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This article describes a very high-level language for clear description of distributed algorithms and opti-
mizations necessary for generating efficient implementations. The language supports high-level control
flows where complex synchronization conditions can be expressed using high-level queries, especially logic
quantifications, over message history sequences. Unfortunately, the programs would be extremely inefficient,
including consuming unbounded memory, if executed straightforwardly.

We present new optimizations that automatically transform complex synchronization conditions into
incremental updates of necessary auxiliary values as messages are sent and received. The core of the optimiza-
tions is the first general method for efficient implementation of logic quantifications. We have developed an
operational semantics of the language, implemented a prototype of the compiler and the optimizations, and
successfully used the language and implementation on a variety of important distributed algorithms.
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1 INTRODUCTION

Distributed algorithms are at the core of distributed systems. Yet, developing practical implementa-
tions of distributed algorithms with correctness and efficiency assurances remains a challenging,
recurring task.

e Study of distributed algorithms has relied on either pseudocode with English, which is
high-level but imprecise, or formal specification languages, which are precise but harder to
understand, lacking mechanisms for building real distributed systems, or not executable at
all.
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e At the same time, programming of distributed systems has mainly been concerned with
program efficiency and has relied mostly on the use of low-level or complex libraries and
to a lesser extent on built-in mechanisms in restricted programming models.

What’s lacking is (1) a simple and powerful language that can express distributed algorithms at a
high level and yet has a clear semantics for precise execution as well as for verification, and is fully
integrated into widely used programming languages for building real distributed systems, together
with (2) powerful optimizations that can transform high-level algorithm descriptions into efficient
implementations.

This article describes a very high-level language, DistAlgo, for clear description of distributed
algorithms, combining advantages of pseudocode, formal specification languages, and programming
languages.

e The main control flow of a process, including sending messages and waiting on conditions
about received messages, can be stated directly as in sequential programs; yield points
where message handlers execute can be specified explicitly and declaratively.

e Complex synchronization conditions can be expressed using high-level queries, especially
quantifications, over message history sequences, without manually writing message han-
dlers that perform low-level incremental updates and obscure control flows.

DistAlgo supports these features by building on an object-oriented programming language. We
also developed an operational semantics for the language. The result is that distributed algorithms
can be expressed in DistAlgo clearly at a high level, like in pseudocode, but also precisely, like in
formal specification languages, facilitating formal verification, and can be executed as part of real
applications, as in programming languages.

Unfortunately, programs containing control flows with synchronization conditions expressed
at such a high level are extremely inefficient if executed straightforwardly: each quantifier can
introduce a linear factor in running time, and any use of the history of messages sent and received
may cause space usage to be unbounded.

We present new optimizations that allow efficient implementations to be generated automat-
ically, extending previous optimizations to distributed programs and to the most challenging
quantifications.

o Our method transforms sending and receiving of messages into updates to message history
sequences, incrementally maintains the truth values of synchronization conditions and
necessary auxiliary values as those sequences are updated, and finally removes those
sequences as dead code when appropriate.

e To incrementally maintain the truth values of general quantifications, our method first
transforms them into aggregations, also called aggregate queries. In general, however,
translating nested quantifications simply into nested aggregations can incur asymptotically
more space and time overhead than necessary. Our transformations minimize the nesting
of the resulting queries.

e Quantified order comparisons are used extensively in nontrivial distributed algorithms.
They can be incrementalized easily when not mixed with other conditions or with each
other. We systematically extract single quantified order comparisons and transform them
into efficient incremental operations.

Overall, our method significantly improves time complexities and reduces the unbounded space
used for message history sequences to the auxiliary space needed for incremental computation.
Systematic incrementalization also allows the time and space complexity of the generated programs
to be analyzed easily.
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There has been a significant amount of related research, as discussed in Section 7. Our work
contains three main contributions:

e A simple and powerful language for expressing distributed algorithms with high-level
control flows and synchronization conditions, an operational semantics, and full integration
into an object-oriented language.

e A systematic method for incrementalizing complex synchronization conditions with respect
to all sending and receiving of messages in distributed programs.

e A general and systematic method for generating efficient implementations of arbitrary
logic quantifications together with general high-level queries.

We have implemented a prototype of the compiler and the optimizations and experimented
with a variety of important distributed algorithms, including Paxos, Byzantine Paxos, and multi-
Paxos. Our experiments strongly confirm the benefits of the language and the effectiveness of the
optimizations.

This article is a revised version of [56]. The main changes are revised and extended descriptions
of the language and the optimization method, a new formal operational semantics, an abridged
and updated description of the implementation, and a new description of our experience of using
DistAlgo in teaching.

2 EXPRESSING DISTRIBUTED ALGORITHMS

Even when a distributed algorithm appears simple at a high level, it can be subtle when necessary
details are considered, making it difficult to understand how the algorithm works precisely. The
difficulty comes from the fact that multiple processes must coordinate and synchronize to achieve
global goals, but at the same time, delays, failures, and attacks can occur. Even determining the
ordering of events is nontrivial, which is why Lamport’s logical clock [43] is so fundamental for
distributed systems.

Running example. We use Lamport’s distributed mutual exclusion algorithm [43] as a running
example. Lamport developed it to illustrate the logical clock he invented. The problem is that n
processes access a shared resource, and need to access it mutually exclusively, in what is called
a critical section (CS), i.e., there can be at most one process in a critical section at a time. The
processes have no shared memory, so they must communicate by sending and receiving messages.
Lamport’s algorithm assumes that communication channels are reliable and first-in-first-out (FIFO).

Figure 1 contains Lamport’s original description of the algorithm, except with the notation <
instead of — in rule 5 (for comparing pairs of timestamps and process ids using lexical ordering:
(a,b) < (a2,b2) iff a<a2 or a=a2 and b < b2) and with the word “acknowledgment” added in
rule 5 (for simplicity when omitting a commonly omitted [29, 59] small optimization mentioned in
a footnote). This description is the most authoritative, is at a high level, and uses the most precise
English we found.

The algorithm satisfies safety, liveness, and fairness, and has a message complexity of 3(n — 1). It
is safe in that at most one process can be in a critical section at a time. It is live in that some process
will be in a critical section if there are requests. It is fair in that requests are served in the order of
the logical timestamps of the request messages. Its message complexity is 3(n — 1) in that 3(n — 1)
messages are required to serve each request.

Challenges. To understand how this algorithm is carried out precisely, one must understand how
each of the n processes acts as both P; and P; in interactions with all other processes. Each process
must have an order of handling all the events according to the five rules, trying to reach its own goal
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The algorithm is then defined by the following five rules. For convenience, the actions
defined by each rule are assumed to form a single event.

1. To request the resource, process P; sends the message T, :P; requests resource to every
other process, and puts that message on its request queue, where T, is the timestamp of
the message.

2. When process P; receives the message T,,:P; requests resource, it places it on its
request queue and sends a (timestamped) acknowledgment message to P;.

3. To release the resource, process P; removes any T,,:P; requests resource message from
its request queue and sends a (timestamped) P; releases resource message to every other
process.

4. When process P; receives a P; releases resource message, it removes any T, :P; requests
resource message from its request queue.

5. Process P; is granted the resource when the following two conditions are satisfied:
(i) There is a Ty, :P; requests resource message in its request queue which is ordered before
any other request in its queue by the relation <. (To define the relation < for messages, we
identify a message with the event of sending it.) (ii) P; has received an acknowledgment
message from every other process timestamped later than Tp,,.

