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This article describes a very high-level language for clear description of distributed algorithms and opti-
mizations necessary for generating e�cient implementations. The language supports high-level control
�ows where complex synchronization conditions can be expressed using high-level queries, especially logic
quanti�cations, over message history sequences. Unfortunately, the programs would be extremely ine�cient,
including consuming unbounded memory, if executed straightforwardly.

We present new optimizations that automatically transform complex synchronization conditions into
incremental updates of necessary auxiliary values as messages are sent and received. The core of the optimiza-
tions is the �rst general method for e�cient implementation of logic quanti�cations. We have developed an
operational semantics of the language, implemented a prototype of the compiler and the optimizations, and
successfully used the language and implementation on a variety of important distributed algorithms.
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1 INTRODUCTION
Distributed algorithms are at the core of distributed systems. Yet, developing practical implementa-
tions of distributed algorithms with correctness and e�ciency assurances remains a challenging,
recurring task.

• Study of distributed algorithms has relied on either pseudocode with English, which is
high-level but imprecise, or formal speci�cation languages, which are precise but harder to
understand, lacking mechanisms for building real distributed systems, or not executable at
all.
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• At the same time, programming of distributed systems has mainly been concerned with
program e�ciency and has relied mostly on the use of low-level or complex libraries and
to a lesser extent on built-in mechanisms in restricted programming models.

What’s lacking is (1) a simple and powerful language that can express distributed algorithms at a
high level and yet has a clear semantics for precise execution as well as for veri�cation, and is fully
integrated into widely used programming languages for building real distributed systems, together
with (2) powerful optimizations that can transform high-level algorithm descriptions into e�cient
implementations.

This article describes a very high-level language, DistAlgo, for clear description of distributed
algorithms, combining advantages of pseudocode, formal speci�cation languages, and programming
languages.

• The main control �ow of a process, including sending messages and waiting on conditions
about received messages, can be stated directly as in sequential programs; yield points
where message handlers execute can be speci�ed explicitly and declaratively.
• Complex synchronization conditions can be expressed using high-level queries, especially

quanti�cations, over message history sequences, without manually writing message han-
dlers that perform low-level incremental updates and obscure control �ows.

DistAlgo supports these features by building on an object-oriented programming language. We
also developed an operational semantics for the language. The result is that distributed algorithms
can be expressed in DistAlgo clearly at a high level, like in pseudocode, but also precisely, like in
formal speci�cation languages, facilitating formal veri�cation, and can be executed as part of real
applications, as in programming languages.

Unfortunately, programs containing control �ows with synchronization conditions expressed
at such a high level are extremely ine�cient if executed straightforwardly: each quanti�er can
introduce a linear factor in running time, and any use of the history of messages sent and received
may cause space usage to be unbounded.

We present new optimizations that allow e�cient implementations to be generated automat-
ically, extending previous optimizations to distributed programs and to the most challenging
quanti�cations.

• Our method transforms sending and receiving of messages into updates to message history
sequences, incrementally maintains the truth values of synchronization conditions and
necessary auxiliary values as those sequences are updated, and �nally removes those
sequences as dead code when appropriate.
• To incrementally maintain the truth values of general quanti�cations, our method �rst

transforms them into aggregations, also called aggregate queries. In general, however,
translating nested quanti�cations simply into nested aggregations can incur asymptotically
more space and time overhead than necessary. Our transformations minimize the nesting
of the resulting queries.
• Quanti�ed order comparisons are used extensively in nontrivial distributed algorithms.

They can be incrementalized easily when not mixed with other conditions or with each
other. We systematically extract single quanti�ed order comparisons and transform them
into e�cient incremental operations.

Overall, our method signi�cantly improves time complexities and reduces the unbounded space
used for message history sequences to the auxiliary space needed for incremental computation.
Systematic incrementalization also allows the time and space complexity of the generated programs
to be analyzed easily.
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There has been a signi�cant amount of related research, as discussed in Section 7. Our work
contains three main contributions:

• A simple and powerful language for expressing distributed algorithms with high-level
control �ows and synchronization conditions, an operational semantics, and full integration
into an object-oriented language.
• A systematic method for incrementalizing complex synchronization conditions with respect

to all sending and receiving of messages in distributed programs.
• A general and systematic method for generating e�cient implementations of arbitrary

logic quanti�cations together with general high-level queries.

We have implemented a prototype of the compiler and the optimizations and experimented
with a variety of important distributed algorithms, including Paxos, Byzantine Paxos, and multi-
Paxos. Our experiments strongly con�rm the bene�ts of the language and the e�ectiveness of the
optimizations.

This article is a revised version of [56]. The main changes are revised and extended descriptions
of the language and the optimization method, a new formal operational semantics, an abridged
and updated description of the implementation, and a new description of our experience of using
DistAlgo in teaching.

2 EXPRESSING DISTRIBUTED ALGORITHMS
Even when a distributed algorithm appears simple at a high level, it can be subtle when necessary
details are considered, making it di�cult to understand how the algorithm works precisely. The
di�culty comes from the fact that multiple processes must coordinate and synchronize to achieve
global goals, but at the same time, delays, failures, and attacks can occur. Even determining the
ordering of events is nontrivial, which is why Lamport’s logical clock [43] is so fundamental for
distributed systems.
Running example. We use Lamport’s distributed mutual exclusion algorithm [43] as a running
example. Lamport developed it to illustrate the logical clock he invented. The problem is that n
processes access a shared resource, and need to access it mutually exclusively, in what is called
a critical section (CS), i.e., there can be at most one process in a critical section at a time. The
processes have no shared memory, so they must communicate by sending and receiving messages.
Lamport’s algorithm assumes that communication channels are reliable and �rst-in-�rst-out (FIFO).

Figure 1 contains Lamport’s original description of the algorithm, except with the notation <
instead of −→ in rule 5 (for comparing pairs of timestamps and process ids using lexical ordering:
(a,b)< (a2,b2) i� a< a2 or a= a2 and b< b2) and with the word “acknowledgment” added in
rule 5 (for simplicity when omitting a commonly omitted [29, 59] small optimization mentioned in
a footnote). This description is the most authoritative, is at a high level, and uses the most precise
English we found.

The algorithm satis�es safety, liveness, and fairness, and has a message complexity of 3(n − 1). It
is safe in that at most one process can be in a critical section at a time. It is live in that some process
will be in a critical section if there are requests. It is fair in that requests are served in the order of
the logical timestamps of the request messages. Its message complexity is 3(n − 1) in that 3(n − 1)
messages are required to serve each request.
Challenges. To understand how this algorithm is carried out precisely, one must understand how
each of the n processes acts as both Pi and Pj in interactions with all other processes. Each process
must have an order of handling all the events according to the �ve rules, trying to reach its own goal
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The algorithm is then de�ned by the following �ve rules. For convenience, the actions
de�ned by each rule are assumed to form a single event.

1. To request the resource, process Pi sends the messageTm :Pi requests resource to every
other process, and puts that message on its request queue, where Tm is the timestamp of
the message.

2. When process Pj receives the message Tm :Pi requests resource, it places it on its
request queue and sends a (timestamped) acknowledgment message to Pi .

3. To release the resource, process Pi removes anyTm :Pi requests resource message from
its request queue and sends a (timestamped) Pi releases resource message to every other
process.

4. When process Pj receives a Pi releases resource message, it removes anyTm :Pi requests
resource message from its request queue.

5. Process Pi is granted the resource when the following two conditions are satis�ed:
(i) There is a Tm :Pi requests resource message in its request queue which is ordered before
any other request in its queue by the relation <. (To de�ne the relation < for messages, we
identify a message with the event of sending it.) (ii) Pi has received an acknowledgment
message from every other process timestamped later than Tm .
Note that conditions (i) and (ii) of rule 5 are tested locally by Pi .

Fig. 1. Original description in English.

of entering and exiting a critical section while also responding to messages from other processes. It
must also keep testing the complex condition in rule 5 as events happen.

State machine based formal speci�cations have been used to �ll in such details precisely, but at
the same time, they are lower-level and harder to understand. For example, a formal speci�cation
of Lamport’s algorithm in I/O automata [59, pages 647-648] occupies about one and a �fth pages,
most of which is double-column.

To actually implement distributed algorithms, details for many additional aspects must be
added, for example, creating processes, letting them establish communication channels with each
other, incorporating appropriate logical clocks (e.g., Lamport clock or vector clock [60]) if needed,
guaranteeing the speci�ed channel properties (e.g., reliable, FIFO), and integrating the algorithm
with the application (e.g., specifying critical section tasks and invoking the code for the algorithm
as part of the overall application). Furthermore, how to do all of these in an easy and modular
fashion?
Our approach. We address these challenges with the DistAlgo language, compilation to executable
programs, and especially optimization by incrementalization of expensive synchronizations, de-
scribed in Sections 3, 4, and 5, respectively. An unexpected result is that incrementalization led us
to discover simpli�cations of Lamport’s original algorithm in Figure 1; the simpli�ed algorithm can
be expressed using basically two send statements, a receive de�nition, and an await statement.

The results on the running example are shown in Figures 2–5, with details explained later.
Figure 2 shows Lamport’s original algorithm expressed in DistAlgo; it also includes con�guration
and setup for running 50 processes each trying to enter critical section at some point during its
execution. Figures 3 and 4 show two alternative optimized programs after incrementalization; all
lines with comments are new except that the await statement is simpli�ed. Figure 5 shows the
simpli�ed algorithm.
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3 DISTALGO LANGUAGE
To support distributed programming at a high level, four main concepts can be added to commonly
used high-level programming languages, especially object-oriented languages, such as Python and
Java: (1) distributed processes, and sending messages, (2) control �ows with yield points and waits,
and receiving messages, (3) synchronization conditions using high-level queries of message history
sequences, and (4) con�guration of processes and communication mechanisms. DistAlgo supports
these concepts, with options and generalizations for ease of programming, as described below. A
formal operational semantics for DistAlgo is presented in Appendix A.
Processes and sending of messages. Distributed processes are concurrent executions of pro-
grammed instructions, like threads in Java and Python, except that each process has its private
memory, not shared with other processes, and processes communicate by message passing. Three
main constructs are used, for de�ning processes, creating processes, and sending messages.

A process de�nition is of form (1) below. It de�nes a type p of processes, by de�ning a class p
that extends class process. The process_body is a set of method de�nitions and handler de�nitions,
to be described.

class p extends process: (1)
process_body

A special method setup may be de�ned in process_body for initially setting up data in the process
before the process’s execution starts. A special method run() may be de�ned in process_body for
carrying out the main �ow of execution. A special variable self refers to the process itself.

A process creation statement is of form (2) below. It creates n new processes of type p at each
node in the value of expression node_exp, and returns the resulting process or set of processes.
A node is a running DistAlgo program on a machine, and is identi�ed by the host name of the
machine plus the name of the running DistAlgo program that can be speci�ed when starting the
program.

n new p at node_exp (2)
The number n and the at clause are optional; the defaults are 1 and the local node, respectively. A
new process can be set up by calling its setup method. A call start() on the process then starts
the execution of its run() method.

A statement for sending messages is of form (3) below. It sends the message that is the value of
expressionmexp to the process or set of processes that is the value of expression pexp.

send mexp to pexp (3)
A message can be any value but is by convention a tuple whose �rst component is a string, called a
tag, indicating the kind of the message.
Control �ows and handling of received messages. The key idea is to use labels to specify
program points where control �ow can yield to handling of messages and resume afterwards.
Three main constructs are used, for specifying yield points, handling of received messages, and
synchronization.

A yield point preceding a statement is of form (4) below, where identi�er l is a label. It speci�es
that point in the program as a place where control yields to handling of un-handled messages, if
any, and resumes afterwards.

