ∈ sact} for subject s
addCandidateRule(type(s),{s}, type(r),{r}, cc, sact,uncov,Rules)

end while
// Phase 2: Merge and simplify rules.
Repeatedly call mergeRules(Rules), simplifyRules(Rules), and
mergeRulesInheritance(Rules), until they have no further effect
// Remove redundant rules
while Rules contains rules ρ and ρ′ such that [[ρ]] ⊆ [[ρ′]]
Rules.remove(ρ)

end while
// Phase 3: Select high quality rules into Rules′.
Rules′ = ∅
Repeatedly move highest-quality rule from Rules to Rules′ until

∑
ρ∈Rules′ [[ρ]] ⊇ E0,

using E0 \ [[Rules′]] as second argument to Qrul, and discarding a rule if it does not
cover any tuples in E0 currently uncovered by Rules′ or if its quality is below τ
return Rules′

Fig. 1. Greedy algorithm for the extended ReBAC policy mining problem. Inputs: subject-
permission relation E0, class model CM , object model OM . Output: set of rules Rules′.

that contain type-correct paths that start from type(s) and type(r), respectively, and
satisfy the length limits, and then it computes and returns the subset of these that
are satisfied by 〈s, a〉. The length limits mainly bound the difference between the
length of the path and the length of the shortest path between the same types.

The function addCandidateRule(st, ssub, rt, sres, cc, sact,uncov,Rules) first com-
putes conditions sc and rc that characterize (i.e., whose meaning equals) the set ssub
of subjects and the set sres of resources, respectively. It tries to do this using paths that
satisfy the length limits and without using the path “id” (this is a path of length 1); if
this is insufficient, an atomic condition on the path “id” is added. addCandidateRule
then constructs a rule ρ = 〈st, sc, rt, rc,∅, sact〉, calls generalizeRule (described below)
to generalize ρ to ρ′, adds ρ′ to candidate rule set Rules, and then removes the
entitlements covered by ρ′ from uncov.

8

The function generalizeRule(ρ, cc,uncov,Rules) attempts to generalize rule ρ by
adding some atomic constraints in cc to ρ and eliminating the conjuncts (if any) of
the subject condition and resource condition that use the same paths as those atomic
constraints. A rule obtained in this way is called a generalization of ρ. It is more
general in the sense that it refers to relationships instead of specific values, and its
meaning is a superset of the meaning of ρ. In more detail, generalizeRule tries to
generalize ρ using each constraint in cc separately, discards the generalizations that
are not α-valid, sorts the α-valid generalizations in descending order of the number
of covered entitlements in uncov, recursively tries to further generalize each of them
using constraints from cc that produced α-valid generalizations later in the sort order,
and then returns the highest-quality rule among them (rule quality is defined below);
if no generalizations of ρ are α-valid, it simply returns ρ.

A rule quality metric is a function Qrul(ρ,E) that maps a rule ρ to a totally-
ordered set, with the order chosen such that larger values indicate higher quality.
The second argument E is a set of subject-permission tuples. Based on our pri-
mary goal of minimizing the mined policy’s WSC, a secondary preference for rules
with more constraints (because constraints tend to produce more general rules than
conditions), and a tertiary preference for rules with shorter paths in constraints,
we define Qrul(ρ,E) = 〈| [[ρ]] ∩ E|/WSC(ρ), |con(ρ)|,1/TCPL(ρ)〉 where TCPL(ρ)
(“total constraint path length”) is the sum of the lengths of the paths used in the
constraints of ρ. In generalizeRule, the second argument to Qrul is uncov , so [[ρ]]∩E
is the set of currently uncovered entitlements that are covered by ρ.