Note that conditions (i) and (ii) of rule 5 are tested locally by P;.

Fig. 1. Original description in English.

of entering and exiting a critical section while also responding to messages from other processes. It
must also keep testing the complex condition in rule 5 as events happen.

State machine based formal specifications have been used to fill in such details precisely, but at
the same time, they are lower-level and harder to understand. For example, a formal specification
of Lamport’s algorithm in I/O automata [59, pages 647-648] occupies about one and a fifth pages,
most of which is double-column.

To actually implement distributed algorithms, details for many additional aspects must be
added, for example, creating processes, letting them establish communication channels with each
other, incorporating appropriate logical clocks (e.g., Lamport clock or vector clock [60]) if needed,
guaranteeing the specified channel properties (e.g., reliable, FIFO), and integrating the algorithm
with the application (e.g., specifying critical section tasks and invoking the code for the algorithm
as part of the overall application). Furthermore, how to do all of these in an easy and modular
fashion?

Our approach. We address these challenges with the DistAlgo language, compilation to executable
programs, and especially optimization by incrementalization of expensive synchronizations, de-
scribed in Sections 3, 4, and 5, respectively. An unexpected result is that incrementalization led us
to discover simplifications of Lamport’s original algorithm in Figure 1; the simplified algorithm can
be expressed using basically two send statements, a receive definition, and an await statement.

The results on the running example are shown in Figures 2-5, with details explained later.
Figure 2 shows Lamport’s original algorithm expressed in DistAlgo; it also includes configuration
and setup for running 50 processes each trying to enter critical section at some point during its
execution. Figures 3 and 4 show two alternative optimized programs after incrementalization; all
lines with comments are new except that the await statement is simplified. Figure 5 shows the
simplified algorithm.
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3 DISTALGO LANGUAGE

To support distributed programming at a high level, four main concepts can be added to commonly
used high-level programming languages, especially object-oriented languages, such as Python and
Java: (1) distributed processes, and sending messages, (2) control flows with yield points and waits,
and receiving messages, (3) synchronization conditions using high-level queries of message history
sequences, and (4) configuration of processes and communication mechanisms. DistAlgo supports
these concepts, with options and generalizations for ease of programming, as described below. A
formal operational semantics for DistAlgo is presented in Appendix A.

Processes and sending of messages. Distributed processes are concurrent executions of pro-
grammed instructions, like threads in Java and Python, except that each process has its private
memory, not shared with other processes, and processes communicate by message passing. Three
main constructs are used, for defining processes, creating processes, and sending messages.

A process definition is of form (1) below. It defines a type p of processes, by defining a class p
that extends class process. The process_body is a set of method definitions and handler definitions,
to be described.

class p extends process:

process_body 9

A special method setup may be defined in process_body for initially setting up data in the process
before the process’s execution starts. A special method run() may be defined in process_body for
carrying out the main flow of execution. A special variable self refers to the process itself.

A process creation statement is of form (2) below. It creates n new processes of type p at each
node in the value of expression node_exp, and returns the resulting process or set of processes.
A node is a running DistAlgo program on a machine, and is identified by the host name of the
machine plus the name of the running DistAlgo program that can be specified when starting the
program.

n new p at node_exp (2)

The number n and the at clause are optional; the defaults are 1 and the local node, respectively. A
new process can be set up by calling its setup method. A call start() on the process then starts
the execution of its run() method.

A statement for sending messages is of form (3) below. It sends the message that is the value of
expression mexp to the process or set of processes that is the value of expression pexp.

send mexp to pexp 3)

A message can be any value but is by convention a tuple whose first component is a string, called a
tag, indicating the kind of the message.

Control flows and handling of received messages. The key idea is to use labels to specify
program points where control flow can yield to handling of messages and resume afterwards.
Three main constructs are used, for specifying yield points, handling of received messages, and
synchronization.

A yield point preceding a statement is of form (4) below, where identifier [ is a label. It specifies
that point in the program as a place where control yields to handling of un-handled messages, if
any, and resumes afterwards.

-1 ©
The label 1 is optional; it can be omitted when this yield point is not explicitly referred to in any

handler definitions, defined next.
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A handler definition, also called a receive definition, is of form (5) below. It handles, at yield
points labeled [y, ..., [;, un-handled messages that match some mexp; sent from pexp;, where mexp;
and pexp; are parts of a tuple pattern; previously unbound variables in a pattern are bound to the
corresponding components in the value matched. The handler_body is a sequence of statements to
be executed for the matched messages.

receive mexp; from pexp;, ..., mexpr from pexpy
at L, ..., [: (5)
handler_body

The from and at clauses are optional; the defaults are any process and all yield points, respectively.
If the from clause is used, each message is automatically extended with the process id of the
sender. A tuple pattern is a tuple in which each component is a non-variable expression, a variable
possibly prefixed with "=", a wildcard, or recursively a tuple pattern. A non-variable expression or
a variable prefixed with “=” means that the corresponding component of the tuple being matched
must equal the value of the non-variable expression or the variable, respectively, for pattern
matching to succeed. A variable not prefixed with “=” matches any value and becomes bound to
the corresponding component of the tuple being matched. A wildcard, written as “_", matches any
value. Support for receive mimics common usage in pseudocode, allowing a message handler
to be associated with multiple yield points without using method definition and invocations. As
syntactic sugar, a receive that is handled at only one yield point can be written at that point.
Synchronization and associated actions can be expressed using general, nondeterministic await
statements. A simple await statement is one of the two forms in (6) below. It waits for the value of
Boolean-valued expression bexp to become true, for the first form, or waits for a timeout after time

period ¢, for the second form.

await bexp
await timeout t

(6)

A general, nondeterministic await statement is of form (7) below. It waits for any of the values of
expressions bexpy, ..., bexpy to become true or a timeout after time period ¢, and then nondeter-
ministically selects one of statements stmty, ..., stmty, stmt whose corresponding conditions are
satisfied to execute. The or and timeout clauses are optional.

await bexp;: stmt
or ...

or bexpy: stmty
timeout t: stmt

™)

An await statement must be preceded by a yield point, for handling messages while waiting; if a
yield point is not specified explicitly, the default is that all message handlers can be executed at
this point.

These few constructs make it easy to specify any process that has its own flow of control while
also responding to messages. It is also easy to specify any process that only responds to messages,
for example, by writing just receive definitions and a run() method containing only await false.

Synchronization conditions using high-level queries. Synchronization conditions and other
conditions can be expressed using high-level queries—quantifications, comprehensions, and
aggregations—over sets of processes and sequences of messages. High-level queries are used
commonly in distributed algorithms because (1) they make complex synchronization conditions
clearer and easier to write, and (2) the complexity of distributed algorithms is measured by round
complexity and message complexity, not time complexity of local processing.
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Quantifications are especially common because they directly capture the truth values of synchro-
nization conditions. We discovered a number of errors in our initial programs that were written
using aggregations in place of quantifications before we developed the method to systematically
optimize quantifications. For example, we regularly expressed “v is larger than all elements of
s”as v > maxs and either forgot to handle the case that s is empty or handled it in an ad hoc
fashion. Naive use of aggregation operators like max may also hinder generation of more efficient
implementations.