-- l (4)
The label l is optional; it can be omitted when this yield point is not explicitly referred to in any
handler de�nitions, de�ned next.
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A handler de�nition, also called a receive de�nition, is of form (5) below. It handles, at yield
points labeled l1, ..., lj , un-handled messages that match somemexpi sent from pexpi , wheremexpi
and pexpi are parts of a tuple pattern; previously unbound variables in a pattern are bound to the
corresponding components in the value matched. The handler_body is a sequence of statements to
be executed for the matched messages.

receive mexp1 from pexp1, ..., mexpk from pexpk
at l1, ..., lj: (5)

handler_body

The from and at clauses are optional; the defaults are any process and all yield points, respectively.
If the from clause is used, each message is automatically extended with the process id of the
sender. A tuple pattern is a tuple in which each component is a non-variable expression, a variable
possibly pre�xed with "=", a wildcard, or recursively a tuple pattern. A non-variable expression or
a variable pre�xed with “=” means that the corresponding component of the tuple being matched
must equal the value of the non-variable expression or the variable, respectively, for pattern
matching to succeed. A variable not pre�xed with “=” matches any value and becomes bound to
the corresponding component of the tuple being matched. A wildcard, written as “_”, matches any
value. Support for receive mimics common usage in pseudocode, allowing a message handler
to be associated with multiple yield points without using method de�nition and invocations. As
syntactic sugar, a receive that is handled at only one yield point can be written at that point.

Synchronization and associated actions can be expressed using general, nondeterministic await
statements. A simple await statement is one of the two forms in (6) below. It waits for the value of
Boolean-valued expression bexp to become true, for the �rst form, or waits for a timeout after time
period t , for the second form.

await bexp (6)
await timeout t

A general, nondeterministic await statement is of form (7) below. It waits for any of the values of
expressions bexp1, ..., bexpk to become true or a timeout after time period t , and then nondeter-
ministically selects one of statements stmt1, ..., stmtk , stmt whose corresponding conditions are
satis�ed to execute. The or and timeout clauses are optional.

await bexp1: stmt1
or ... (7)
or bexpk: stmtk
timeout t: stmt

An await statement must be preceded by a yield point, for handling messages while waiting; if a
yield point is not speci�ed explicitly, the default is that all message handlers can be executed at
this point.

These few constructs make it easy to specify any process that has its own �ow of control while
also responding to messages. It is also easy to specify any process that only responds to messages,
for example, by writing just receive de�nitions and a run() method containing only await false.
Synchronization conditions using high-level queries. Synchronization conditions and other
conditions can be expressed using high-level queries—quanti�cations, comprehensions, and
aggregations—over sets of processes and sequences of messages. High-level queries are used
commonly in distributed algorithms because (1) they make complex synchronization conditions
clearer and easier to write, and (2) the complexity of distributed algorithms is measured by round
complexity and message complexity, not time complexity of local processing.
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Quanti�cations are especially common because they directly capture the truth values of synchro-
nization conditions. We discovered a number of errors in our initial programs that were written
using aggregations in place of quanti�cations before we developed the method to systematically
optimize quanti�cations. For example, we regularly expressed “v is larger than all elements of
s” as v > max s and either forgot to handle the case that s is empty or handled it in an ad hoc
fashion. Naive use of aggregation operators like max may also hinder generation of more e�cient
implementations.

We de�ne operations on sets; operations on sequences are the same except that elements are
processed in order, and square brackets are used in place of curly braces.

• A quanti�cation is a query of one of the two forms in (8) below, called existential and
universal quanti�cations, respectively, plus a set of parameters—variables whose values
are bound before the query. For a query to be well-formed, every variable in it must be
reachable from a parameter—be a parameter or recursively be the left-side variable of a
membership clause whose right-side variables are reachable. Given values of parameters,
the query returns true i� for some or all, respectively, combinations of values of variables
that satisfy all membership clauses vi in sexpi , expression bexp evaluates to true. When
an existential quanti�cation returns true, all variables in the query are also bound to
a combination of values, called a witness, that satisfy all the membership clauses and
condition bexp.

some v1 in sexp1, ..., vk in sexpk | bexp (8)
each v1 in sexp1, ..., vk in sexpk | bexp

For example, the following query returns true i� each element in s is greater than each
element in s2.

each x in s, x2 in s2 | x > x2

For another example, the following query, containing a nested quanti�cation, returns true
i� some element in s is greater than each element in s2. Additionally, when the query
returns true, variable x is bound to a witness—an element in s that is greater than each
element in s2.

some x in s | each x2 in s2 | x > x2

• A comprehension is a query of form (9) below. Given values of parameters, the query
returns the set of values of exp for all combinations of values of variables that satisfy all
membership clauses vi in sexpi and condition bexp.

{ exp: v1 in sexp1, ..., vk in sexpk| bexp } (9)
For example, the following query returns the set of products of x in s and x2 in s2 where x
is greater than x2.

{x*y: x in s, x2 in s2 | x > x2}

We abbreviate {v: v in sexp | bexp} as {v in sexp | bexp}.
• An aggregation, also called an aggregate query, is a query of one of the two forms in (10)

below, where aдд is an aggregation operator, including count, sum, min, and max. Given
values of parameters, the query returns the value of applying aдд to the set value of sexp, for
the �rst form, or to the multiset of values of exp for all combinations of values of variables
that satisfy all membership clauses vi in sexpi and condition bexp, for the second form.

aдд sexp (10)
aдд { exp: v1 in sexp1, ..., vk in sexpk| bexp }

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:8 Yanhong A. Liu, Sco� D. Stoller, and Bo Lin

• In the query forms above, each vi can also be a tuple pattern ti . Variables in ti are bound
to the corresponding components in the matched elements of the value of sexpi . We omit
|bexp when bexp is true.

We use {} for empty set; use s.add(x) and s.del(x) for element addition and deletion, respectively;
and use x in s and x not in s for membership test and its negation, respectively. We assume
that hashing is used in implementing sets, and the expected time of set initialization, element
addition and removal, and membership test is O(1). We consider operations that involve iterations
over sets and sequences to be expensive; each iteration over a set or sequence incurs a cost that is
linear in the size of the set or sequence. All quanti�cations, comprehensions, and aggregations are
considered expensive.

DistAlgo has built-in sequences received and sent, containing all messages received and sent,
respectively, by a process.

• Sequence received is updated only at yield points; after a message arrives, it will be
handled when execution reaches the next yield point, by adding the message to received
and running matching receive de�nitions, if any, associated with the yield point. We use
received m from p interchangeably with m from p in received to mean that message
m from process p is in received; from p is optional, but when speci�ed, each message in
received is automatically extended with the process id of the sender.
• Sequence sent is updated at each send statement; each message sent to a process is added

to sent. We use sent m to p interchangeably with m to p in sent to mean that message
m to process p is in sent; to p is optional, but when speci�ed, p is the process to which m
was sent as speci�ed in the send statement.

If implemented straightforwardly, received and sent can create a huge memory leak, because they
can grow unboundedly, preventing their use in practical programming. Our method can remove
them by maintaining only auxiliary values that are needed for incremental computation.
Con�guration. One can specify channel types, handling of messages, and other con�guration
items. Such speci�cations are declarative, so that algorithms can be expressed without unnecessary
implementation details. We describe a few basic kinds of con�guration items.

First, one can specify the types of channels for passing messages. For example, the following
statement con�gures all channels to be FIFO.

configure channel = fifo

Other options for channel include reliable and {reliable, fifo}. When either fifo or
reliable is included, TCP is used for process communication; otherwise, UDP is used. In general,
channels can also be con�gured separately for messages from any set of processes to any set of
processes.

One can specify how much e�ort is spent processing messages at yield points. For example,
configure handling = all

con�gures the system to handle all un-handled messages at each yield point; this is the default. For
another example, one can specify a time limit. One can also specify di�erent handling e�ort for
di�erent yield points.

Logical clocks [27, 43, 60] are used in many distributed algorithms. One can specify the logical
clock, e.g., Lamport clock, that is used:

configure clock = Lamport

It con�gures sending and receiving of messages to update the clock appropriately. A call
logical_time() returns the current value of the logical clock.
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Overall, a DistAlgo program consists of a set of process de�nitions, a method main, and possibly
other, conventional program parts. Method main speci�es the con�gurations and creates, sets
up, and starts a set of processes. DistAlgo language constructs can be used in process de�nitions
and method main and are implemented according to the semantics described; other, conventional
program parts are implemented according to their conventional semantics.
Other language constructs. For other constructs, we use those in high-level object-oriented
languages. We mostly use Python syntax (indentation for scoping, ’:’ for elaboration, ’#’ for
comments, etc.) for succinctness, except with v := exp for assignment and with a few conventions
from Java (keyword extends for subclass, keyword new for object creation, and omission of self,
the equivalent of this in Java, when there is no ambiguity) for ease of reading.
Example. Figure 2 shows Lamport’s algorithm expressed in DistAlgo. The algorithm in Figure 1
corresponds to the body of mutex and the two receive de�nitions, 16 lines total; the rest of the
program, 14 lines total, shows how the algorithm is used in an application. The execution of the
application starts with method main, which con�gures the system to run (lines 25-30). Method
mutex and the two receive de�nitions are executed when needed and follow the �ve rules in
Figure 1 (lines 5-21). Recall that there is an implicit yield point before the await statement.

Note that Figure 2 is not meant to replace Figure 1, but to realize Figure 1 in a precisely executable
manner. Figure 2 is meant to be high-level, compared with lower-level speci�cations and programs.

4 COMPILING TO EXECUTABLE PROGRAMS
Compilation generates code to create processes on the speci�ed machine, take care of sending and
receiving messages, and realize the speci�ed con�guration. In particular, it inserts appropriate
message handlers at each yield point.
Processes and sending of messages. Process creation is compiled to creating a process on the
speci�ed or default machine and that has a private memory space for its �elds. Each process is
implemented using two threads: a main thread that executes the main �ow of control of the process,
and a helper thread that receives and enqueues messages sent to this process. Constructs involving
a set of processes, such as n new P, can easily be compiled into loops.

Sending a message m to a process p is compiled into calls to a standard message passing API. If
the sequence sent is used in the program, we also insert sent.add(m to p). Calling a method on
a remote process object is compiled into a remote method call.
Control �ows and handling of received messages. Each yield point l is compiled into a call
to a message handler method l() that updates the sequence received, if received is used in the
program, and executes the bodies of the receive de�nitions whose at clause includes l. Precisely:

• Each receive de�nition is compiled into a method that takes a message m as argument,
matches m against the message patterns in the receive clause, and if the matching succeeds,
binds the variables in the matched pattern appropriately, and executes the statement in the
body of this receive de�nition.
• Method l() compiled for yield point l does the following: for each un-handled message
m from p to be handled, (1) execute received.add(m from p) if received is used in the
program, (2) call the methods generated from the receive de�nitions whose at clause
includes l, and (3) remove m from the message queue.

An await statement can be compiled into a synchronization using busy-waiting or blocking. We
use blocking to wait until a new message arrives or the timeout speci�ed in await is reached.
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1 class P extends process:
2 def setup(s):
3 self.s := s # set of all other processes
4 self.q := {} # set of pending requests

5 def mutex(task): # run task with mutual exclusion
6 -- request
7 self.t := logical_time() # 1 in Fig 1
8 send ('request', t, self) to s #
9 q.add(('request', t, self)) #

# wait for own req < others in q
# and for acks from all in s

10 await each ('request', t2, p2) in q | # 5 in Fig 1
(t2,p2) != (t,self) implies (t,self) < (t2,p2)

11 and each p2 in s | #
some received('ack', t2, =p2) | t2 > t

12 task() # critical section
13 -- release
14 q.del(('request', t, self)) # 3 in Fig 1
15 send ('release', logical_time(), self) to s #

16 receive ('request', t2, p2): # 2 in Fig 1
17 q.add(('request', t2, p2)) #
18 send ('ack', logical_time(), self) to p2 #

19 receive ('release', _, p2): # 4 in Fig 1
20 for ('request', t2, =p2) in q: #
21 q.del(('request', t2, p2)) #

22 def run(): # main method for the process
... # do non-CS tasks of the process

23 def task(): ... # define critical section task
24 mutex(task) # run task with mutual exclusion

... # do non-CS tasks of the process

25 def main(): # main method for the application
... # do other tasks of the application

26 configure channel = {reliable, fifo}
# use reliable and FIFO channel

27 configure clock = Lamport # use Lamport clock
28 ps := 50 new P # create 50 processes of P class
29 for p in ps: p.setup(ps-{p}) # pass to each process other processes
30 for p in ps: p.start() # start the run method of each process

... # do other tasks of the application

Fig. 2. Original algorithm (lines 6-21) in a complete program in DistAlgo.