The function mergeRules(Rules) attempts to improve the quality of Rules by
merging pairs of rules with the same subject type, resource type, and constraint by
taking the least upper bound (LUB) of their subject conditions, the LUB of their
resource conditions, and the union of their sets of actions. The least upper bound of
conditions c1 and c2 is obtained by combining “in” conditions with the same path in
c1 and c2, keeping “contains” conditions with the same path and constant in c1 and
c2, and dropping other atomic conditions in c1 and c2. Thus, if c1 contains 〈p, in, val1〉
and c2 contains 〈p, in, val2〉, then their LUB contains 〈p, in, val1 ∪ val2〉; and, if c1
contains 〈p, contains, val〉 and c2 contains 〈p, contains, val〉, then their LUB contains
〈p, contains, val〉. The meaning of the merged rule ρmrg is a superset of the meanings
of the rules ρ1 and ρ2 being merged. If ρmrg is α-valid, then it is added to Rules, and
ρ1 and ρ2 are redundant and will be removed later.

The function simplifyRules(Rules) attempts to simplify each of the rules in Rules
using several transformations, detailed in [3]. For example, it eliminates atomic con-
ditions from the subject condition and resource condition, and eliminates atomic
constraints from the constraint, if the resulting rule is α-valid.

The function mergeRulesInheritance(Rules) attempts to merge a set of rules if
their subject types or resource types have a common superclass and all the other
components of the rule are the same. In this case, it replaces that set of rules with
a single rule whose subject type or resource type is the most general superclass for
which the resulting rule is α-valid, if any.

Complexity Analysis. The step with the highest asymptotic complexity is mergeRules,
since the number of attempted merges is O(|Rules|2). In the worst case, each rule

9

covers only one entitlement, and this is quadratic in log size. In practice, a rule covers
many entitlements on average, and the complexity is much less. The complexity is
similar as for Bui et al.’s algorithm [3], and in their experiments, measured growth
in running time is less than quadratic with respect to number of entitlements.

Example. We illustrate the VT greedy algorithm on a small fragment of the workforce
management case study containing only the rule “Help desk operators can modify
work orders that apply to active contracts of a Primary Tenant for which he/she
is assigned responsible”, formalized as ρ0 = 〈HelpdeskOperator, true, WorkOrder,
resource.contract.active = true, subject.tenants 3 res.contract.tenant,{modify}〉.

The object model contains: PrimaryTenant objects telco and pp; HelpdeskOp-
erator objects ho1 and ho2 with ho1.tenants ={telco, pp} and ho2.tenants ={pp};
Contract objects telcoActive, telcoInactive, and ppActive whose tenant and active
status are as indicated in the name; WorkOrder objects telcoWO1 on telcoActive
contract, telcoWO2 on telcoInactive contract, and ppWO1 on ppActive contract.

For the policy π containing only ρ0, [[π]] = {〈ho1, telcoWO1,modify〉, 〈ho1,ppWO1,
modify〉, 〈ho2, telcoWO1,modify〉}. Suppose the input E0 is missing entitlement
〈ho1, ppWO1,modify〉 and contains excess entitlement 〈ho2, ppWO1,modify〉.

Our algorithm selects 〈ho2, telcoWO1,modify〉 as the first seed. The first call
to addCandidateRule creates a rule with conditions subject.tenants 3{Telco}, re-
source.contract.tenant ∈{Telco}, and resource.contract.active = true, and then calls
generalizeRule on it. The generalization with candidate constraint subject.tenants
3 resource.contract.tenant succeeds, removing the first two conditions and creating a
rule ρ1 identical to ρ0, provided α ≥ 1/3 (to allow covering the missing entitlement).
The second call to addCandidateRule generates a rule similar to rule ρ0 except that
it has additional condition subject = ho2; later, this rule is merged with ρ1, and the
merge leaves ρ1 unchanged.

Our algorithm selects 〈ho2,ppWO1,modify〉 as the next seed. The two calls to
addCandidateRule generate two rules without constraints; merging and simplification
produces a rule with conditions subject ={ho2} and resource.contract.tenant ={pp}.
This rule’s quality is low, since it covers only 1 entitlement (the excess one). It will
be discarded, provided τ ≥ 1/6.

4.2 Extended-Quality (EQ) Approach

The main difference in this approach compared to the VT approach is that the
algorithm uses a modified rule quality metric that takes added entitlements into
account. The rule quality metric Qrul in Section 4.1 is replaced with a rule quality
metric QEQ

rul whose first component includes a factor that imposes a penalty for added
entitlements, measured as a fraction of the number of entitlements covered by the
rule, and with a weight specified by a parameter wEQ

rul .