We define operations on sets; operations on sequences are the same except that elements are
processed in order, and square brackets are used in place of curly braces.

e A quantification is a query of one of the two forms in (8) below, called existential and
universal quantifications, respectively, plus a set of parameters—variables whose values
are bound before the query. For a query to be well-formed, every variable in it must be
reachable from a parameter—be a parameter or recursively be the left-side variable of a
membership clause whose right-side variables are reachable. Given values of parameters,
the query returns true iff for some or all, respectively, combinations of values of variables
that satisfy all membership clauses v; in sexp;, expression bexp evaluates to true. When
an existential quantification returns true, all variables in the query are also bound to
a combination of values, called a witness, that satisfy all the membership clauses and
condition bexp.

some vy in sexp;, ..., vk in sexpr | bexp ®)
each v; in sexpy, ..., vr in sexpy | bexp

For example, the following query returns true iff each element in s is greater than each
element in s2.

each x in s, x2 in s2 | x > x2

For another example, the following query, containing a nested quantification, returns true
iff some element in s is greater than each element in s2. Additionally, when the query
returns true, variable x is bound to a witness—an element in s that is greater than each
element in s2.

some x in s | each x2 in s2 | x > x2

e A comprehension is a query of form (9) below. Given values of parameters, the query
returns the set of values of exp for all combinations of values of variables that satisfy all
membership clauses v; in sexp; and condition bexp.

{exp: vy in sexp;, ..., vk in sexpx| bexp} 9)
For example, the following query returns the set of products of x in s and x2 in s2 where x
is greater than x2.

{x*y: x in s, x2 in s2 | x > x2}

We abbreviate {v: v in sexp | bexp} as{v in sexp | bexp}.

e An aggregation, also called an aggregate query, is a query of one of the two forms in (10)
below, where agg is an aggregation operator, including count, sum, min, and max. Given
values of parameters, the query returns the value of applying agg to the set value of sexp, for
the first form, or to the multiset of values of exp for all combinations of values of variables
that satisfy all membership clauses v; in sexp; and condition bexp, for the second form.

agqg sexp (10)
agg {exp: vy in sexpy, ..., vk in sexpy| bexp}
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o In the query forms above, each v; can also be a tuple pattern ¢;. Variables in t; are bound
to the corresponding components in the matched elements of the value of sexp;. We omit
| bexp when bexp is true.

We use { } for empty set; use s.add(x) and s.del (x) for element addition and deletion, respectively;
and use x in sand x not in s for membership test and its negation, respectively. We assume
that hashing is used in implementing sets, and the expected time of set initialization, element
addition and removal, and membership test is O(1). We consider operations that involve iterations
over sets and sequences to be expensive; each iteration over a set or sequence incurs a cost that is
linear in the size of the set or sequence. All quantifications, comprehensions, and aggregations are
considered expensive.

DistAlgo has built-in sequences received and sent, containing all messages received and sent,
respectively, by a process.

e Sequence received is updated only at yield points; after a message arrives, it will be
handled when execution reaches the next yield point, by adding the message to received
and running matching receive definitions, if any, associated with the yield point. We use
received m from p interchangeably withm from p in received to mean that message
m from process p is in received; from p is optional, but when specified, each message in
received is automatically extended with the process id of the sender.

e Sequence sent is updated at each send statement; each message sent to a process is added
to sent. We use sent m to p interchangeably withm to p in sent to mean that message
m to process p is in sent; to p is optional, but when specified, p is the process to which m
was sent as specified in the send statement.

If implemented straightforwardly, received and sent can create a huge memory leak, because they
can grow unboundedly, preventing their use in practical programming. Our method can remove
them by maintaining only auxiliary values that are needed for incremental computation.

Configuration. One can specify channel types, handling of messages, and other configuration
items. Such specifications are declarative, so that algorithms can be expressed without unnecessary
implementation details. We describe a few basic kinds of configuration items.

First, one can specify the types of channels for passing messages. For example, the following
statement configures all channels to be FIFO.

configure channel = fifo

Other options for channel include reliable and {reliable, fifo}. When either fifo or
reliable is included, TCP is used for process communication; otherwise, UDP is used. In general,
channels can also be configured separately for messages from any set of processes to any set of
processes.

One can specify how much effort is spent processing messages at yield points. For example,

configure handling = all

configures the system to handle all un-handled messages at each yield point; this is the default. For
another example, one can specify a time limit. One can also specify different handling effort for
different yield points.

Logical clocks [27, 43, 60] are used in many distributed algorithms. One can specify the logical
clock, e.g., Lamport clock, that is used:

configure clock = Lamport

It configures sending and receiving of messages to update the clock appropriately. A call
logical_time() returns the current value of the logical clock.
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Overall, a DistAlgo program consists of a set of process definitions, a method main, and possibly
other, conventional program parts. Method main specifies the configurations and creates, sets
up, and starts a set of processes. DistAlgo language constructs can be used in process definitions
and method main and are implemented according to the semantics described; other, conventional
program parts are implemented according to their conventional semantics.

Other language constructs. For other constructs, we use those in high-level object-oriented
languages. We mostly use Python syntax (indentation for scoping, ’:’ for elaboration, ’# for
comments, etc.) for succinctness, except with v : = exp for assignment and with a few conventions
from Java (keyword extends for subclass, keyword new for object creation, and omission of self,
the equivalent of this in Java, when there is no ambiguity) for ease of reading.

Example. Figure 2 shows Lamport’s algorithm expressed in DistAlgo. The algorithm in Figure 1
corresponds to the body of mutex and the two receive definitions, 16 lines total; the rest of the
program, 14 lines total, shows how the algorithm is used in an application. The execution of the
application starts with method main, which configures the system to run (lines 25-30). Method
mutex and the two receive definitions are executed when needed and follow the five rules in
Figure 1 (lines 5-21). Recall that there is an implicit yield point before the await statement.

Note that Figure 2 is not meant to replace Figure 1, but to realize Figure 1 in a precisely executable
manner. Figure 2 is meant to be high-level, compared with lower-level specifications and programs.

4 COMPILING TO EXECUTABLE PROGRAMS

Compilation generates code to create processes on the specified machine, take care of sending and
receiving messages, and realize the specified configuration. In particular, it inserts appropriate
message handlers at each yield point.

Processes and sending of messages. Process creation is compiled to creating a process on the
specified or default machine and that has a private memory space for its fields. Each process is
implemented using two threads: a main thread that executes the main flow of control of the process,
and a helper thread that receives and enqueues messages sent to this process. Constructs involving
a set of processes, such as n new P, can easily be compiled into loops.

Sending a message m to a process p is compiled into calls to a standard message passing API. If
the sequence sent is used in the program, we also insert sent.add(m to p). Calling a method on
a remote process object is compiled into a remote method call.

Control flows and handling of received messages. Each yield point 1 is compiled into a call
to a message handler method 1() that updates the sequence received, if received is used in the
program, and executes the bodies of the receive definitions whose at clause includes 1. Precisely:

e Each receive definition is compiled into a method that takes a message m as argument,
matches m against the message patterns in the receive clause, and if the matching succeeds,
binds the variables in the matched pattern appropriately, and executes the statement in the
body of this receive definition.

e Method 1() compiled for yield point 1 does the following: for each un-handled message
m from p to be handled, (1) execute received.add(m from p) if received is used in the
program, (2) call the methods generated from the receive definitions whose at clause
includes 1, and (3) remove m from the message queue.