Con�guration. Con�guration options are taken into account during compilation in a straight-
forward way. Libraries and modules are used as much as possible. For example, when fifo or
reliable channel is speci�ed, the compiler can generate code that uses TCP sockets.
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5 INCREMENTALIZING EXPENSIVE SYNCHRONIZATIONS
Incrementalization transforms expensive computations into e�cient incremental computations with
respect to updates to the values on which the computations depend. It (1) identi�es all expensive
queries, (2) determines all updates that may a�ect the query result, and (3) transforms the queries
and updates into e�cient incremental computations. Much of incrementalization has been studied
previously, as discussed in Section 7.

The new method here is for (1) systematic handling of quanti�cations for synchronization
as expensive queries, especially nested alternating universal and existential quanti�cations and
quanti�cations containing complex order comparisons and (2) systematic handling of updates
caused by all sending, receiving, and handling of messages in the same way as other updates in the
program. The result is a drastic reduction of both time and space complexities.
Expensive computations using quanti�cations. Expensive computations in general involve
repetition, including loops, recursive functions, comprehensions, aggregations, and quanti�cations
over collections. Optimizations were studied most for loops, less for recursive functions, compre-
hensions, and aggregations, and least for quanti�cations, basically corresponding to how frequently
these constructs have traditionally been used in programming. However, high-level queries are
increasingly used in programming, and quanti�cations are dominantly used in writing synchro-
nization conditions and assertions in speci�cations and very high-level programs. Unfortunately, if
implemented straightforwardly, each quanti�cation introduces a cost factor that is linear in the
size of the collection quanti�ed over.

Optimizing expensive quanti�cations in general is di�cult, which is a main reason that they
are not used in practical programs, not even logic programs, and programmers manually write
more complex and error-prone code. The di�culty comes from expensive enumerations over
collections and complex combinations of join conditions. We address this challenge by converting
quanti�cations into aggregations that can be optimized systematically using previously studied
methods. However, a quanti�cation can be converted into multiple forms of aggregations. Which
one to use depends on what kinds of updates must be handled, and on how the query can be
incrementalized under those updates. Direct conversion of nested quanti�cations into nested
aggregations can lead to much more complex incremental computation code and asymptotically
worse time and space complexities for maintaining the intermediate query results.

Note that, for an existential quanti�cation, we convert it to a more e�cient aggregation if a
witness is not needed; if a witness is needed, we incrementally compute the set of witnesses.
Converting quanti�cations to aggregations. We present all converted forms here and describe
which forms to use after we discuss the updates that must be handled. The correctness of all rules
presented have been proved, manually, using �rst-order logic and set theory. These rules ensure
that the value of a resulting query expression equals the value of the original quanti�ed expression.

Table 1 shows general rules for converting single quanti�cations into equivalent aggregations
that use aggregation operator count. For converting universal quanti�cations, either rule 2 or 3
could be used. The choice does not a�ect the asymptotic cost, but only small constant factors: rule
2 requires maintaining count s, and rule 3 requires computing not; the latter is generally faster
unless count s is already needed for other purposes, and is certainly faster when not bexp can be
simpli�ed, e.g., when bexp is a negation. The rules in Table 1 are general because bexp can be any
Boolean expression, but they are for converting single quanti�cations. Nested quanti�cations can
be converted one at a time from inside out, but the results may be much more complicated than
necessary. For example,

each x in s | some x2 in s2 | bexp
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would be converted using rule 1 to
each x in s | count {x2 in s2 | bexp} != 0

and then using rule 2 to
count {x in s | count {x2 in s2 | bexp} != 0} = count s

A simpler conversion is possible for this example, using a rule in Table 2, described next.

Table 1. Rules for converting single quantifications.

Quanti�cation Aggregation
1 some x in s | bexp count {x in s | bexp} != 0
2
3 each x in s | bexp

count {x in s | bexp} = count s
count {x in s | not bexp} = 0

Table 2 shows general rules for converting nested quanti�cations into equivalent, but non-nested,
aggregations that use aggregation operator count. These rules yield much simpler results than
repeated use of the rules in Table 1. For example, rule 2 in this table yields a much simpler result
than using two rules in Table 1 in the previous example. More signi�cantly, rules 1, 4, and 5
generalize to any number of the same quanti�er, and rules 2 and 3 generalize to any number of
quanti�ers with one alternation. We have not encountered more complicated quanti�cations than
these in the algorithms we found. It is well known that more than one alternation is rarely used, so
commonly used quanti�cations can all be converted to non-nested aggregations. For example, in
twelve di�erent algorithms expressed in DistAlgo [56], there are a total of 50 quanti�cations but
no occurrence of more than one alternation.

Table 2. Rules for converting nested quantifications.

Nested Quanti�cations Aggregation
1 some x in s | some x2 in s2 | bexp count {(x,x2): x in s, x2 in s2 | bexp} != 0

2 each x in s | some x2 in s2 | bexp count {x: x in s, x2 in s2 | bexp} = count s

3 some x in s | each x2 in s2 | bexp count {x: x in s, x2 in s2 | not bexp} != count s

4

5
each x in s | each x2 in s2 | bexp

count {(x,x2): x in s, x2 in s2 | bexp} =
count {(x,x2): x in s, x2 in s2}

count {(x,x2): x in s, x2 in s2 | not bexp} = 0

Table 3 shows general rules for converting single quanti�cations with a single order comparison,
for any linear order, into equivalent queries that use aggregation operators max and min. These
rules are useful because max and min can in general be maintained incrementally in O(logn) time
with O(n) space overhead. Additionally, when there are only element additions, max and min can
be maintained most e�ciently in O(1) time and space.

Table 4 shows general rules for decomposing Boolean combinations of conditions in quanti�-
cations, to obtain quanti�cations with simpler conditions. In particular, Boolean combinations of
order comparisons and other conditions can be transformed to extract quanti�cations each with a
single order comparison, so the rules in Table 3 can be applied, and Boolean combinations of inner
quanti�cations and other conditions can be transformed to extract directly nested quanti�cations,
so the rules in Table 2 can be applied. For example,

each x in s | bexp implies y < x

can be converted using rule 8 in Table 4 to
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Table 3. Rules for single quantified order comparison.

Existential Aggregation
1
2

some x in s | y <= x
some x in s | x >= y

s != {} and y <= max s

3
4

some x in s | y >= x
some x in s | x <= y

s != {} and y >= min s

5
6

some x in s | y < x
some x in s | x > y

s != {} and y < max s

7
8

some x in s | y > x
some x in s | x < y

s != {} and y > min s

Universal Aggregation
9

10
each x in s | y <= x
each x in s | x >= y

s = {} or y <= min s

11
12

each x in s | y >= x
each x in s | x <= y

s = {} or y >= max s

13
14

each x in s | y < x
each x in s | x > y

s = {} or y < min s

15
16

each x in s | y > x
each x in s | x < y

s = {} or y > max s

each x in {x in s | bexp} | y < x

which can then be converted using rule 13 of Table 3 to
{x in s | bexp} = {} or y < min {x in s | bexp}

Table 4. Rules for decomposing conditions to extract quantified comparisons.

Quanti�cation Decomposed Quanti�cations
1 some x in s | not e not each x in s | e

2 some x in s | e1 and e2 some x in {x in s | e1} | e2

3 some x in s | e1 or e2 (some x in s | e1) or (some x in s | e2)

4 some x in s | e1 implies e2 (some x in s | not e1) or (some x in s | e2)

5 each x in s | not e not some x in s | e

6 each x in s | e1 and e2 (each x in s | e1) and (each x in s | e2)

7 each x in s | e1 or e2 each x in {x in s | not e1} | e2

8 each x in s | e1 implies e2 each x in {x in s | e1} | e2

Updates caused by message passing. Recall that the parameters of a query are variables in the
query whose values are bound before the query. Updates that may a�ect the query result include
not only updates to the query parameters but also updates to the objects and collections reachable
from the parameter values. The most basic updates are assignments to query parameters, v := exp,
where v is a query parameter. Other updates are to objects and collections used in the query. For
objects, all updates can be expressed as �eld assignments, o.f := exp. For collections, all updates
can be expressed as initialization to empty and element additions and removals, s.add(x) and
s.del(x).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:14 Yanhong A. Liu, Sco� D. Stoller, and Bo Lin

For distributed algorithms, a distinct class of important updates are caused by message passing.
Updates are caused in two ways:

(1) Sending and receiving messages updates the sequences sent and received, respectively.
Before incrementalization, code is generated, as described in Section 4, to explicitly perform
these updates.

(2) Handling of messages by code in receive de�nitions updates variables that are parameters
of the queries for computing synchronization conditions, or that are used to compute the
values of these parameters.

Once these are established, updates can be determined using previously studied analysis methods,
e.g., [33, 53].
Incremental computation.Given expensive queries and updates to the query parameters, e�cient
incremental computations can be derived for large classes of queries and updates based on the
language constructs used in them or by using a library of rules built on existing data structures [50,
53, 57, 65].

For aggregations converted from quanti�cations, algebraic properties of the aggregation operators
are exploited to e�ciently handle possible updates. In particular, each resulting aggregate query
result can be obtained in O(1) time and incrementally maintained in O(1) time per update to the
sets maintained and a�ected plus the time for evaluating the conditions in the aggregation once
per update. The total maintenance time at each element addition or deletion to a query parameter
is at least a linear factor smaller than computing the query result from scratch. Additionally, if
aggregation operators max and min are used and there are only element additions, the space overhead
is O(1). Note that if max and min are used naively when there are element deletions, there may
be an unnecessary overhead of O(n) space and O(logn) maintenance time per update from using
more sophisticated data structures to maintain the max or min under element deletion [21, 84, 85].

Incremental computation improves time complexity only if the total time of repeated expensive
queries is larger than that of repeated incremental maintenance. This is generally true for incremen-
talizing expensive synchronization conditions because (1) expensive queries in the synchronization
conditions need to be evaluated repeatedly at each relevant update to the message history, until the
condition becomes true, and (2) incremental maintenance at each such update is at least a linear
factor faster for single message updates and no slower generally than computing from scratch.

To allow the most e�cient incremental computation under all given updates, our method
transforms each top-level quanti�cation as follows:

• For non-nested quanti�cations, if the conditions contain no order comparisons or there are
deletions from the sets or sequences whose elements are compared, the rules in Table 1 are
used. The space overhead is linear in the sizes of the sets maintained and being aggregated
over.
• For non-nested quanti�cations, if the conditions contain order comparisons and there are

only additions to the sets or sequences whose elements are compared, the rules in Table 4
are used to extract single quanti�ed order comparisons, and then the rules in Table 3 are
used to convert the extracted quanti�cations. In this case, the space overhead is reduced to
constant.
• For nested quanti�cations with one level of nesting, the rules in Table 4 are used to extract

directly nested quanti�cations, and then the rules in Table 2 are used. If the resulting
incremental maintenance has constant-time overhead maintaining a linear-space structure,
we are done. If it is linear-time overhead maintaining a quadratic-space structure, and if the
conditions contain order comparisons, then the rules in Table 4 are used to extract single
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quanti�ed order comparisons, and then the rules in Table 3 are used. This can reduce the
overhead to logarithmic time and linear space.
• In general, multiple ways of conversion may be possible, besides small constant-factor

di�erences between rules 2 and 3 in Table 1 and rules 4 and 5 in Table 2. In particular, for
nested quanti�cations with two or more alternations, one must choose which two alternat-
ing quanti�ers to transform �rst, using rule 2 or 3 in Table 2. We have not encountered
such queries and have not studied this aspect further. Our general method is to transform
in all ways possible, obtain the time and space complexities for each result, and choose one
with the best time and then space. Complexities are calculated using the cost model of the
set operations given in Section 3. The number of possible ways is exponential in the worst
case in the size of the query, but the query size is usually a small constant.