QEQ
rul (ρ,E) = 〈

| [[ρ]]∩E|
WSC(ρ)

× (1−
wEQ
rul × | [[ρ]] \E0|
| [[ρ]] |

), |con(ρ)|,1/TCPL(ρ)〉

Also, the four functions that involve α-validity checks are modified as follows. In
generalizeRule, the α-validity check is replaced with a check that the rule does not

10

cover any tuples inD0. In mergeRules, instead of checking whether ρmrg is α-valid, the
algorithm compares the policy quality (as defined in Section 3, with womit = 0, since
omitted entitlements are not determined yet) of Rules and Rules ∪ {ρmrg} \ {ρ1, ρ2},
where ρ1 and ρ2 are the rules being merged. If the latter has higher quality,
and ρmrg does not accept any tuples in D0, then ρ1 and ρ2 are replaced with
ρmrg. In simplifyRules(Rules) and mergeRulesInheritance(Rules), instead of checking
α-validity of the simplified or merged rule, the algorithm checks that the rule does
not cover any denials in D0 and that it does not cover any new added entitlements,
i.e., entitlements not in E0 and not currently covered by Rules; allowing new added
entitlements in those places led to overly permissive policies.

5 Evolutionary Algorithm

Our evolutionary algorithm is based on the evolutionary algorithm for ReBAC mining
(without incompleteness or noise) in [3], which is inspired by Medvet et al.’s work
[7]. It is in the context-free grammar genetic programming (CFGGP) paradigm,
in which individuals, which in our context are ReBAC rules, are represented as
derivation trees of a context-free grammar (CFG). The main part of the algorithm
is preceded by grammar generation, which specializes the generic grammar of ORAL
to a specific input, so that rules in the language of the grammar contain only classes,
fields, constants, and actions that appear in the input, and all path expressions are
type-correct and satisfy the same length limits as in the greedy algorithm.

The algorithm’s first phase iterates over the given entitlements, and uses each
of the selected entitlements as the seed for an evolutionary search that adds one
new rule to the candidate policy. Each evolutionary search starts with an initial
population containing candidate rules created from a seed tuple in a similar way as
in the greedy algorithm along with numerous random variants of those rules together
with some completely random candidate rules, evolves the population by repeatedly
applying genetic operators (mutations and crossover), and then selects the highest
quality rule in the population as the result of that evolutionary search. The second
phase improves the candidate rules by further mutating them.

Pseudocode appears in Figure 2. Function initialPopulation(〈s, r, a〉,Rules,uncov)
creates an initial population for the evolutionary search for a high-quality rule that
covers the seed 〈s, r, a〉 and other tuples. It is implicitly parameterized by the desired
population size popSize. Half of the initial population is generated as follows: perform
the same two calls to addCandidateRule as in Figure 1, add those rules to the initial
population, and then add random variants of those rules obtained by removing some
atomic conditions and atomic constraints. The other half consists of rules with subject
type type(s) or one of its ancestors (selected randomly), resource type type(r) or one
of its ancestors, randomly generated conditions and constraint, and action set {a}.

Rule quality is measured using a fitness function f , modified from the one in [3] to
take missing assignments into account using a threshold approach: false acceptances
are ignored unless they exceed a threshold specified by algorithm parameter α. The
fitness function is f(ρ,α) = 〈FAR(ρ,α),FRR(ρ), ID(ρ),WSC(ρ)〉. The false accep-

tance rate FAR(ρ,α) is 0 if |[[ρ]]\E0|
|[[ρ]]| < α and is |[[ρ]]\E0|

|[[ρ]]| otherwise. The false rejection

11

// Phase 1: Construct candidate policy, using evolutionary search to create each rule.
Rules = ∅; uncov = E0.copy()
while uncov is not empty
seed = highest-quality entitlement in uncov (same quality metric as in greedy algorithm)
pop = initialPopulation(seed,Rules,uncov)
for gen = 1 to nGenerationsSearch
op = a genetic operator randomly selected from searchOps
S = set of nTournament rules randomly selected from pop
if op is a mutation
pop.add(the rule generated by applying op to the highest-quality rule in S)