An await statement can be compiled into a synchronization using busy-waiting or blocking. We
use blocking to wait until a new message arrives or the timeout specified in await is reached.
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class P extends process:
def setup(s):
self.s := s # set of all other processes
self.q := {3} # set of pending requests
def mutex(task): # run task with mutual exclusion
-- request
self.t := logical_time() # 1 in Fig 1
send ('request', t, self) to s #
g.add(('request', t, self)) #
# wait for own req < others in q
# and for acks from all in s
await each ('request', t2, p2) in q | # 5 in Fig 1
(t2,p2) != (t,self) implies (t,self) < (t2,p2)
and each p2 in s | #
some received('ack', t2, =p2) | t2 > t
task() # critical section
-- release
g.del(('request', t, self)) # 3 in Fig 1
send ('release', logical_time(), self) to s #
receive ('request', t2, p2): # 2 in Fig 1
g.add(('request', t2, p2)) #
send ('ack', logical_time(), self) to p2 #
receive ('release', _, p2): # 4 in Fig 1
for ('request', t2, =p2) in q: #
q.del(('request', t2, p2)) #
def run(): # main method for the process
- # do non-CS tasks of the process
def task(): ... # define critical section task
mutex (task) # run task with mutual exclusion
# do non-CS tasks of the process
def main(): # main method for the application
.. # do other tasks of the application
configure channel = {reliable, fifo}
# use reliable and FIFO channel
configure clock = Lamport # use Lamport clock
ps := 50 new P # create 50 processes of P class
for p in ps: p.setup(ps-{p}) # pass to each process other processes
for p in ps: p.start() # start the run method of each process
# do other tasks of the application

Fig. 2. Original algorithm (lines 6-21) in a complete program in DistAlgo.

Configuration. Configuration options are taken into account during compilation in a straight-
forward way. Libraries and modules are used as much as possible. For example, when fifo or
reliable channel is specified, the compiler can generate code that uses TCP sockets.
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5 INCREMENTALIZING EXPENSIVE SYNCHRONIZATIONS

Incrementalization transforms expensive computations into efficient incremental computations with
respect to updates to the values on which the computations depend. It (1) identifies all expensive
queries, (2) determines all updates that may affect the query result, and (3) transforms the queries
and updates into efficient incremental computations. Much of incrementalization has been studied
previously, as discussed in Section 7.

The new method here is for (1) systematic handling of quantifications for synchronization
as expensive queries, especially nested alternating universal and existential quantifications and
quantifications containing complex order comparisons and (2) systematic handling of updates
caused by all sending, receiving, and handling of messages in the same way as other updates in the
program. The result is a drastic reduction of both time and space complexities.

Expensive computations using quantifications. Expensive computations in general involve
repetition, including loops, recursive functions, comprehensions, aggregations, and quantifications
over collections. Optimizations were studied most for loops, less for recursive functions, compre-
hensions, and aggregations, and least for quantifications, basically corresponding to how frequently
these constructs have traditionally been used in programming. However, high-level queries are
increasingly used in programming, and quantifications are dominantly used in writing synchro-
nization conditions and assertions in specifications and very high-level programs. Unfortunately, if
implemented straightforwardly, each quantification introduces a cost factor that is linear in the
size of the collection quantified over.

Optimizing expensive quantifications in general is difficult, which is a main reason that they
are not used in practical programs, not even logic programs, and programmers manually write
more complex and error-prone code. The difficulty comes from expensive enumerations over
collections and complex combinations of join conditions. We address this challenge by converting
quantifications into aggregations that can be optimized systematically using previously studied
methods. However, a quantification can be converted into multiple forms of aggregations. Which
one to use depends on what kinds of updates must be handled, and on how the query can be
incrementalized under those updates. Direct conversion of nested quantifications into nested
aggregations can lead to much more complex incremental computation code and asymptotically
worse time and space complexities for maintaining the intermediate query results.

Note that, for an existential quantification, we convert it to a more efficient aggregation if a
witness is not needed; if a witness is needed, we incrementally compute the set of witnesses.

Converting quantifications to aggregations. We present all converted forms here and describe
which forms to use after we discuss the updates that must be handled. The correctness of all rules
presented have been proved, manually, using first-order logic and set theory. These rules ensure
that the value of a resulting query expression equals the value of the original quantified expression.

Table 1 shows general rules for converting single quantifications into equivalent aggregations
that use aggregation operator count. For converting universal quantifications, either rule 2 or 3
could be used. The choice does not affect the asymptotic cost, but only small constant factors: rule
2 requires maintaining count s, and rule 3 requires computing not; the latter is generally faster
unless count s is already needed for other purposes, and is certainly faster when not bexp can be
simplified, e.g., when bexp is a negation. The rules in Table 1 are general because bexp can be any
Boolean expression, but they are for converting single quantifications. Nested quantifications can
be converted one at a time from inside out, but the results may be much more complicated than
necessary. For example,

each x in s|some x2 in s2 | bexp
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would be converted using rule 1 to
each x in s|count {x2 in s2 | bexp} != 0@
and then using rule 2 to
count {x in s | count {x2 in s2 | bexp} != 0} = count s
A simpler conversion is possible for this example, using a rule in Table 2, described next.

Table 1. Rules for converting single quantifications.

Quantification Aggregation
some x in s |bexp|count {x in s|bexp} != 0
count {x in s | bexp} = count s
count {x in s | not bexp} = @

each x in s | bexp

1
2
3

Table 2 shows general rules for converting nested quantifications into equivalent, but non-nested,
aggregations that use aggregation operator count. These rules yield much simpler results than
repeated use of the rules in Table 1. For example, rule 2 in this table yields a much simpler result
than using two rules in Table 1 in the previous example. More significantly, rules 1, 4, and 5
generalize to any number of the same quantifier, and rules 2 and 3 generalize to any number of
quantifiers with one alternation. We have not encountered more complicated quantifications than
these in the algorithms we found. It is well known that more than one alternation is rarely used, so
commonly used quantifications can all be converted to non-nested aggregations. For example, in
twelve different algorithms expressed in DistAlgo [56], there are a total of 50 quantifications but
no occurrence of more than one alternation.

Table 2. Rules for converting nested quantifications.

Nested Quantifications Aggregation
1[some x in s | some x2 in s2 | bexp|count {(x,x2): x in s, x2 in s2 | bexp} != @
2 |each x in s | some x2 in s2 | bexp|count {x: x in s, x2 in s2 | bexp} = count s
3 |some x in s | each x2 in s2 | bexp|count {x: x in s, x2 in s2 | not bexp} != count s
4 count {(x,x2): x in s, x2 in s2 | bexp} =

each x in s | each x2 in s2 | bexp|count {(x,x2): x in s, x2 in s2}
5 count {(x,x2): x in s, x2 in s2 | not bexp} = @

Table 3 shows general rules for converting single quantifications with a single order comparison,
for any linear order, into equivalent queries that use aggregation operators max and min. These
rules are useful because max and min can in general be maintained incrementally in O(log n) time
with O(n) space overhead. Additionally, when there are only element additions, max and min can
be maintained most efficiently in O(1) time and space.

Table 4 shows general rules for decomposing Boolean combinations of conditions in quantifi-
cations, to obtain quantifications with simpler conditions. In particular, Boolean combinations of
order comparisons and other conditions can be transformed to extract quantifications each with a
single order comparison, so the rules in Table 3 can be applied, and Boolean combinations of inner
quantifications and other conditions can be transformed to extract directly nested quantifications,
so the rules in Table 2 can be applied. For example,

each x in s |bexp implies y < x
can be converted using rule 8 in Table 4 to
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each x in {x in s|bexp} |y < x

Table 3. Rules for single quantified order comparison.