Table 5 summarizes well-known incremental computation methods for these aggregate queries.
The methods are expressed as incrementalization rules: if a query in the program matches the
query form in the table, and each update to a parameter of the query in the program matches an
update form in the table, then transform the query into the corresponding replacement and insert
at each update the corresponding maintenance; fresh variables are introduced for each di�erent
query to hold the query results or auxiliary data structures. In the third rule, data structure ds
stores the argument set s of max and supports priority queue operations.

Table 5. Incrementalization rules for count and for max.

Query Replacement Cost
count s number O(1)
Updates Inserted Maintenance Cost
s := {} number := 0 O(1)
s.add(x) if x not in s: number +:= 1 O(1)
s.del(x) if x in s: number -:= 1 O(1)

Query Replacement Cost
max s maximum O(1)
Updates Inserted Maintenance Cost
s := {x} maximum := x O(1)
s.add(x) if x > maximum: maximum := x O(1)

Query Replacement Cost
max s ds.max() O(1)
Updates Inserted Maintenance Cost
s := {} ds := new DS() O(1)
s := {x} ds := new DS(); ds.add(x) O(1)
s.add(x) if x not in s: ds.add(x) O(log |s|)
s.del(x) if x in s: ds.del(x) O(log |s|)

The overall incrementalization algorithm [53, 57, 65] introduces new variables to store the results
of expensive queries and subqueries, as well as appropriate additional values, forming a set of
invariants, transforms the queries and subqueries to use the stored query results and additional
values, and transforms updates to query parameters to also do incremental maintenance of the
stored query results and additional values.
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In particular, if queries are nested, inner queries are transformed before outer queries. Note
that a comprehension such as {x in s | bexp} is incrementalized with respect to changes to
parameters of Boolean expression bexp as well as addition and removal of elements of s; if bexp
contains nested subqueries, then after the subqueries are transformed, incremental maintenance of
their query results become additional updates to the enclosing query.

At the end, variables and computations that are dead in the transformed program are eliminated.
In particular, sequences received and sent will be eliminated when appropriate, because queries
using them have been compiled into message handlers that only store and maintain values needed
for incremental evaluation of the synchronization conditions.
Example. In the program in Figure 2, three quanti�cations are used in the synchronization condition
in the await statement, and two of them are nested. The condition is copied below, except that
(’ack’,t2,=p2) in received is used in place of received(’ack’,t2,=p2).

each ('request', t2, p2) in q |
(t2,p2) != (t,self) implies (t,self) < (t2,p2)

and each p2 in s |
some ('ack', t2, =p2) in received | t2 > t

Converting quanti�cations into aggregations as described using Tables 1 through 4 proceeds as
follows. In the �rst conjunct, the universal quanti�cation is converted using rule 2 or 3 in Table 1,
because it contains an order comparison with elements of q and there are element deletions from
q; rule 3 is used here because it is slightly simpler after the negated condition is simpli�ed. In
the second conjunct, the nested quanti�cation is converted using rule 2 in Table 2. The resulting
expression is:

count {('request', t2, p2) in q |
(t,self) > (t2,p2)} = 0

and
count {p2: p2 in s, ('ack', t2, p2) in received |

t2 > t} = count s

Updates to parameters of the �rst conjunct are additions and removals of requests to and from
q, and also assignment to t. Updates to parameters of the second conjunct are additions of ack
messages to received, and assignment to t, after the initial assignment to s.

Incremental computation [50, 53, 57, 65] introduces variables to store the values of all three
aggregations in the converted query, transforms the aggregations to use the introduced variables,
and incrementally maintains the stored values at each of the updates, as follows, yielding Figure 3.

• For the �rst conjunct, store the set value and the count value in two variables, say earlier
and number1, respectively, so �rst conjunct becomes number1 = 0; when t is assigned a
new value, let earlier be q and let number1 be its size, takingO(|earlier|) time, amortized
to O(1) time when each request in earlier is served; when a request is added to q, if t
is de�ned and (t,self) > (t2,p2) holds, add the request to earlier and increment
number1 by 1, taking O(1) time; similarly for deletion from q. A test of de�nedness, here t
!= undefined, is inserted for any variable that might not be de�ned in the scope of the
maintenance code.

Note that when (’request’,t,self) in particular is added to or removed from q,
earlier and number1 are not updated, because (t,self) > (t,self) is trivially false.
• For the second conjunct, store the set value and the two count values in three variables, say
responded, number2, and total, respectively, so the conjunct becomes number2 = total;
when s is initialized in setup, assign total the size of s, takingO(|s|) time, done only once
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for each process; when t is assigned a new value, let responded be {}, and let number2 be 0,
taking O(1) time; when an ack message is added to received, if the associated conditions
hold, increment number2 by 1, taking O(1) time. A test of de�nedness of t is omitted in
the maintenance for receiving ack messages, because t is always de�ned there; this small
optimization is incorporated in an incrementalization rule, but it could be done with a
data-�ow analysis that covers distributed data �ows.

Note that incrementalization uses basic properties about primitives and libraries. These properties
are incorporated in incrementalization rules. For the running example, the property used is that a
call to logical_time() returns a timestamp larger than all existing timestamp values, and thus
at the assignment to t in method mutex, we have that earlier is q and responded is {}. So, an
incrementalization rule for maintaining earlier speci�es that at update t := logical_time(),
the maintenance is earlier := q; similarly for maintaining responded. These simpli�cations
could be facilitated with data-�ow analyses that determine variables holding logical times and sets
holding certain element types. Incrementalization rules can use any program analysis results as
conditions [50].

Figure 3 shows the optimized program after incrementalization of the synchronization condition
on lines 10-11 in Figure 2. All lines with comments are new except that the synchronization
condition in the await statement is simpli�ed. The synchronization condition now takes O(1)
time, compared with O(|s|2) if computed from scratch. The trade-o� is the amortized O(1) time
overhead at updates to t and q and on receiving of ack messages. Using based representation for
sets [17, 34, 64], maintaining earlier and responded can each be done using one bit for each
process.

Note that the sequence received used in the synchronization condition in Figure 2 is no longer
used after incrementalization. All values needed for evaluating the synchronization condition are
stored in new variables introduced: earlier, number1, responded, number2, and total, a drastic
space improvement from unbounded for received to linear in the number of processes.
Example with naive use of aggregation operator min. Note that the resulting program in
Figure 3 does not need to use a queue at all, even though a queue is used in the original description
in Figure 1; the variable q is simply a set, and thus element addition and removal takes O(1) time.

We show that if min is used naively, a more sophisticated data structure [21, 84, 85] supporting
priority queue is needed, incurring an O(logn) time update instead of the O(1) time in Figure 3.
Additionally, for a query using min to be correct, special care must be taken to deal with the case
when the argument to min is empty, because then min is unde�ned.

Consider the �rst conjunct in the synchronization condition in the await statement in Figure 2,
copied below:

each ('request', t2, p2) in q |
(t2,p2) != (t,self) implies (t,self) < (t2,p2)

One might have written the following instead, because it seems natural, especially if universal
quanti�cation is not supported:

(t,self) < min {(t2,p2): ('request', t2, p2) in q
| (t2,p2) != (t,self)}

However, that is incorrect, because the argument of min may be empty, in which case min is
unde�ned.

Instead of resorting to commonly used special values, such as maxint, which is ad hoc and error
prone in general, the empty case can be added as the �rst disjunct of a disjunction:

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:18 Yanhong A. Liu, Sco� D. Stoller, and Bo Lin

1 class P extends process:
2 def setup(s):
3 self.s := s
4 self.total := count s # total num of other processes
5 self.q := {}

6 def mutex(task):
7 -- request
8 self.t := logical_time()
9 self.earlier := q # set of pending earlier requests
10 self.number1 := count earlier # num of pending earlier requests
11 self.responded := {} # set of responded processes
12 self.number2 := 0 # num of responded processes
13 send ('request', t, self) to s
14 q.add(('request', t, self))
15 await number1 = 0

and number2 = total # use maintained results
16 task()
17 -- release
18 q.del(('request', t, self))
19 send ('release', logical_time(), self) to s

20 receive ('request', t2, p2):
21 if t != undefined: # if t is defined
22 if (t,self) > (t2,p2): # comparison in conjunct 1
23 if ('request',t2,p2) not in earlier: # if not in earlier
24 earlier.add(('request', t2, p2)) # add to earlier
25 number1 +:= 1 # increment number1
26 q.add(('request', t2, p2))
27 send ('ack', logical_time(), self) to p2

28 receive ('ack', t2, p2): # new message handler
29 if t2 > t: # comparison in conjunct 2
30 if p2 in s: # membership in conjunct 2
31 if p2 not in responded: # if not responded already
32 responded.add(p2) # add to responded
33 number2 +:= 1 # increment number2

34 receive ('release', _, p2):
35 for ('request', t2, =p2) in q:
36 if t != undefined: # if t is defined
37 if (t,self) > (t2,p2): # comparison in conjunct 1
38 if ('request',t2,p2) in earlier: # if in earlier
39 earlier.del(('request', t2, p2)) # delete from earlier
40 number1 -:= 1 # decrement number1
41 q.del(('request', t2, p2))

Fig. 3. Optimized program a�er incrementalization. Definitions of run and main are as in Figure 2.
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{(t2,p2): ('request', t2, p2) in q
| (t2,p2) != (t,self)} = {}

or
(t,self) < min {(t2,p2): ('request', t2, p2) in q

| (t2,p2) != (t,self)}

In fact, the original universal quanti�cation in the �rst conjunct in the await statement can be
converted exactly to this disjunction by using rule 8 in Table 4 and then rule 13 in Table 3. Our
method does not consider this conversion because it leads to a worse resulting program.

Figure 4 shows the resulting program after incrementalization of the synchronization condition
that uses the disjunction above, where ds stores the argument set of min and supports priority queue
operations. All commented lines are new compared to Figure 2 except that the synchronization
condition in the await statement is simpli�ed. The program appears shorter than Figure 3 because
the long complex code for maintaining the data structure ds is not included; it is in fact similar to
Figure 3 except that ds is used and maintained instead of earlier and number1.

The program in Figure 4 is still a drastic improvement over the original program in Figure 2,
with the synchronization condition reduced to O(1) time and with received removed, just as in
Figure 3. The di�erence is that maintaining ds for incrementalizing min under element addition to
and deletion from q takes O(log |s|) time, as opposed to O(1) time for maintaining earlier and
number1 in Figure 3.
Simpli�cations to the original algorithm. Consider the original algorithm in Figure 2. Note
that incrementalization determined that there is no need for a process to update auxiliary values
for its own request, in both Figures 3 and 4. Based on this, we discovered, manually, that updates to
q for a process’s own request do not a�ect the two uses of q, on lines 9 and 35, in Figure 3 and the
only use of q, on line 30, in Figure 4. So we can remove them in Figures 3 and 4. In addition, we
can remove them on lines 9 and 14 in Figure 2 and remove the test (t2,p2) != (t,self), which
becomes always true, in the synchronization condition, yielding a simpli�ed original algorithm.