else // op is a cross-over
pop.add(the two rules generated by applying op to the two highest-quality rules in S)

end if
remove the lowest-quality rules in pop until |pop| = popSize

end for
ρ = the highest-quality rule in pop
if α-valid(ρ);
Rules.add(ρ); uncov.removeAll([[ρ]])

end if
end while
// Phase 2: Improve the candidate rules by further mutating them.
for each ρ in Rules
for gen = 1 to nGenerationsImprove
if gen = nGenerationsImprove/2 ∧ (all attempted improvements to ρ failed)
break // This rule is unlikely to improve. Don’t bother trying more.

end if
op = a genetic operator randomly selected from improveOps
ρ′ = the rule generated by applying op to ρ
if α-valid(ρ′) ∧ ID(ρ′) ≤ ID(ρ)
redundant = {ρ0 ∈ Rules | [[ρ0]] ⊆ [[ρ′]]}
if (Rules ∪ {ρ′} \ redundant) covers E0 and has lower WSC than Rules
Rules.removeAll(redundant); Rules.add(ρ′)

end if
end if

end for
end for
Repeatedly call mergeRules(Rules) and simplifyRules(Rules) until they have no effect
return the rules in Rules with quality at least τ

Fig. 2. Evolutionary algorithm for extended ReBAC policy mining problem. Inputs: subject-
permission relation E0, class model CM , object model OM . Output: set of rules Rules.

rate is FRR(ρ) = |uncov \ [[ρ]] |, and ID(ρ) is the number of atomic conditions in ρ
with path “id”.

The two validity checks used in the algorithm in [3] are replaced with α-validity
checks, as shown in Figure 2. Also, to deal with excess entitlements, the algorithm
returns only rules with quality at least τ .

The set searchOps of genetic operators used in the search phase contains the two
traditional CFGGP genetic operators: a mutation operator that randomly selects a

12

non-terminal in the derivation tree being evolved, and replaces the existing subtree
rooted at that non-terminal with a new subtree randomly generated starting from
that non-terminal, and a cross-over operator that randomly selects a non-terminal
that appears in both of the derivation trees being evolved (called “parents”), and
swaps the subtrees rooted at that non-terminal. It also contains a double mutation
operator that mutates two out of the three predicates (the subject condition, resource
condition, and constraint) in a rule (this enables the operator to have an effect similar
to generalizeRule), and a simplify mutation that removes one randomly selected
atomic condition or atomic constraint (this mutation is included to increase the
overall probability of these mutations). The set improveOps of genetic operators used
in the improvement phase is similar, except it also contains a type mutation operator
that can replace the subject type or resource type with one of its ancestors.

The version of simplifyRules used in this algorithm is the same as in the greedy
algorithm except extended with an additional simplification: replace the subject type
or resource type with one of its children, if the policy still covers E0.

6 Evaluation

This section presents experimental results evaluating our algorithms on the four
sample policies and three large case studies mentioned Section 1, following the
evaluation methodology sketched in Section 1. Our code and data are available
at http://www.cs.stonybrook.edu/~stoller/software/. Parameters of the algo-
rithms (e.g., popSize) have the same values as in [3]. Since the results of experiments
with the EMR and project management sample policies are similar to the results for
the other two sample policies, we summarize their results, omitting details due to
space constraints. Each policy has handwritten class model and rules, and a synthetic
object model generated by a policy-specific pseudorandom algorithm designed to
produce realistic object models, by creating objects and selecting their attribute
values using appropriate probability distributions.