Existential Aggregation

1| some x in s <= X

- Ly s 1= {} andy <= max s
2| some x in's | x >=y
3| some x in s >= X .

- |y s 1= {} andy >= min s
4| some x in's | x <=y
5| some x in s < X

- Ly s I={} andy < max s
6| some x in's | x >y
7| some x in s > X .

- Ly s I={} andy > min s
8| some x in's | x <y

Universal Aggregation

9| each x in's | y <= x .

- s = ory <= min s
10| each x in s | x >=y G y
11| each x in's | y >= x

- s = ory >= max s
12| each x in s | x <=y 0 y
13| each x in's | y < x .

- s = ory < min s
14| each x in s | x >y 0 y
15| each x in's | y > x

- s = ory > max s
16| each x in s | x <y O y

which can then be converted using rule 13 of Table 3 to

{x in s |bexp} = {} or y < min {x in s | bexp}

Table 4. Rules for decomposing conditions to extract quantified comparisons.

Quantification Decomposed Quantifications
1| some x in s | not e not each x in s | e
2| some x in s | el and e2 some x in {x in s | el} | e2
3| some x in s | el or e2 (some x in s | el) or (some x in s | e2)
4| some x in s | el implies e2| (some x in s | not el) or (some x in s | e2)
5| each x in s | not e not some x in s | e
6 | each x in s | el and e2 (each x in s | el) and (each x in s | e2)
7 | each x in s | el or e2 each x in {x in s | not el1} | e2
8 | each x in s | el implies e2| each x in {x in s | el} | e2

Updates caused by message passing. Recall that the parameters of a query are variables in the
query whose values are bound before the query. Updates that may affect the query result include
not only updates to the query parameters but also updates to the objects and collections reachable
from the parameter values. The most basic updates are assignments to query parameters, v : = exp,
where v is a query parameter. Other updates are to objects and collections used in the query. For
objects, all updates can be expressed as field assignments, o. f :=exp. For collections, all updates
can be expressed as initialization to empty and element additions and removals, s.add(x) and

s.del(x).
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For distributed algorithms, a distinct class of important updates are caused by message passing.
Updates are caused in two ways:

(1) Sending and receiving messages updates the sequences sent and received, respectively.
Before incrementalization, code is generated, as described in Section 4, to explicitly perform
these updates.

(2) Handling of messages by code in receive definitions updates variables that are parameters
of the queries for computing synchronization conditions, or that are used to compute the
values of these parameters.

Once these are established, updates can be determined using previously studied analysis methods,
e.g. [33, 53].

Incremental computation. Given expensive queries and updates to the query parameters, efficient
incremental computations can be derived for large classes of queries and updates based on the
language constructs used in them or by using a library of rules built on existing data structures [50,
53, 57, 65].

For aggregations converted from quantifications, algebraic properties of the aggregation operators
are exploited to efficiently handle possible updates. In particular, each resulting aggregate query
result can be obtained in O(1) time and incrementally maintained in O(1) time per update to the
sets maintained and affected plus the time for evaluating the conditions in the aggregation once
per update. The total maintenance time at each element addition or deletion to a query parameter
is at least a linear factor smaller than computing the query result from scratch. Additionally, if
aggregation operators max and min are used and there are only element additions, the space overhead
is O(1). Note that if max and min are used naively when there are element deletions, there may
be an unnecessary overhead of O(n) space and O(log n) maintenance time per update from using
more sophisticated data structures to maintain the max or min under element deletion [21, 84, 85].

Incremental computation improves time complexity only if the total time of repeated expensive
queries is larger than that of repeated incremental maintenance. This is generally true for incremen-
talizing expensive synchronization conditions because (1) expensive queries in the synchronization
conditions need to be evaluated repeatedly at each relevant update to the message history, until the
condition becomes true, and (2) incremental maintenance at each such update is at least a linear
factor faster for single message updates and no slower generally than computing from scratch.

To allow the most efficient incremental computation under all given updates, our method
transforms each top-level quantification as follows:

o For non-nested quantifications, if the conditions contain no order comparisons or there are
deletions from the sets or sequences whose elements are compared, the rules in Table 1 are
used. The space overhead is linear in the sizes of the sets maintained and being aggregated
over.

e For non-nested quantifications, if the conditions contain order comparisons and there are
only additions to the sets or sequences whose elements are compared, the rules in Table 4
are used to extract single quantified order comparisons, and then the rules in Table 3 are
used to convert the extracted quantifications. In this case, the space overhead is reduced to
constant.

e For nested quantifications with one level of nesting, the rules in Table 4 are used to extract
directly nested quantifications, and then the rules in Table 2 are used. If the resulting
incremental maintenance has constant-time overhead maintaining a linear-space structure,
we are done. If it is linear-time overhead maintaining a quadratic-space structure, and if the
conditions contain order comparisons, then the rules in Table 4 are used to extract single
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quantified order comparisons, and then the rules in Table 3 are used. This can reduce the
overhead to logarithmic time and linear space.

e In general, multiple ways of conversion may be possible, besides small constant-factor
differences between rules 2 and 3 in Table 1 and rules 4 and 5 in Table 2. In particular, for
nested quantifications with two or more alternations, one must choose which two alternat-
ing quantifiers to transform first, using rule 2 or 3 in Table 2. We have not encountered
such queries and have not studied this aspect further. Our general method is to transform
in all ways possible, obtain the time and space complexities for each result, and choose one
with the best time and then space. Complexities are calculated using the cost model of the
set operations given in Section 3. The number of possible ways is exponential in the worst
case in the size of the query, but the query size is usually a small constant.

Table 5 summarizes well-known incremental computation methods for these aggregate queries.
The methods are expressed as incrementalization rules: if a query in the program matches the
query form in the table, and each update to a parameter of the query in the program matches an
update form in the table, then transform the query into the corresponding replacement and insert
at each update the corresponding maintenance; fresh variables are introduced for each different
query to hold the query results or auxiliary data structures. In the third rule, data structure ds
stores the argument set s of max and supports priority queue operations.

Table 5. Incrementalization rules for count and for max.

Query Replacement Cost
count s | number 0(1)
Updates Inserted Maintenance Cost
s := {3} | number := 0@ 0o(1)
s.add(x) | if x not in s: number +:= 1 o(1)
s.del(x)| if x in s: number -:= 1 0(1)

Query Replacement Cost
max s maximum o(1)
Updates Inserted Maintenance Cost
s := {x}| maximum := x o(1)
s.add(x) | if x > maximum: maximum := x | O(1)

Query Replacement Cost
max s ds.max() o(1)
Updates Inserted Maintenance Cost
s := {} |ds := new DS() o(1)

s := {x}| ds := new DS(); ds.add(x) 0(1)
s.add(x) | if x not in s: ds.add(x) O(log|s])
s.del(x)| if x in s: ds.del(x) O(log |s])

The overall incrementalization algorithm [53, 57, 65] introduces new variables to store the results
of expensive queries and subqueries, as well as appropriate additional values, forming a set of
invariants, transforms the queries and subqueries to use the stored query results and additional
values, and transforms updates to query parameters to also do incremental maintenance of the
stored query results and additional values.
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In particular, if queries are nested, inner queries are transformed before outer queries. Note
that a comprehension such as {x in s | bexp} is incrementalized with respect to changes to
parameters of Boolean expression bexp as well as addition and removal of elements of s; if bexp
contains nested subqueries, then after the subqueries are transformed, incremental maintenance of
their query results become additional updates to the enclosing query.