Furthermore, note that the remaining updates to q in Figure 2 merely maintain pending requests
by others, so we can remove lines 4, 17, 20, 21, and the entire receive de�nition for release
messages, by using, for the �rst conjunct in the await statement,

each received('request', t2, p2) |
not (some received('release', t3, =p2) | t3 > t2)
implies (t,self) < (t2,p2)

Figure 5 shows the resulting simpli�ed algorithm. Incrementalizing this program yields essentially
the same programs as in Figures 3 and 4, except that it needs to use the property that when a message
is added to received, all messages from the same process in received have a smaller timestamp.
This property follows from the use of logical clock and FIFO channels. The incrementalization
rules for maintaining the result of the new condition incorporate this property in a similar way as
described for Figure 3, except it could be facilitated with also a data-�ow analysis that determines
the component of a received message holding the sender of the message.

6 IMPLEMENTATION AND EXPERIMENTS
We have developed a prototype implementation of the compiler and optimizations for DistAlgo and
evaluated it in implementing a set of well-known distributed algorithms, as described previously [56].
We have also used DistAlgo in teaching distributed algorithms and distributed systems, and students
used the language and system in programming assignments and course projects. We summarize
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1 class P extends process:
2 def setup(s):
3 self.s := s
4 self.total := count s # total num of other processes
5 self.q := {}
6 self.ds := new DS() # data structure for maintaining

# requests by other processes
7 def mutex(task):
8 -- request
9 self.t := logical_time()
10 self.responded := {} # set of responded processes
11 self.number := 0 # num of responded processes
12 send ('request', t, self) to s
13 q.add(('request', t, self))
14 await (ds.is_empty() or (t,self) < ds.min())

and number = total # use maintained results
15 task()
16 -- release
17 q.del(('request', t, self))
18 send ('release', logical_time(), self) to s

19 receive ('request', t2, p2):
20 ds.add((t2,p2)) # add to data structure
21 q.add(('request', t2, p2))
22 send ('ack', logical_time(), self) to p2

23 receive ('ack', t2, p2): # new message handler
24 if t2 > t: # comparison in conjunct 2
25 if p2 in s: # membership in conjunct 2
26 if p2 not in responded: # if not responded already
27 responded.add(p2) # add to responded
28 number +:= 1 # increment number

29 receive ('release', _, p2):
30 for ('request', t2, =p2) in q:
31 ds.del((t2,p2)) # delete from data structure
32 q.del(('request', t2, p2))

Fig. 4. Optimized program with use of min a�er incrementalization. Definitions of run and main are as in
Figure 2.

results from the former and describe experience with the latter, after an overview and update about
the implementation.

Our DistAlgo implementation takes DistAlgo programs written in extended Python, applies
analyses and optimizations, especially to the high-level queries, and generates executable Python
code. It optionally interfaces with an incrementalizer to apply incrementalization before generating
code. Applying incrementalization uses the methods and implementation from previous work: a
library of incrementalization rules was developed, manually but mostly following a systematic
method [53, 57], and applied automatically using InvTS [33, 50]. A set of heuristics are currently
used to select the best program generated from incrementalizing di�erently converted aggregations.
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1 class P extends process:
2 def setup(s):
3 self.s := s

4 def mutex(task):
5 -- request
6 self.t := logical_time()
7 send ('request', t, self) to s
8 await each received('request', t2, p2) |

not (some received('release', t3, =p2) | t3 > t2)
implies (t,self) < (t2,p2)

9 and each p2 in s |
some received('ack', t2, =p2) | t2 > t

10 task()
11 -- release
12 send ('release', logical_time(), self) to s

13 receive ('request', _, p2):
14 send ('ack', logical_time(), self) to p2

Fig. 5. Simplified algorithm. Definitions of run and main are as in Figure 2.

A more extensive implementation of DistAlgo than the �rst prototype [56] has been released and
is being gradually improved [25]. Improved methods and implementation for incrementalization
are also being developed [49], to replace manually written incrementalization rules, and to better
select the best transformed programs.
Evaluation in implementing distributed algorithms. We have used DistAlgo to implement a
variety of well-known distributed algorithms, including twelve di�erent algorithms for distributed
mutual exclusion, leader election, and atomic commit, as well as Paxos, Byzantine Paxos, and
multi-Paxos, as summarized previously [56]; results of evaluation using these programs are as
follows:

• DistAlgo programs are consistently small, ranging from 22 to 160 lines, and are much
smaller than speci�cations or programs written in other languages, mostly 1/2 to 1/5 of the
size; also we were able to �nd only a few of these algorithms written in other languages. Our
own best e�ort to write Lamport’s distributed mutual exclusion in programming languages
resulted in 272 lines in C, 216 lines in Java, 122 lines in Python, and 99 lines in Erlang,
compared with 32 lines in DistAlgo.
• Compilation times without incrementalization are all under 0.05 seconds on an Intel Core-i7

2600K CPU with 16GB of memory; and incrementalization times are all under 30 seconds.
Generated code size ranges from 1395 to 1606 lines of Python, including 1300 lines of �xed
library code.
• Execution time and space con�rm the analyzed asymptotic time and space complexities. For

example, for Lamport’s distributed mutual exclusion, total CPU time is linear in the number
of processes for the incrementalized program, but superlinear for the original program; for
a �xed number of processes, the memory usage is constant for the incremental program,
but grows linearly with the number of requests for the original program.
• Compared with running times of our best, manually written programs in programming

languages, all running on a single machine, our generated DistAlgo takes about twice as
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long as our Python version, which takes about twice as long as our Java version, which
takes about twice as long as our C version, which takes about four times as long as our
Erlang version.

Python is well known to be slow compared Java and C, and we have not focused on optimizing
constant factors. Erlang is signi�cantly faster than C and the rest because of its use of light-weight
threads to implement processes that is facilitated by its being a functional language. However,
among all our programs for Lamport’s distributed mutual exclusion, Erlang is the only one besides
un-incrementalized DistAlgo whose memory usage for a �xed number of processes grows linearly
with the number of requests.

Programming distributed algorithms at a high level has also allowed us to discover several
improvements to correctness and e�ciency aspects of some of the algorithms [55]. For example, in
the pseudocode for multi-Paxos [82], in process Commander, waiting for p2b messages containing
ballot b from a majority of acceptors is expressed by starting with a waitfor set initialized to
acceptors and then, in a for ever loop, repeatedly updating waitfor and testing |waitfor| <
|acceptors|/2 as each p2bmessage containing ballot b arrives. The test is incorrect if implemented
directly in commonly used languages such as Java, and even Python until Python 3, because / is
integer division, which discards any fractional part; for example, test 1 < 3/2 becomes false but
should be true. In DistAlgo, the entire code can simply be written as

await count {a: received ('p2b',=b) from a} > (count acceptors)/2

using the standard majority test, and it is correct whether / is for integer or �oat.
Experience in teaching distributed algorithms. DistAlgo has also helped us tremendously in
teaching distributed algorithms, because it makes complex algorithms completely clear, precise, and
directly executable. Students learn DistAlgo quickly through even a small programming assignment,
despite that most did not know Python before, thanks to the power and clarity of Python.

In particular, students in distributed systems courses have used DistAlgo in dozens of course
projects, implementing the core of network protocols and distributed graph algorithms [59];
distributed coordination services Chubby [16] and Zookeeper [38]; distributed hash tables Kadem-
lia [61], Chord [79], Pastry [74], Tapestry [87], and Dynamo [24]; distributed �le systems GFS [32]
and HDFS [78]; distributed databases Bigtable [19], Cassandra [42], and Megastore [12]; distributed
processing platform MapReduce [23]; and others.

All distributed programming features were used extensively in students’ programs—easy process
creation and setup and sending of messages, high-level control �ows with receive de�nitions as
well as await for synchronization, and declarative con�gurations—with the exception of queries
over message histories, because students had been trained in many courses to handle events
imperatively; we have not evaluated incrementalization on students’ programs, because execution
e�ciency has not been a problem. Overall, students’ experience helps con�rm that DistAlgo allows
complex distributed algorithms and services to be implemented much more easily than commonly
used languages such as C++ and Java. We summarize two speci�c instances below.

In a graduate class in Fall 2012, most of the 28 students initially planned to use Java or C++
for their course projects, because they were familiar with those and wanted to strengthen their
experience of using them instead of using DistAlgo in implementing distributed systems. However,
after doing one programming assignment using DistAlgo, all those students switched to DistAlgo
for their course projects, except for one student, who had extensive experience with C++, including
several years of internship at Microsoft Research programming distributed systems.

• This student wrote about 3000 lines of C++, compared to about 300 lines of DistAlgo
written by several other students who chose the same project of implementing multi-Paxos
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and several optimizations. Furthermore, his C++ program was incomplete, lacking some
optimizations that other students’ DistAgo programs included.
• The student did a re-implementation in DistAlgo quickly after the course1, con�rming that

it took about 300 lines. His biggest surprise was that his C++ program was an order of
magnitude slower than his DistAlgo program. After several weeks of debugging, he found
that it was due to an improper use of some C++ library function.

The main contrast that the student concluded was the huge advantage of DistAlgo over C++ in
ease of programming and program understanding, not to mention the unexpected performance
advantage.

In a graduate class in Fall 2014, each team of two students �rst implemented a fault-tolerant
banking service in two languages: DistAlgo and another language of their choice other than Python.
We excluded Python as the other language, because implementing the same service in such closely
related languages would be less educational. The service uses chain replication [83] to tolerate crash
failures. The service o�ers only a few simple banking operations (get balance, deposit, withdrawal,
intra-bank transfer, inter-bank transfer), so most of the code is devoted to distributed systems
aspects. The numbers of teams that chose various other languages are: Java 15, C++ 3, Go 3, Erlang
2, Node.js 2, Elixir (a variant of Erlang) 1, JavaScript 1.

• In the last assignment, teams implemented an extension to the banking service in one
language of their choice. 59% of the teams chose DistAlgo for this, even though most
students (about 80%) did not know Python, and none knew DistAlgo, at the beginning of
the class. In other words, a majority of students decided that implementation of this type
of system is better in DistAlgo, even compared to languages with which they had more
experience and that are more widely used.
• We asked each team to compare their experiences with the two languages. Teams consis-

tently reported that development in DistAlgo was faster and easier than development in
the other language (even though most students did not know Python before the project),
and that the DistAlgo code was signi�cantly shorter. It is no surprise that Java and C++
require more code, even when students used existing networking libraries, which they
were encouraged to do. Comparison with Erlang and Go is more interesting, because they
are high-level languages designed to support distributed programming. For the teams
that chose Erlang, the average DistAlgo and Erlang code sizes, measured as non-empty
non-comment line of code, are 586 and 1303, respectively. For the teams that chose Go, the
average DistAlgo and Go code sizes are 465 and 1695, respectively.

7 RELATEDWORK AND CONCLUSION
A wide spectrum of languages and notations have been used to describe distributed algorithms,
e.g., [7, 29, 41, 44, 45, 59, 70–72, 81]. At one end, pseudocode with English is used, e.g., [41], which
gives a high-level �ow of the algorithms, but lacks the details and precision needed for a complete
understanding. At the other end, state machine based speci�cation languages are used, e.g., I/O
automata [39, 59], which is completely precise, but uses low-level control �ows that make it harder
to write and understand the algorithms. There are also many notations in between these extremes,
some being much more precise or completely precise while also giving a high-level control �ow,
e.g., Raynal’s pseudocode [70–72] and Lamport’s PlusCal [45]. However, all of these languages and
notations lack concepts and mechanisms for building real distributed applications, and most of the
languages are not executable.