Similarity Metrics. We evaluate the quality of the generated policy using three similar-
ity metrics. They are normalized to range from 0 (completely different) to 1 (identical).
They are based on Jaccard similarity of sets, defined by J(S1, S2) = |S1∩S2|/ |S1∪S2|.
The semantic similarity of policies π1 and π2 is J([[π1]] , [[π2]]). We use this metric to
compare meaning of the original policy π0 and the mined policy π. If the algorithm
accurately identifies and compensates for all incompleteness and noise, the semantic
similarity will equal 1. Missing entitlements similarity is the Jaccard similarity of
the set of actual missing entitlements (removed when creating E0 from [[π0]]) and the
set of suspected missing entitlements. Excess assignments similarity is the Jaccard
similarity of the actual excess entitlements (added when creating E0 from [[π0]]) and
the suspected excess entitlements.

Running Time. An organization needs to run policy mining occasionally, not fre-
quently, so our evaluation focuses on quality of results. Both algorithms have reasonable
running times, although the VT greedy algorithm is significantly faster than the

http://www.cs.stonybrook.edu/~stoller/software/

13

evolutionary algorithm. With our implementation in Java on an Intel i7-3770 CPU,
each run of the VT greedy algorithm and evolutionary algorithm take at most 8.5
and 70 minutes, respectively. The policies involve up to several hundred objects, a
few thousand entitlements, and a few dozen rules (more details on policy size are in
[3]). The evolutionary algorithm can be sped up significantly, at the cost of a small
decrease in quality, by varying parameters. For example, for e-document (our largest
case study), reducing the number of generations per evolutionary search from 2000
(the value used in our main experiments) to 1000 reduces the running time by 27%,
with a decrease of only 0.02 (from 0.87 to 0.85) in policy semantic similarity.

6.1 Experiments with Noise

We introduce synthetic noise at a specified level into the meaning of a ReBAC policy
π0 in a similar way as [14], apply our policy mining algorithms to the resulting set
of entitlements E0 along with the class model and object model, and then compute
the above metrics comparing the original policy π0 and mined policy π. Noise level is
expressed as a fraction of | [[π0]] |; thus, noise level ν means that ν| [[π0]] | entitlements are
added to or removed from [[π0]]. To introduce a specified level ν of noise, we introduce
ν| [[π0]] |/6 missing entitlements and 5ν| [[π0]] |/6 excess entitlements. This ratio is
based on the data in [8, Table 1]. Missing entitlements are selected from a discrete
normal distribution on [[π0]], to reflect that policy errors are usually non-uniformly
distributed. Excess entitlements are selected from a discrete normal distribution on
the complement of [[π0]]. We tune all of the algorithm parameters manually, so the
experimental results reflect the capabilities of the algorithms with an experienced user.

Figure 3 shows results for the VT greedy algorithm and evolutionary algorithm.
Each datapoint is the average over 10 runs (except 5 runs for grant proposal and e-doc)
on inputs with different pseudorandom object model and noise. The 95% confidence
intervals using Student’s t-distribution are reasonably small, less than 0.13 in all
cases except missing assignment similarity for grant proposal policy when running
with evolutionary algorithm, for which it is 0.18. For experiments on healthcare and
university sample policies (not shown in the figure), both algorithms achieve perfect
values (i.e., 1.0) on all three similarity metrics at all three noise levels.

To compare the algorithms, we average the similarity metrics over all three noise
levels and all seven policies. For both algorithms, the average policy semantic similarity
is 0.99, and the average excess entitlement similarity is 0.98; the latter is not surpris-
ing, since the algorithms use the same approach to identify excess entitlements. The
average missing entitlement similarity is 0.96 for the greedy algorithm, and 0.94 for
the evolutionary algorithm. We conclude that VT greedy algorithm is slightly better
than evolutionary algorithm at detecting missing entitlements. Noise detection results
for the EQ greedy algorithm are significantly worse: the average excess entitlement
similarity is 0.95, and the average missing entitlement similarity is 0.73.