At the end, variables and computations that are dead in the transformed program are eliminated.
In particular, sequences received and sent will be eliminated when appropriate, because queries
using them have been compiled into message handlers that only store and maintain values needed
for incremental evaluation of the synchronization conditions.

Example. In the program in Figure 2, three quantifications are used in the synchronization condition
in the await statement, and two of them are nested. The condition is copied below, except that
(’ack’,t2,=p2) in received is used in place of received(’ack’,t2,=p2).
each ('request', t2, p2) in q |
(t2,p2) != (t,self) implies (t,self) < (t2,p2)
and each p2 in s |
some ('ack', t2, =p2) in received | t2 > t

Converting quantifications into aggregations as described using Tables 1 through 4 proceeds as
follows. In the first conjunct, the universal quantification is converted using rule 2 or 3 in Table 1,
because it contains an order comparison with elements of q and there are element deletions from
g; rule 3 is used here because it is slightly simpler after the negated condition is simplified. In
the second conjunct, the nested quantification is converted using rule 2 in Table 2. The resulting
expression is:

count {('request', t2, p2) in q |
(t,self) > (t2,p2)} = 0

and

count {p2: p2 in s, ('ack', t2, p2) in received |
t2 >t} = count s

Updates to parameters of the first conjunct are additions and removals of requests to and from
g, and also assignment to t. Updates to parameters of the second conjunct are additions of ack
messages to received, and assignment to t, after the initial assignment to s.

Incremental computation [50, 53, 57, 65] introduces variables to store the values of all three
aggregations in the converted query, transforms the aggregations to use the introduced variables,
and incrementally maintains the stored values at each of the updates, as follows, yielding Figure 3.

e For the first conjunct, store the set value and the count value in two variables, say earlier
and number1, respectively, so first conjunct becomes number1 = @; when t is assigned a
new value, let earlier be q and let number1 be its size, taking O(|earlier|) time, amortized
to O(1) time when each request in earlier is served; when a request is added to q, if t
is defined and (t,self) > (t2,p2) holds, add the request to earlier and increment
number1 by 1, taking O(1) time; similarly for deletion from q. A test of definedness, here t
= undefined, is inserted for any variable that might not be defined in the scope of the
maintenance code.

Note that when (’request’,t,self) in particular is added to or removed from g,
earlier and number1 are not updated, because (t,self) > (t,self) is trivially false.

e For the second conjunct, store the set value and the two count values in three variables, say
responded, number2, and total, respectively, so the conjunct becomes number2 = total;
when s is initialized in setup, assign total the size of s, taking O(|s|) time, done only once
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for each process; when t is assigned a new value, let responded be { }, and let number2 be 0,
taking O(1) time; when an ack message is added to received, if the associated conditions
hold, increment number2 by 1, taking O(1) time. A test of definedness of t is omitted in
the maintenance for receiving ack messages, because t is always defined there; this small
optimization is incorporated in an incrementalization rule, but it could be done with a
data-flow analysis that covers distributed data flows.

Note that incrementalization uses basic properties about primitives and libraries. These properties
are incorporated in incrementalization rules. For the running example, the property used is that a
call to logical_time() returns a timestamp larger than all existing timestamp values, and thus
at the assignment to t in method mutex, we have that earlier is q and responded is {}. So, an
incrementalization rule for maintaining earlier specifies that at update t := logical_time(),
the maintenance is earlier := q; similarly for maintaining responded. These simplifications
could be facilitated with data-flow analyses that determine variables holding logical times and sets
holding certain element types. Incrementalization rules can use any program analysis results as
conditions [50].

Figure 3 shows the optimized program after incrementalization of the synchronization condition
on lines 10-11 in Figure 2. All lines with comments are new except that the synchronization
condition in the await statement is simplified. The synchronization condition now takes O(1)
time, compared with O(|s|?) if computed from scratch. The trade-off is the amortized O(1) time
overhead at updates to t and q and on receiving of ack messages. Using based representation for
sets [17, 34, 64], maintaining earlier and responded can each be done using one bit for each
process.

Note that the sequence received used in the synchronization condition in Figure 2 is no longer
used after incrementalization. All values needed for evaluating the synchronization condition are
stored in new variables introduced: earlier, number1, responded, number2, and total, a drastic
space improvement from unbounded for received to linear in the number of processes.

Example with naive use of aggregation operator min. Note that the resulting program in
Figure 3 does not need to use a queue at all, even though a queue is used in the original description
in Figure 1; the variable q is simply a set, and thus element addition and removal takes O(1) time.

We show that if min is used naively, a more sophisticated data structure [21, 84, 85] supporting
priority queue is needed, incurring an O(log n) time update instead of the O(1) time in Figure 3.
Additionally, for a query using min to be correct, special care must be taken to deal with the case
when the argument to min is empty, because then min is undefined.

Consider the first conjunct in the synchronization condition in the await statement in Figure 2,
copied below:

each ('request', t2, p2) in q |
(t2,p2) !'= (t,self) implies (t,self) < (t2,p2)

One might have written the following instead, because it seems natural, especially if universal
quantification is not supported:

(t,self) < min {(t2,p2): ('request', t2, p2) in g
| (t2,p2) != (t,self)}

However, that is incorrect, because the argument of min may be empty, in which case min is
undefined.

Instead of resorting to commonly used special values, such as maxint, which is ad hoc and error
prone in general, the empty case can be added as the first disjunct of a disjunction:
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class P extends process:

def setup(s):

self.s := s
self.total := count s # total num of other processes
self.q := {3}

def mutex(task):
-- request

self.t := logical_time()

self.earlier :=
self.numberl :=

self.responded :

self.number2 :=

q

# set of pending earlier requests

count earlier # num of pending earlier requests

0

{} # set of responded processes
# num of responded processes

send ('request', t, self) to s
g.add(('request', t, self))

await numberl = 0

and number2 = total # use maintained results
task()
-- release

g.del(('request', t, self))
send ('release', logical_time(), self) to s

receive ('request', t2, p2):

if t != undefined:

# if t is defined

if (t,self) > (t2,p2): # comparison in conjunct 1
if ('request',t2,p2) not in earlier: # if not in earlier
earlier.add(('request', t2, p2)) # add to earlier
number1 +:= 1 # increment numberl

g.add(('request', t2, p2))
send ('ack', logical_time(), self) to p2

receive ('ack', t2, p2): # new message handler

if t2 > t:

# comparison in conjunct 2

if p2 in s: # membership in conjunct 2
if p2 not in responded: # if not responded already
responded. add(p2) # add to responded
number2 +:= 1 # increment number?2
receive ('release', _, p2):
for ('request', t2, =p2) in q:
if t != undefined: # if t is defined
if (t,self) > (t2,p2): # comparison in conjunct 1
if ('request',t2,p2) in earlier: # if in earlier

earlier.del(('request', t2, p2)) # delete from earlier

number1

=1 # decrement numberl

q.del(('request', t2, p2))

Fig. 3. Optimized program after incrementalization. Definitions of run and main are as in Figure 2.
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{(t2,p2): ('request', t2, p2) in g
| (t2,p2) !'= (t,self)} = {3}
or
(t,self) < min {(t2,p2): ('request', t2, p2) in q
| (t2,p2) != (t,self)}

In fact, the original universal quantification in the first conjunct in the await statement can be
converted exactly to this disjunction by using rule 8 in Table 4 and then rule 13 in Table 3. Our
method does not consider this conversion because it leads to a worse resulting program.