1The student wanted to do research on DistAlgo and so was asked to re-implement his project in DistAlgo.
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Many programming languages support programming of distributed algorithms and applications.
Most support distributed programming through messaging libraries, ranging from relatively simple
socket libraries to complex libraries such as MPI [62]. Many support Remote Procedure Call (RPC)
or Remote Method Invocation (RMI), which allows a process to call a subroutine in another process
without the programmer coding the details for this. Many also support asynchronous method
invocation (AMI), which allows the caller to not block and get the reply later. Some programming
languages, such as Erlang [26, 46], which has an actor-like model [2], have support for message pass-
ing and process management built into the language. There are also other well-studied languages
for distributed programming, e.g., Argus [47], Lynx [76], SR [5], Concert/C [8], and Emerald [15].
These languages all lack constructs for expressing control �ows and complex synchronization
conditions at a much higher level; such high-level constructs are extremely di�cult to implement
e�ciently. DistAlgo’s construct for declaratively and precisely specifying yield points for handling
received messages is a new feature that we have not seen in other languages. So is DistAlgo’s
support of history variables in high-level synchronization conditions in non-deterministic await
with timeout in a programming language. Our simple combination of synchronous await and
asynchronous receive allows distributed algorithms to be expressed easily and clearly.

There has been much work on producing executable implementations from formal speci�cations,
e.g., from process algebras [37], I/O automata [31], Unity [35], and Seuss [40], as well as from more
recently proposed high-level languages for distributed algorithms, e.g., Datalog-based languages
Meld [6], Overlog [4], and Bloom [13], a Prolog-based language DAHL [58], and a logic-based
language EventML [14, 67]. An operational semantics was studied recently for a variant of Meld,
called Linear Meld, that allows updates to be encoded more conveniently than Meld by using linear
logic [22]. Compilation of DistAlgo to executable implementations is easy because it is designed
to be so and DistAlgo is given an operational semantics. High-level queries and quanti�cations
used for synchronization conditions can be compiled into loops straightforwardly, but they may be
extremely ine�cient. None of these prior works study powerful optimizations of quanti�cations.
E�ciency concern is a main reason that similar high-level language constructs, whether for queries
or assertions, are rarely used, if supported at all, in commonly used languages.

Incrementalization has been studied extensively, e.g., [48, 69], both for doing it systematically
based on languages, and in applying it in an ad hoc fashion to speci�c problems. However, all
systematic incrementalization methods based on languages have been for centralized sequential
programs, e.g., for loops [3, 30, 54], set languages [36, 57, 65], recursive functions [1, 51, 68],
logic rules [52, 75], and object-oriented languages [49, 53, 63, 73]. This work is the �rst to extend
incrementalization to distributed programs to support high-level synchronization conditions. This
allows the large body of previous work on incrementalization, especially on sets and sequences, to
be used for optimizing distributed programs.

Quanti�cations are the centerpiece of �rst-order logic, and are dominantly used in writing
synchronization conditions and assertions in speci�cations, but there are few results on generating
e�cient implementations of them. In the database area, despite extensive work on e�cient imple-
mentation of high-level queries, e�cient implementation of quanti�cation has only been studied
in limited scope or for extremely restricted query forms, e.g., [9–11, 20]. In logic programming,
handling of universal quanti�cation is based on variants of brute-force Lloyd-Topor transformations,
e.g., [28, 66]; even state-of-the-art logic programming systems, e.g., [80], do not support universal
quanti�cation. Our method is the �rst general and systematic method for incrementalizing arbitrary
quanti�cations. Although they are much more challenging to optimize than set queries, our method
combines a set of general transformations to transform them into aggregations that can be most
e�ciently incrementalized using the best previous methods.
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To conclude, this article presents a powerful language and method for programming and opti-
mizing distributed algorithms. There are many directions for future work, from formal veri�cation
on the theoretical side, to generating code in lower-level languages on the practical side, with
many additional analyses and optimizations in between. In particular, a language with a high
level of abstraction also faciliates formal veri�cation, of not only the high-level programs, but also
the generated e�cient implementations when they are generated through systematic optimiza-
tions. Besides developing systematic optimizations, we have started to study formal veri�cation of
distributed algorithms [18] and their implementations by starting with their high-level, concise
descriptions in DistAlgo.

APPENDIX
A SEMANTICS OF DISTALGO
We give an abstract syntax and operational semantics for a core language for DistAlgo. The
operational semantics is a reduction semantics with evaluation contexts [77, 86].

A.1 Abstract Syntax
The abstract syntax is de�ned in Figures 6 and 7. We use some syntactic sugar in sample code, e.g.,
we use in�x notation for some binary operators, such as and and is.
Notation.

• A symbol in the grammar is a terminal symbol if it starts with a lower-case letter.
• A symbol in the grammar is a non-terminal symbol if it starts with an upper-case letter.
• In each production, alternatives are separated by a linebreak.
• * after a non-terminal means “0 or more occurrences”.
• + after a non-terminal means “1 or more occurrences”.
• tθ denotes the result of applying substitution θ to t . We represent substitutions as functions

from variables to expressions.

Well-formedness requirements on programs.

(1) The top-level method in a program must be named main. It gets executed in an instance of
the pre-de�ned process class when the program starts.

(2) Each label used in a receive de�nition must be the label of some statement that appears
in the same class as the receive de�nition.

(3) Invocations of methods de�ned using def appear only in method call statements. Invoca-
tions of methods de�ned using defun appear only in method call expressions.

Constructs whose semantics is given by translation.

(1) Constructors for all classes, and setup() methods for process classes, are eliminated by
translation into ordinary methods that assign to the �elds of the objects.

(2) A method call or �eld assignment that does not explicitly specify the target object is
translated into a method call or �eld assignment, respectively, on self.

(3) An await statement without an explicitly speci�ed label—in other words, the associated
label is the empty string—is translated into an await statement with an explicitly speci�ed
label, by generating a fresh label name `, replacing the empty label in that await statement
with `, and inserting ` in every at clause in the class containing the await statement.

(4) The Boolean operators and and each are eliminated as follows: e1 and e2 is replaced with
not(not(e1) or not(e2)), and each iter | e is replaced with not(some iter | not(e)).
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Program ::= Con�guration ProcessClass* Method
ProcessClass ::= class ClassName extends ClassName: Method* ReceiveDef *

ReceiveDef ::= receive ReceivePa�ern+ at Label+ : Statement
receive ReceivePa�ern+ : Statement

ReceivePa�ern ::= Pa�ern from InstanceVariable

Method ::= def MethodName(Parameter*) Statement
defun MethodName(Parameter*) Expression

Statement ::=
InstanceVariable := Expression
InstanceVariable := new ClassName
InstanceVariable := { Pa�ern : Iterator* | Expression }
Statement ; Statement
if Expression: Statement else: Statement
for Iterator: Statement
while Expression: Statement
Expression.MethodName(Expression*)
send Tuple to Expression
Label await Expression : Statement AnotherAwaitClause*
Label await Expression : Statement AnotherAwaitClause* timeout Expression
skip

Expression ::= Literal
Parameter
InstanceVariable
Tuple
Expression.MethodName(Expression*)
UnaryOp(Expression)
BinaryOp(Expression,Expression)
isinstance(Expression,ClassName)
and(Expression,Expression) / / conjunction (short-circuiting)
or(Expression,Expression) / / disjunction (short-circuiting)
each Iterator | Expression
some Iterator | Expression

Tuple ::= (Expression*)

Fig. 6. Abstract syntax, Part 1.

(5) An aggregation is eliminated by translation into a comprehension followed by a for
loop that iterates over the set returned by the comprehension. The for loop updates an
accumulator variable using the aggregation operator.

(6) Iterators containing tuple patterns are rewritten as iterators without tuple patterns, as
follows.
• Consider the existential quanti�cation some (e1, . . . , en) in s | b. Let x be a fresh

variable. Let θ be the substitution that replaces ei with select(x,i) for each i such
that ei is a variable not pre�xed with “=”. Let {j1, . . . , jm} contain the indices of the

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.



From Clarity to E�iciency for Distributed Algorithms 1:27

UnaryOp ::= not / / Boolean negation
isTuple / / test whether a value is a tuple
len / / length of a tuple

BinaryOp ::= is / / identity-based equality
plus / / sum
select / / select(t ,i) returns the i’th component of tuple t

Pa�ern ::= InstanceVariable
TuplePa�ern

TuplePa�ern ::= (Pa�ernElement*)

Pa�ernElement ::= Literal
InstanceVariable
=InstanceVariable

Iterator ::= Pa�ern in Expression

AnotherAwaitClause ::= or Expression : Statement

Con�guration ::= configuration ChannelOrder ChannelReliability ...
ChannelOrder ::= fifo

unordered
ChannelReliability ::= reliable

unreliable

ClassName ::= ...
MethodName ::= ...
Parameter ::= ...
InstanceVariable ::= Expression.Field
Field ::= ...
Label ::= ...
Literal ::= BooleanLiteral

IntegerLiteral
...

BooleanLiteral ::= true
false

IntegerLiteral ::= ...

Fig. 7. Abstract syntax, Part 2. Ellipses (“...”) are for common syntactic categories whose details are unimpor-
tant.

constants and the variables pre�xed with “=” in (e1, . . . , en). Let ēj denote ej after
removing the “=” pre�x, if any. The quanti�cation is rewritten as some x in s |
isTuple(x) and len(x) is n and (select(x,j1), . . ., select(x,jm)) is (ēj1,
. . ., ējm) and bθ .
• Consider the loop for (e1, . . . , en) in e : s . Let x and S be fresh variables. Let
{i1, . . . , ik } contain the indices in (e1, . . . , en) of variables not pre�xed with “=”. Let
θ be the substitution that replaces ei with select(x,i) for each i in {i1, . . . , ik }. Let
{j1, . . . , jm} contain the indices in (e1, . . . , en) of the constants and the variables
pre�xed with “=”. Let ēj denote ej after removing the “=” pre�x, if any. Note that e may
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denote a set or sequence, and duplicate bindings for the tuple of variables (ei1 , . . . , eik )
are �ltered out if e is a set but not if e is a sequence. The loop is rewritten as the code
in Figure 8.

S := e
if isinstance(S,set):
S := { x : x in S | isTuple(x) and len(x) is n

and (select(x,j1), . . ., select(x,jm)) is (ēj1, . . ., ējm) }
for x in S:
sθ

else: / / S is a sequence
for x in S:
if (isTuple(x) and len(x) is n

and (select(x,j1), . . ., select(x,jm)) is (ēj1, . . ., ējm):
sθ

else:
skip

Fig. 8. Translation of for loop to eliminate tuple pa�ern.

(7) Comprehensions in which some variables are pre�xed with = are translated into com-
prehensions without such pre�xing. Speci�cally, for a variable x pre�xed with = in a
comprehension, replace occurrences of =x in the comprehension with occurrences of a
fresh variable y, and add the conjunct y is x to the Boolean condition.

(8) Comprehensions are statically eliminated as follows. The comprehension x := { e | x1
in e1, . . ., xn in en | b }, where each xi is a pattern, is replaced with
x := new set
for x1 in e1:
...
for xn in en:
if b:
x.add(e)

(9) Wildcards are eliminated from tuple patterns by replacing each occurrence of wildcard
with a fresh variable.

(10) Remote method invocation, i.e., invocation of a method on another process after that
process has been started, is translated into message communication.

Notes.
(1) ClassName must include process. process is a pre-de�ned class; it should not be de�ned

explicitly. process has �elds sent and received, and it has a method start.
(2) The grammar allows receive de�nitions to appear in classes that do not extend process,

but such receive de�nitions are useless, so it would be reasonable to make them illegal.
(3) The grammar does not allow labels on statements other than await. A label ` on a statement

s other than await is treated as syntactic sugar for label ` on await true : skip followed
by statement s .

(4) ClassName must include set and sequence. Sets and sequences are treated as objects,
because they are mutable. These are prede�ned classes that should not be de�ned explicitly.
Methods of set include add, del, contains, min, max, and size. Methods of sequence
include add (which adds an element at the end of the sequence), contains, and length. We
give the semantics explicitly for a few of these methods; the others are handled similarly.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.