6.2 Experiments with Incompleteness (Mining from Logs)

Given a set of entitlements E0, which is a subset of the meaning of a ReBAC policy π0,
the completeness of E0 (relative to π0) is |E0|/| [[π0]] |, i.e., the fraction of entitlements

14

Fig. 3. Left: Excess entitlement similarity. Center: Missing entitlement similarity. Right:
Policy semantic similarity. The legend is the same for all three graphs. Suffixes “ g” and “ e”
indicate VT greedy algorithm and evolutionary algorithm, respectively. Results for the two
algorithms are plotted with dashed and solid lines, respectively.

in [[π0]] that are in E0. Given a ReBAC policy π0 and a desired completeness level
c, we pseudorandomly select (1− c)| [[π0]] | entitlements in [[π0]] and remove them to
create E0. We select them from a discrete normal distribution on [[π0]], to reflect
that some entitlements are used more often and hence more likely to appear in an
access log. We also generate a set of denials D0 by pseudorandomly selecting tuples
from a discrete normal distribution on the complement of [[π0]]. We set the number
of denials to 4% of | [[π0]] |, based on Cotrini et al.’s comment that the percentage of
denied operations in logs used in their experiments is usually less than 5% [4]. For
simplicity, we do not add excess entitlements as noise in these experiments, because
sets of entitlements obtained from logs are expected to contain a relatively small
percentage of excess entitlements, which would not appreciably affect our results.

Figure 4 shows results for the VT greedy algorithm and evolutionary algorithm.
Each datapoint is the average over 10 runs (except 5 runs for grant proposal and
e-doc) on inputs with different pseudorandom object model and incompleteness. The
95% confidence intervals using Student’s t-distribution are reasonably small, less than
0.12 in all cases. As expected, the results are better for higher completeness. For
inputs with completeness 0.7 and higher, policy semantic similarity is above 0.93,
and missing entitlements similarity is above 0.8, for all policies. For the healthcare
and university sample policies (not shown in the figure), for all four completeness
levels, both algorithms achieve perfect values on both similarity metrics.

To compare the algorithms, we average the similarity metrics over all four com-
pleteness levels and all seven policies. The average policy semantic similarity is 0.98
for VT greedy algorithm, and 0.97 for evolutionary algorithm. The average missing
assignments similarity is 0.94 for VT greedy algorithm, and 0.91 for evolutionary
algorithm. Thus, the VT greedy algorithm is modestly better than the evolutionary
algorithm on incomplete inputs. Since the EQ greedy algorithm was less effective
in the noise experiments, we run incompleteness experiments for it on a subset of
policies, namely, EMR, grant proposal and workforce management. The results are
consistent with our expectation: the average policy similarity is 0.89, compared to 0.97
for VT greedy algorithm on the same datasets, and the average missing assignments
similarity is 0.67, compared to 0.89 for VT greedy algorithm on the same datasets.

15

Fig. 4. Left: missing entitlements similarity. Right: policy semantic similarity. The suffixes
and line styles have the same meaning as in Figure 3.

6.3 Comparison with Rhapsody

We evaluated Rhapsody’s approach to handling incompleteness by running Rhapsody
[4] and Xu et al.’s algorithm [13] on some of the ABAC policies used in [13]. For
the university policy with manually written attribute data [13], which involves 10
ABAC rules and 16 attributes, and a log with completeness 0.8, Rhapsody’s running
time (based on its progress indicator) would exceed 24 hours. In contrast, Xu et al.’s
algorithm produces a policy with a perfect policy semantic similarity of 1 in less than
1 second. We created a very small version of the policy, with only 7 ABAC rules and 9
attributes. After parameter tuning based on guidance in [4], the best result is a policy
with policy semantic similarity 0.65, and Rhapsody took 3.7 hours to produce it.

The implementation of Rhapsody we were given considers neither conditions
involving set relations nor constraints of any kind. Extending the implementation to
consider these (as our algorithms do) would significantly increase the number of atoms
(predicates that can appear in rules) and hence the running time. Further extending
it to support ReBAC instead of ABAC would further greatly increase the number of
atoms and hence the running time, making it usable only on small problem instances.

7 Related Work

The only prior work on mining of ReBAC policies (or object-oriented ABAC policies
with path expressions) is [3], which is discussed in Section 1. The contributions of this
paper include adapting their algorithms to handle incompleteness and noise using two
approaches, and extensive experimental evaluation of the accuracy and performance of
the two approaches and the two algorithms in this context. Interestingly, we find that
the VT greedy algorithm achieves slightly to moderately better results; in contrast,
the evolutionary algorithm achieves somewhat better results in the experiments in [3].