Figure 4 shows the resulting program after incrementalization of the synchronization condition
that uses the disjunction above, where ds stores the argument set of min and supports priority queue
operations. All commented lines are new compared to Figure 2 except that the synchronization
condition in the await statement is simplified. The program appears shorter than Figure 3 because
the long complex code for maintaining the data structure ds is not included; it is in fact similar to
Figure 3 except that ds is used and maintained instead of earlier and number1.

The program in Figure 4 is still a drastic improvement over the original program in Figure 2,
with the synchronization condition reduced to O(1) time and with received removed, just as in
Figure 3. The difference is that maintaining ds for incrementalizing min under element addition to
and deletion from q takes O(log |s|) time, as opposed to O(1) time for maintaining earlier and
number1 in Figure 3.

Simplifications to the original algorithm. Consider the original algorithm in Figure 2. Note
that incrementalization determined that there is no need for a process to update auxiliary values
for its own request, in both Figures 3 and 4. Based on this, we discovered, manually, that updates to
q for a process’s own request do not affect the two uses of g, on lines 9 and 35, in Figure 3 and the
only use of g, on line 30, in Figure 4. So we can remove them in Figures 3 and 4. In addition, we
can remove them on lines 9 and 14 in Figure 2 and remove the test (t2,p2) != (t,self), which
becomes always true, in the synchronization condition, yielding a simplified original algorithm.

Furthermore, note that the remaining updates to q in Figure 2 merely maintain pending requests
by others, so we can remove lines 4, 17, 20, 21, and the entire receive definition for release
messages, by using, for the first conjunct in the await statement,

each received('request', t2, p2) |
not (some received('release', t3, =p2) | t3 > t2)
implies (t,self) < (t2,p2)

Figure 5 shows the resulting simplified algorithm. Incrementalizing this program yields essentially
the same programs as in Figures 3 and 4, except that it needs to use the property that when a message
is added to received, all messages from the same process in received have a smaller timestamp.
This property follows from the use of logical clock and FIFO channels. The incrementalization
rules for maintaining the result of the new condition incorporate this property in a similar way as
described for Figure 3, except it could be facilitated with also a data-flow analysis that determines
the component of a received message holding the sender of the message.

6 IMPLEMENTATION AND EXPERIMENTS

We have developed a prototype implementation of the compiler and optimizations for DistAlgo and
evaluated it in implementing a set of well-known distributed algorithms, as described previously [56].
We have also used DistAlgo in teaching distributed algorithms and distributed systems, and students
used the language and system in programming assignments and course projects. We summarize
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1 class P extends process:

2 def setup(s):

3 self.s := s

4 self.total := count s # total num of other processes

5 self.q := {3}

6 self.ds := new DS() # data structure for maintaining

# requests by other processes
7  def mutex(task):

8 -- request
9 self.t := logical_time()
10 self.responded := {} # set of responded processes
11 self.number := 0 # num of responded processes
12 send ('request', t, self) to s
13 g.add(('request', t, self))
14 await (ds.is_empty() or (t,self) < ds.min())
and number = total # use maintained results
15 task()
16 -- release
17 g.del(('request', t, self))
18 send ('release', logical_time(), self) to s

19 receive ('request', t2, p2):

20 ds.add((t2,p2)) # add to data structure

21 g.add(('request', t2, p2))

22 send ('ack', logical_time(), self) to p2

23 receive ('ack', t2, p2): # new message handler

24 if t2 > t: # comparison in conjunct 2
25 if p2 in s: # membership in conjunct 2
26 if p2 not in responded: # if not responded already
27 responded.add(p2) # add to responded

28 number +:= 1 # increment number

29 receive ('release', _, p2):

30 for ('request', t2, =p2) in q:

31 ds.del((t2,p2)) # delete from data structure
32 q.del(('request', t2, p2))

Fig. 4. Optimized program with use of min after incrementalization. Definitions of run and main are as in
Figure 2.

results from the former and describe experience with the latter, after an overview and update about
the implementation.

Our DistAlgo implementation takes DistAlgo programs written in extended Python, applies
analyses and optimizations, especially to the high-level queries, and generates executable Python
code. It optionally interfaces with an incrementalizer to apply incrementalization before generating
code. Applying incrementalization uses the methods and implementation from previous work: a
library of incrementalization rules was developed, manually but mostly following a systematic
method [53, 57], and applied automatically using InvTS [33, 50]. A set of heuristics are currently
used to select the best program generated from incrementalizing differently converted aggregations.
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class P extends process:
def setup(s):
self.s := s

def mutex(task):
-- request
self.t := logical_time()
send ('request', t, self) to s
await each received('request', t2, p2) |
not (some received('release', t3, =p2) | t3 > t2)
implies (t,self) < (t2,p2)
and each p2 in s |
some received('ack', t2, =p2) | t2 > t
task()
-- release
send ('release', logical_time(), self) to s

receive ('request', _, p2):
send ('ack', logical_time(), self) to p2

Fig. 5. Simplified algorithm. Definitions of run and main are as in Figure 2.

A more extensive implementation of DistAlgo than the first prototype [56] has been released and
is being gradually improved [25]. Improved methods and implementation for incrementalization

are also

being developed [49], to replace manually written incrementalization rules, and to better

select the best transformed programs.

Evaluation in implementing distributed algorithms. We have used DistAlgo to implement a
variety of well-known distributed algorithms, including twelve different algorithms for distributed

mutual

exclusion, leader election, and atomic commit, as well as Paxos, Byzantine Paxos, and

multi-Paxos, as summarized previously [56]; results of evaluation using these programs are as

follows:

DistAlgo programs are consistently small, ranging from 22 to 160 lines, and are much
smaller than specifications or programs written in other languages, mostly 1/2 to 1/5 of the
size; also we were able to find only a few of these algorithms written in other languages. Our
own best effort to write Lamport’s distributed mutual exclusion in programming languages
resulted in 272 lines in C, 216 lines in Java, 122 lines in Python, and 99 lines in Erlang,
compared with 32 lines in DistAlgo.

Compilation times without incrementalization are all under 0.05 seconds on an Intel Core-i7
2600K CPU with 16GB of memory; and incrementalization times are all under 30 seconds.
Generated code size ranges from 1395 to 1606 lines of Python, including 1300 lines of fixed
library code.

Execution time and space confirm the analyzed asymptotic time and space complexities. For
example, for Lamport’s distributed mutual exclusion, total CPU time is linear in the number
of processes for the incrementalized program, but superlinear for the original program; for
a fixed number of processes, the memory usage is constant for the incremental program,
but grows linearly with the number of requests for the original program.

Compared with running times of our best, manually written programs in programming
languages, all running on a single machine, our generated DistAlgo takes about twice as
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long as our Python version, which takes about twice as long as our Java version, which
takes about twice as long as our C version, which takes about four times as long as our
Erlang version.

Python is well known to be slow compared Java and C, and we have not focused on optimizing
constant factors. Erlang is significantly faster than C and the rest because of its use of light-weight
threads to implement processes that is facilitated by its being a functional language. However,
among all our programs for Lamport’s distributed mutual exclusion, Erlang is the only one besides
un-incrementalized DistAlgo whose memory usage for a fixed number of processes grows linearly
with the number of requests.