From Clarity to E�iciency for Distributed Algorithms 1:29

(5) Tuples are treated as immutable values, not as mutable objects.
(6) All expressions are side-e�ect free. For simplicity, we treat quanti�cations as expressions,

so existential quanti�cations do not have the side-e�ect of binding variables to a witness.
Such existential quanti�cations could be added as a new form of statement.

(7) Object creation and comprehension are statements, not expressions, because they have
side-e�ects. Comprehension has the side-e�ect of creating a new set.

(8) Parameter must include self. The values of method parameters cannot be updated (e.g.,
using assignment statements). For brevity, local variables of methods are omitted from the
core language. Consequently, assignment is allowed only for instance variables.

(9) Semantically, the for loop copies the contents of a (mutable) sequence or set into an
(immutable) tuple before iterating over it, to ensure that changes to the sequence or set by
the loop body do not a�ect the iteration. An implementation could use optimizations to
achieve this semantics without copying when possible.

(10) For brevity, among the standard arithmetic operations (+, -, *, etc.), we include only one
representative operation in the abstract syntax and semantics; others are handled similarly.

(11) The semantics below does not model real-time, so timeouts in await statements are simply
allowed to occur non-deterministically.

(12) We omit the concept of node (process location) from the semantics, and we omit the node
argument of the constructor when creating instances of process classes, because process
location does not a�ect other aspects of the semantics.

(13) We omit configure handling statements from the syntax. The semantics is for configure
handling = all. Semantics for other configure handling options can easily be added.

(14) To support initialization of a process by its parent, a process can access �elds of another
process and invoke methods on another process before the latter process is started.

(15) We require that all messages be tuples. This is an inessential restriction; it slightly simpli�es
the speci�cation of pattern matching for matching messages against patterns.

(16) A process’s sent sequence contains pairs of the form (m,d), where m is a message sent
by the process to destination d . A process’s received sequence contains pairs of the form
(m, s), wherem is a message received by the process from sender s .

A.2 Semantic Domains
The semantic domains are de�ned in Figure 9.
Notation.

• D∗ contains �nite sequences of values from domain D.
• Set(D) contains �nite sets of values from domain D.
• D1 ⇀ D2 contains partial functions from D1 to D2. dom(f ) is the domain of a partial

function f .

Notes.
• We require that ProcessAddress and NonProcessAddress be disjoint.
• For a ∈ ProcessAddress and h ∈ Heap, h(a) is the local heap of process a. For a ∈ Address

and ht ∈ HeapType, ht(a) is the type of the object with address a. For convenience, we use
a single (global) function for HeapType in the semantics, even though the information in
that function is distributed in the same way as the heap itself in an implementation.
• The Msg�eue associated with a process by the last component of a state contains messages,

paired with the sender, that have arrived at the process but have not yet been handled by
matching receive de�nitions.
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Bool = {true, false}
Int = ...

ProcessAddress = ...

NonProcessAddress = ...

Address = ProcessAddress ∪ NonProcessAddress
Tuple = Val∗

Val = Bool ∪ Int ∪ Address ∪ Tuple
SetOfVal = Set(Val)
SeqOfVal = Val∗

Object = (Field ⇀ Val) ∪ SetOfVal ∪ SeqOfVal
HeapType = Address ⇀ ClassName
LocalHeap = Address ⇀ Object

Heap = ProcessAddress ⇀ LocalHeap
ChannelStates = ProcessAddress × ProcessAddress ⇀ Tuple∗

Msg�eue = (Tuple × ProcessAddress)∗
State = (ProcessAddress ⇀ Statement) × HeapType × Heap × ChannelStates

×(ProcessAddress ⇀ Msg�eue)

Fig. 9. Semantic domains. Ellipses are used for semantic domains of primitive values whose details are
standard or unimportant.

A.3 Extended Abstract Syntax
Section A.1 de�nes the abstract syntax of programs that can be written by the user. Figure 10
extends the abstract syntax to include additional forms into which programs may evolve during
evaluation. Only the new productions are shown here; all of the productions given above carry
over unchanged.

Expression ::= Address
Address.Field

Statement ::= for Variable intuple Tuple: Statement

Fig. 10. Extensions to the abstract syntax.

The statement for v intuple t: s iterates over the elements of tuple t , in the obvious way.

A.4 Evaluation Contexts
Evaluation contexts, also called reduction contexts, are used to identify the next part of an expression
or statement to be evaluated. An evaluation context is an expression or statement with a hole,
denoted [], in place of the next sub-expression or sub-statement to be evaluated. Evaluation
contexts are de�ned in Figure 11.
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Val ::= Literal
Address
(Val*)

C ::= []
(Val*,C,Expression*)
C.MethodName(Expression*)
Address.MethodName(Val*,C,Expression*)
UnaryOp(C)
BinaryOp(C,Expression)
BinaryOp(Val,C)
isinstance(C,ClassName)
or(C,Expression)
some Pa�ern in C | Expression
C.Field := Expression
Address.Field := C
InstanceVariable := C
C ; Statement
if C: Statement else: Statement
for InstanceVariable in C: Statement
for InstanceVariable intuple Tuple: C
send C to Expression
send Val to C
await Expression : Statement AnotherAwaitClause* timeout C

Fig. 11. Evaluation contexts.

A.5 Transition Relations
The transition relation for expressions has the form ht : h ` e → e ′, where e and e ′ are expressions,
ht ∈ HeapType, and h ∈ LocalHeap. The transition relation for statements has the form σ → σ ′

where σ ∈ State and σ ′ ∈ State.
Both transition relations are implicitly parameterized by the program, which is needed to look

up method de�nitions and con�guration information. The transition relation for expressions is
de�ned in Figure 12. The transition relation for statements is de�ned in Figures 13–14.
Notation and auxiliary functions.

• In the transition rules, a matches an address; v matches a value (i.e., an element of Val);
and ` matches a label.
• For an expression or statement e , e[x := y] denotes e with all occurrences of x replaced

with y.
• A function matches the pattern f [x → y] i� f (x) equals y. For example, in transition rules

for statements, a function P in ProcessAddress ⇀ Statement matches P[a → s] if P maps
process address a to statement s .
• For a function f , f [x := y] denotes the function that is the same as f except that it maps x

to y.
• f0 denotes the empty partial function, i.e., the partial function whose domain is the empty

set.
• For a (partial) function f , f 	 a denotes the function that is the same as f except that it

has no mapping for a.
• Sequences are denoted with angle brackets, e.g., 〈0, 1, 2〉 ∈ Int∗.
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• s@t is the concatenation of sequences s and t .
• �rst(s) is the �rst element of sequence s .
• rest(s) is the sequence obtained by removing the �rst element of s .
• length(s) is the length of sequence s .
• extends(c1, c2) holds i� class c1 is a descendant of class c2 in the inheritance hierarchy.
• For c ∈ ClassName, new(c) returns a new instance of c .

new(c) =

{} if c = set
〈〉 if c = sequence
f0 otherwise

• For m ∈ MethodName and c ∈ ClassName, the relation methodDef (c,m, def ) holds i� (1)
class c de�nes method m, and def is the de�nition of m in c , or (2) c does not de�ne m,
and def is the de�nition ofm in the nearest ancestor of c in the inheritance hierarchy that
de�nesm.
• Forh, h̄, h̄′ ∈ LocalHeap andht ,ht ′ ∈ HeapType andv, v̄ ∈ Val, the relation isCopy(v,h, h̄,ht ,
v̄, h̄′,ht ′) holds i� (1) v is a value in a process with local heap h, i.e., addresses in v are
evaluated with respect to h, (2) v̄ is a copy of v for a process whose local heap was h̄ before
v was copied into it and whose local heap is h̄′ after v is copied into it, i.e., v̄ is the same
as v except that, instead of referencing objects in h, it references newly created copies of
those objects in h̄′, and (3) h̄′ and ht ′ are versions of h̄ and ht updated to re�ect the creation
of those objects. As an exception, because process addresses are used as global identi�ers,
process addresses in v are copied unchanged into v̄ , and new copies of process objects are
not created. We give auxiliary de�nitions and then a formal de�nition of isCopy.

For v ∈ Val, let addrs(v,h) denote the set of addresses that appear in v or in any objects
or values reachable from v with respect to local heap h; formally,

a ∈ addrs(v,h) ⇔
(v ∈ Address ∧v = a)
∨ (v ∈ dom(h) ∧ h(v) ∈ Field ⇀ Val ∧ (∃f ∈ dom(h(v)). a ∈ addrs(h(v)(f ),h)))
∨ (v ∈ dom(h) ∧ h(v) ∈ SetOfVal ∪ SeqOfVal ∧ (∃v ′ ∈ h(v). a ∈ addrs(v ′,h)))
∨ (∃v1, . . . ,vn ∈ Val. v = (v1, . . . ,vn) ∧ ∃i ∈ [1..n]. a ∈ addrs(vi ,h))

For v, v̄ ∈ Val and f ∈ Address ⇀ Address, the relation subst(v, v̄, f ) holds i� v is obtained
from v̄ by replacing each occurrence of an address a in dom(f ) with f (a) (informally, f
maps addresses of new objects in v̄ to addresses of corresponding old objects inv); formally,

subst(v, v̄, f ) ⇔ (v ∈ Bool ∪ Int ∪ (Address \ dom(f )) ∧ v̄ = v)
∨(v ∈ dom(f ) ∧ f (v̄) = v)
∨(∃v1, . . . ,vn , v̄1, . . . , v̄n . v = (v1, . . . ,vn) ∧ v̄ = (v̄1, . . . , v̄n)
∧(∀i ∈ [1..n]. subst(vi , v̄i , f )))

Similarly, for o, ō ∈ Object and f ∈ Address ⇀ Address, the relation subst(o, ō, f ) holds i� o
is obtained from ō by replacing each occurrence of an address a in dom(f ) with f (a). For
sets S and S ′, let S

1−1→ S ′ be the set of bijections between S and S ′.
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Finally, isCopy is de�ned as follows (intuitively, A contains the addresses of the newly
allocated objects):

isCopy(v,h, h̄,ht , v̄, h̄′,ht ′) ⇔
∃A ⊂ NonProcessAddress. ∃f ∈ A 1−1→ (addrs(v,h) \ ProcessAddress).
A ∩ dom(ht) = ∅ ∧ dom(ht ′) = dom(ht) ∪A ∧ dom(h̄′) = dom(h̄) ∪A
∧ (∀a ∈ dom(ht). ht ′(a) = ht(a)) ∧ (∀a ∈ dom(h̄). h̄′(a) = h̄(a))
∧ (∀a ∈ A. ht ′(a) = ht(f (a)) ∧ subst(h(a), h̄′(a), f ))

• For m ∈ Val, a ∈ ProcessAddress, ` ∈ Label, h ∈ LocalHeap, and a receive de�nition d , if
message m can be received from a at label ` by a process with local heap h using receive
de�nition d , then matchRcvDef (m,a, `,h,d) returns the appropriately instantiated body of
d .

We �rst de�ne some auxiliary relations and functions. The relation matchesDefLbl(d, `)
holds i� receive de�nition d either lacks an at clause or has an at clause that in-
cludes `. bound(P) returns the set of variables that appear in pattern P pre�xed with
“=”. vars(P) returns the set of variables that appear in P . �ndSubstPat(m,a,h, P from x)
returns the substitution θ with domain vars(P) ∪ {x} such that m = Pθ ∧ θ (x) = a ∧
(∀y ∈ bound(P). θ (y) = h(y)), if any, otherwise it returns ⊥. �ndSubst(m,a,h,d) re-
turns �ndSubstPat(m,a,h, P from x) for the �rst receive pattern P from x in d such that
�ndSubstPat(m,a,h, P from x) , ⊥, if any, otherwise it returns ⊥.