The earliest work on mining of access control policies from logs is Molloy et al.’s
algorithm to mine “meaningful” roles from logs and attribute data, i.e., roles whose
membership is statistically correlated with user attributes [9]. Their algorithm is
based on a reduction to the author-topic model problem. Xu and Stoller adapted that
approach to ABAC policy mining and found that it is less accurate and less scalable

16

than the validity-threshold approach [13]. Other work on mining roles from incomplete
or noisy data, e.g., [11,12], uses thresholds but does not consider attribute data.

References

1. Beckerle, M., Martucci, L.A.: Formal definitions for usable access control rule sets—From
goals to metrics. In: Proceedings of the Ninth Symposium on Usable Privacy and
Security (SOUPS). pp. 2:1–2:11. ACM (2013)

2. Bogaerts, J., Decat, M., Lagaisse, B., Joosen, W.: Entity-based access control:
supporting more expressive access control policies. In: Proc. 31st Annual Computer
Security Applications Conference (ACSAC). pp. 291–300. ACM (2015)

3. Bui, T., Stoller, S.D., Li, J.: Greedy and evolutionary algorithms for mining relationship-
based access control policies. Computers & Security (in press), also available at
http://arxiv.org/abs/1708.04749. An earlier version appeared as a short paper in
ACM SACMAT 2017.

4. Cotrini, C., Weghorn, T., Basin, D.: Mining ABAC rules from sparse logs. In: Proc. 3rd
IEEE European Symposium on Security and Privacy (EuroS&P). pp. 2141–2148 (2018)

5. Decat, M., Bogaerts, J., Lagaisse, B., Joosen, W.: The e-document case study:
functional analysis and access control requirements. CW Reports CW654, Department
of Computer Science, KU Leuven (February 2014)

6. Decat, M., Bogaerts, J., Lagaisse, B., Joosen, W.: The workforce management case
study: functional analysis and access control requirements. CW Reports CW655,
Department of Computer Science, KU Leuven (February 2014)

7. Medvet, E., Bartoli, A., Carminati, B., Ferrari, E.: Evolutionary inference of attribute-
based access control policies. In: Proceedings of the 8th International Conference on
Evolutionary Multi-Criterion Optimization (EMO): Part I. Lecture Notes in Computer
Science, vol. 9018, pp. 351–365. Springer (2015)

8. Molloy, I., Li, N., Qi, Y.A., Lobo, J., Dickens, L.: Mining roles with noisy data. In:
Proc. 15th ACM Symposium on Access Control Models and Technologies (SACMAT).
pp. 45–54. ACM (2010)

9. Molloy, I., Park, Y., Chari, S.: Generative models for access control policies: applications
to role mining over logs with attribution. In: Proc. 17th ACM Symposium on Access
Control Models and Technologies (SACMAT). ACM (2012)

10. Munakami, M.: Developing an ABAC-Based Grant Proposal Workflow Management
System. Master’s thesis, Boise State University (December 2016)

11. Vaidya, J., Atluri, V., Guo, Q., Lu, H.: Role mining in the presence of noise. In: Proc. 24th
Annual IFIP WG 11.3 Working Conference on Data and Applications Security and Pri-
vacy (DBSec). Lecture Notes in Computer Science, vol. 6166, pp. 97–112. Springer (2010)

12. Vavilis, S., Egner, A.I., Petkovic, M., Zannone, N.: Role mining with missing values.
In: Proc. 11th Int’l. Conference on Availability, Reliability and Security, (ARES) (2016)

13. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies from logs. In:
Proc. 28th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security and Privacy (DBSec). Springer (2014), extended version available at
http://arxiv.org/abs/1403.5715

14. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. IEEE Transactions
on Dependable and Secure Computing 12(5), 533–545 (Sep–Oct 2015)

http://arxiv.org/abs/1708.04749
http://arxiv.org/abs/1403.5715

	Mining Relationship-Based Access Control Policies from Incomplete and Noisy Data