Programming distributed algorithms at a high level has also allowed us to discover several
improvements to correctness and efficiency aspects of some of the algorithms [55]. For example, in
the pseudocode for multi-Paxos [82], in process Commander, waiting for p2b messages containing
ballot b from a majority of acceptors is expressed by starting with a waitfor set initialized to
acceptors and then, in a for ever loop, repeatedly updating waitfor and testing |waitfor| <
|acceptors|/2 as each p2b message containing ballot b arrives. The test is incorrect if implemented
directly in commonly used languages such as Java, and even Python until Python 3, because / is
integer division, which discards any fractional part; for example, test 1 <3/2 becomes false but
should be true. In DistAlgo, the entire code can simply be written as

await count {a: received ('p2b',=b) from a} > (count acceptors)/2
using the standard majority test, and it is correct whether / is for integer or float.

Experience in teaching distributed algorithms. DistAlgo has also helped us tremendously in
teaching distributed algorithms, because it makes complex algorithms completely clear, precise, and
directly executable. Students learn DistAlgo quickly through even a small programming assignment,
despite that most did not know Python before, thanks to the power and clarity of Python.

In particular, students in distributed systems courses have used DistAlgo in dozens of course
projects, implementing the core of network protocols and distributed graph algorithms [59];
distributed coordination services Chubby [16] and Zookeeper [38]; distributed hash tables Kadem-
lia [61], Chord [79], Pastry [74], Tapestry [87], and Dynamo [24]; distributed file systems GFS [32]
and HDEFS [78]; distributed databases Bigtable [19], Cassandra [42], and Megastore [12]; distributed
processing platform MapReduce [23]; and others.

All distributed programming features were used extensively in students’ programs—easy process
creation and setup and sending of messages, high-level control flows with receive definitions as
well as await for synchronization, and declarative configurations—with the exception of queries
over message histories, because students had been trained in many courses to handle events
imperatively; we have not evaluated incrementalization on students’ programs, because execution
efficiency has not been a problem. Overall, students’ experience helps confirm that DistAlgo allows
complex distributed algorithms and services to be implemented much more easily than commonly
used languages such as C++ and Java. We summarize two specific instances below.

In a graduate class in Fall 2012, most of the 28 students initially planned to use Java or C++
for their course projects, because they were familiar with those and wanted to strengthen their
experience of using them instead of using DistAlgo in implementing distributed systems. However,
after doing one programming assignment using DistAlgo, all those students switched to DistAlgo
for their course projects, except for one student, who had extensive experience with C++, including
several years of internship at Microsoft Research programming distributed systems.

e This student wrote about 3000 lines of C++, compared to about 300 lines of DistAlgo
written by several other students who chose the same project of implementing multi-Paxos
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and several optimizations. Furthermore, his C++ program was incomplete, lacking some
optimizations that other students’ DistAgo programs included.

e The student did a re-implementation in DistAlgo quickly after the course’, confirming that
it took about 300 lines. His biggest surprise was that his C++ program was an order of
magnitude slower than his DistAlgo program. After several weeks of debugging, he found
that it was due to an improper use of some C++ library function.

1

The main contrast that the student concluded was the huge advantage of DistAlgo over C++ in
ease of programming and program understanding, not to mention the unexpected performance
advantage.

In a graduate class in Fall 2014, each team of two students first implemented a fault-tolerant
banking service in two languages: DistAlgo and another language of their choice other than Python.
We excluded Python as the other language, because implementing the same service in such closely
related languages would be less educational. The service uses chain replication [83] to tolerate crash
failures. The service offers only a few simple banking operations (get balance, deposit, withdrawal,
intra-bank transfer, inter-bank transfer), so most of the code is devoted to distributed systems
aspects. The numbers of teams that chose various other languages are: Java 15, C++ 3, Go 3, Erlang
2, Node.js 2, Elixir (a variant of Erlang) 1, JavaScript 1.

o In the last assignment, teams implemented an extension to the banking service in one
language of their choice. 59% of the teams chose DistAlgo for this, even though most
students (about 80%) did not know Python, and none knew DistAlgo, at the beginning of
the class. In other words, a majority of students decided that implementation of this type
of system is better in DistAlgo, even compared to languages with which they had more
experience and that are more widely used.

e We asked each team to compare their experiences with the two languages. Teams consis-
tently reported that development in DistAlgo was faster and easier than development in
the other language (even though most students did not know Python before the project),
and that the DistAlgo code was significantly shorter. It is no surprise that Java and C++
require more code, even when students used existing networking libraries, which they
were encouraged to do. Comparison with Erlang and Go is more interesting, because they
are high-level languages designed to support distributed programming. For the teams
that chose Erlang, the average DistAlgo and Erlang code sizes, measured as non-empty
non-comment line of code, are 586 and 1303, respectively. For the teams that chose Go, the
average DistAlgo and Go code sizes are 465 and 1695, respectively.

7 RELATED WORK AND CONCLUSION

A wide spectrum of languages and notations have been used to describe distributed algorithms,
e.g., [7, 29,41, 44, 45, 59, 70-72, 81]. At one end, pseudocode with English is used, e.g., [41], which
gives a high-level flow of the algorithms, but lacks the details and precision needed for a complete
understanding. At the other end, state machine based specification languages are used, e.g., /O
automata [39, 59], which is completely precise, but uses low-level control flows that make it harder
to write and understand the algorithms. There are also many notations in between these extremes,
some being much more precise or completely precise while also giving a high-level control flow,
e.g., Raynal’s pseudocode [70-72] and Lamport’s PlusCal [45]. However, all of these languages and
notations lack concepts and mechanisms for building real distributed applications, and most of the
languages are not executable.

IThe student wanted to do research on DistAlgo and so was asked to re-implement his project in DistAlgo.
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Many programming languages support programming of distributed algorithms and applications.
Most support distributed programming through messaging libraries, ranging from relatively simple
socket libraries to complex libraries such as MPI [62]. Many support Remote Procedure Call (RPC)
or Remote Method Invocation (RMI), which allows a process to call a subroutine in another process
without the programmer coding the details for this. Many also support asynchronous method
invocation (AMI), which allows the caller to not block and get the reply later. Some programming
languages, such as Erlang [26, 46], which has an actor-like model [2], have support for message pass-
ing and process management built into the language. There are also other well-studied languages
for distributed programming, e.g., Argus [47], Lynx [76], SR [5], Concert/C [8], and Emerald [15].
These languages all lack constructs for expressing control flows and complex synchronization
conditions at a much higher level; such high-level constructs are extremely difficult to implement
efficiently. DistAlgo’s construct for declaratively and precisely specifying yield points for handling
received messages is a new feature that we have not seen in other languages. So is DistAlgo’s
support of history variables in high-level synchronization conditions in non-deterministic await
with timeout in a programming language. Our simple combination of synchronous await and
asynchronous receive allows distributed algorithms to be expressed easily and clearly.

There has been much work on producing executable implementations from formal specifications,
e.g., from process algebras [37], I/O automata [31], Unity [35], and Seuss [40], as well as from more
recently proposed high-level languages for distributed algorithms, e.g., Datalog-based languages
Meld [6], Overlog [4], and Bloom [13], a Prolog-based language DAHL [58], and a logic-based
language EventML [14, 67]. An operational semantics was studied recently for a variant of Meld,
called Linear Meld, that allows updates to be encoded more conveniently than Meld by using linear
logic [22]. Compilation of DistAlgo to 