IfmatchesDefLbl(d, `)∧�ndSubst(m,a,h,d) , ⊥, thenmatchRcvDef (m,a, `,h,d) returns
sθ , where s is the body ofd (i.e., the statement that appears ind) and θ = �ndSubst(m,a,h,d),
otherwise it returns ⊥.
• For m ∈ Val, a ∈ ProcessAddress, ` ∈ Label, c ∈ ClassName, and h ∈ LocalHeap, if

message m can be received from a at label ` in class c by a process with local heap h,
then receiveAtLabel((m,a), `, c,h) returns a set of statements that should be executed when
receivingm in that context.

Speci�cally, if class c contains a receive de�nitiond such thatmatchRcvDef (m,a, `,h,d)
is not⊥, then, lettingd1, . . . ,dn be the receive de�nitions in c such thatmatchRcvDef (m,a,
`,h,di ) is not ⊥, and letting si = matchRcvDef (m,a, `,h,di ), receiveAtLabel((m,a), `, c,h)
returns {s1, . . . , sn}. Otherwise, receiveAtLabel((m,a), `, c,h) returns ∅.

A.6 Executions
An execution is a sequence of transitions σ0 → σ1 → σ2 → · · · such that σ0 is an initial state. The
set of initial states is de�ned in Figure 15. Intuitively, ap is the address of the initial process, ar
is the address of the received sequence of the initial process, and as is the address of the sent
sequence of the initial process.

Informally, execution of the statement initially associated with a process may eventually (1)
terminate (i.e., the statement associated with the process becomes skip, indicating that there is
nothing left for the process to do), (2) get stuck (i.e., the statement associated with the process is
not skip, and the process has no enabled transitions) due to an unsatis�ed await statement or an
error (e.g., the statement contains an expression that tries to select a component from a value that
is not a tuple, or the statement contains an expression that tries to read the value of a non-existent
�eld), or (3) run forever due to an in�nite loop or in�nite recursion.
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/ / �eld access
ht : h ` a. f → h(a)(f ) if a ∈ dom(h) ∧ f ∈ dom(h(a))

/ / invoke method in user-de�ned class
ht : h ` a.m(v1, . . . ,vn) → e[self := a,x1 := v1, . . . ,xn := vn]

if a ∈ dom(h) ∧methodDef (ht(a),m, defunm(x1, . . . ,xn) e)

/ / invoke method in pre-de�ned class (representative examples)
ht : h ` a.contains(v1) → true if a ∈ dom(h) ∧ ht(a) = set ∧v1 ∈ h(a)
ht : h ` a.contains(v1) → false if a ∈ dom(h) ∧ ht(a) = set ∧v1 < h(a)

/ / unary operations
ht : h ` not(true) → false
ht : h ` not(false) → true
ht : h ` isTuple(v) → true if v is a tuple
ht : h ` isTuple(v) → false if v is not a tuple
ht : h ` len(v) → n if v is a tuple with n components

/ / binary operations
ht : h ` is(v1,v2) → true if v1 and v2 are the same (identical) value

ht : h ` plus(v1,v2) → v3 if v1 ∈ Int ∧v2 ∈ Int ∧v3 = v1 +v2

ht : h ` select(v1,v2) → v3
if v2 ∈ Int ∧v2 > 0 ∧ (v1 is a tuple with at least v2 components)
∧ (v3 is the v2’th component of v1)

/ / isinstance
ht : h ` isinstance(a, c) → true if ht(a) = c
ht : h ` isinstance(a, c) → false if ht(a) , c

/ / disjunction
ht : h ` or(true, e) → true
ht : h ` or(false, e) → e

/ / existential quanti�cation
ht : h ` some x in a | e → e[x := v1] or · · · or e[x := vn]

if (ht(a) = sequence ∧ h(a) = 〈v1, . . . ,vn〉)
∨ (ht(a) = set ∧ 〈v1, . . . ,vn〉 is a linearization of h(a))

Fig. 12. Transition relation for expressions.
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/ / �eld assignment
(P[a → a′. f := v],ht ,h[a → ha[a′ → o]], ch,mq)
→ (P[a := skip],ht ,h[a := ha[a′ := o[f := v]]], ch,mq)

/ / object creation
(P[a → a′. f := new c],ht ,h[a → ha[a′ → o]], ch,mq)
→ (P[a := skip],ht[a′ := c],h[a := ha[a′ := o[f := ac ],ac := new(c)]], ch,mq)
if ac < dom(ht) ∧ ac ∈ Address ∧ (ac ∈ ProcessAddress⇔ extends(c, process))

/ / sequential composition
(P[a → skip; s],ht ,h, ch,mq) → (P[a := s],ht ,h, ch,mq)

/ / conditional statement
(P[a → if true : s1 else : s2],ht ,h, ch,mq) → (P[a := s1],ht ,h, ch,mq)

(P[a → if false : s1 else : s2],ht ,h, ch,mq) → (P[a := s2],ht ,h, ch,mq)

/ / for loop
(P[a → for x in a′: s],ht ,h, ch,mq) → (P[a := for x intuple (v1, . . . ,vn ) : s],ht ,h, ch,mq)

if ((ht(a) = sequence ∧ h(a)(a′) = 〈v1, . . . ,vn〉)
∨ (ht(a) = set ∧ 〈v1, . . . ,vn〉 is a linearization of h(a)(a′)))

(P[a → for x intuple (v1, . . . ,vn ) : s],ht ,h, ch,mq)
→ (P[a := s[x := v1]; for x intuple (v2, . . . ,vn ) : s],ht ,h, ch,mq)

(P[a → for x intuple () : s],ht ,h, ch,mq) → (P[a := skip],ht ,h, ch,mq)

/ / while loop
(P[a → while e: s],ht ,h, ch,mq) → (P[a := if e: (s; while e: s) else : skip],ht ,h, ch,mq)

/ / invoke method in user-de�ned class
(P[a → a′.m(v1, . . . ,vn )],ht ,h, ch,mq)
→ (P[a := s[self := a,x1 := v1, . . . ,xn := vn ]],ht ,h, ch,mq)
if a′ ∈ dom(h(a))
∧ ht(a′) < {process, set, sequence} ∧methodDef (ht(a′),m, defm(x1, . . . ,xn ) s)

/ / invoke method in pre-de�ned class (representative examples)

/ / process.start allocates a local heap and sent and received sequences for the new process,
/ / and moves the started process to the new local heap.
(P[a → a′.start()],ht ,h[a → ha[a′ → o], ch,mq)
→ (P[a := skip,a′ := a′.run()],ht[as := sequence,ar := sequence],

h[a := ha 	 a′,a′ := f0[a′ → o[sent := as , received := ar ],ar := 〈〉,as := 〈〉]], ch,mq)
if extends(ht(a′), process) ∧ (ht(a′) inherits start from process) ∧ ar < dom(ht) ∧ as < dom(ht)
∧ ar ∈ NonProcessAddress ∧ as ∈ NonProcessAddress

(P[a → a′.add(v1)],ht ,h[a → ha], ch,mq)
→ (P[a := skip],ht ,h[a := ha[a′ := ha(a′) ∪ {v1}]], ch,mq)
if a′ ∈ dom(ha) ∧ ht(a′) = set

(P[a → a′.add(v1)],ht ,h[a → ha], ch,mq)
→ (P[a := skip],ht ,h[a := ha[a′ := ha(a′)@〈v1〉]], ch,mq)
if a′ ∈ dom(ha) ∧ ht(a′) = sequence

Fig. 13. Transition relation for statements, Part 1.
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/ / send a message to one process. create copies of the message for the sender’s sent sequence
/ / and the receiver.
(P[a → send v to a2],ht ,h[a → ha,a2 → ha2], ch,mq)
→ (P[a := skip],ht ′′,h[a := ha′[as := ha(as )@〈(v1,a2)〉],a2 := ha′2],

ch[(a,a2) := ch((a,a2))@〈v2〉],mq)
if a2 ∈ ProcessAddress ∧ as = ha(a)(sent) ∧ isCopy(v,ha,ha,ht ,v1,ha′,ht ′)
∧ isCopy(v,ha′,ha2,ht ′,v2,ha′2,ht

′′)

/ / send to a set of processes
(P[a → send v to a′],ht ,h[a → ha], ch,mq)
→ (P[a := for x in a′: send v to x],ht ,h[a := ha[as := ha(as )@〈(v,a′)〉]], ch,mq)
if ht(a′) = set ∧ as = ha(a)(sent) ∧ (x is a fresh variable)

/ / message reordering
(P ,ht ,h, ch[(a,a′) → q],mq) → (P ,ht ,h, ch[(a,a′) := q′],mq)

if (channel order is unordered in the program con�guration) ∧ (q′ is a permutation of q)

/ / message loss
(P ,ht ,h, ch[(a,a′) → q],mq) → (P ,ht ,h, ch[(a,a′) := q′],mq)

if (channel reliability is unreliable in the program con�guration) ∧ (q′ is a subsequence of q)

/ / arrival of a message from process a at process a′. remove message from channel, and append
/ / (message, sender) pair to message queue.
(P ,ht ,h, ch[(a,a′) → q],mq)
→ (P ,ht ,h, ch[(a,a′) := rest(q)],mq[a′ :=mq(a′)@〈(�rst(q),a)〉])
if length(q) > 0

/ / handle a message at a yield point. remove the (message, sender) pair from the message
/ / queue, append a copy to the received sequence, and prepare to run matching receive
/ / handlers associated with `, if any. s has a label hence must be await.
(P[a → ` s],ht ,h[a → ha], ch,mq[a → q])
→ (P[a := s ′[self := a]; ` s],ht ′,h[a → ha′[ar → ha(ar )@〈copy〉]], ch,mq[a := rest(q)])

if length(q) > 0 ∧ ar = ha(a)(received) ∧ isCopy(�rst(q),ha,ha,ht , copy,ha′,ht ′)
∧ receiveAtLabel(�rst(q), `,ht(a),ha′) = S ∧ s ′ is a linearization of S

/ / await without timeout clause
(P[a → ` await e1:s1 or · · · or en :sn ],ht ,h, ch,mq) → (P[a := si ],ht ,h, ch,mq)

if length(mq(a)) = 0 ∧ i ∈ [1..n] ∧ h(a) : ht ` ei → true

/ / await with timeout clause, terminated by true condition
(P[a → ` await e1:s1 or · · · or en :sn timeout v :s],ht ,h, ch,mq) → (P[a := si ],ht ,h, ch,mq)

if length(mq(a)) = 0 ∧ i ∈ [1..n] ∧ h(a) : ht ` ei → true

/ / await with timeout clause, terminated by timeout (occurs non-deterministically)
(P[a → ` await e1:s1 or · · · or en :sn timeout v :s],ht ,h, ch,mq) → (P[a := s],ht ,h, ch,mq)

if length(mq(a)) = 0 ∧ h(a) : ht ` e1 → false ∧ · · · ∧ h(a) : ht ` en → false

/ / context rule for expressions
h(a) : ht ` e → e ′

(P[a → C[e]],ht ,h, ch,mq) → (P[a := C[e ′]],ht ,h, ch,mq)

/ / context rule for statements
(P[a → s],ht ,h, ch,mq) → (P[a := s ′],ht ′,h′, ch′,mq′)

(P[a → C[s]],ht ,h, ch,mq) → (P[a := C[s ′]],ht ′,h′, ch′,mq′)

Fig. 14. Transition relation for statements, Part 2.
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Init =
{(P ,ht ,h, ch,mq) ∈ State |
∃ ap ∈ ProcessAddress,

ar ∈ NonProcessAddress,
as ∈ NonProcessAddress.
ar , as
∧ P = f0[ap := ap .main()]
∧ ht = f0[ap := process,ar := sequence,as := sequence]
∧ h = f0[ap := ha]
∧ ch = (λ(a1,a2) ∈ ProcessAddress × ProcessAddress. 〈〉)
∧mq = (λa ∈ ProcessAddress. 〈〉)
where ha = f0[ap := op ,ar := 〈〉,as := 〈〉]

op = f0[received := ar , sent := as ]}

Fig. 15. Initial states.
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