
Domain Partitioning for Open Reactive Systems

Scott D. Stoller∗
Computer Science Dept., State University of New York at Stony Brook

Stony Brook, NY 11794-4400 USA

ABSTRACT
Testing or model-checking an open reactive system often
requires generating a model of the environment. We de-
scribe a static analysis for Java that computes a partition
of a system’s inputs: inputs in the same equivalence class
lead to identical behavior. The partition provides a basis
for generation of code for a most general environment of the
system, i.e., one that exercises all possible behaviors of the
system. The partition also helps the generated environment
avoid exercising the same behavior multiple times. Many
distributed systems with security requirements can be re-
garded as open reactive systems whose environment is an
adversary-controlled network. We illustrate our approach
by applying it to a fault-tolerant and intrusion-tolerant dis-
tributed voting system and model-checking the system to-
gether with the generated environment.

1. INTRODUCTION
Testing or model-checking (i.e., verification by systematic

state-space exploration) an open reactive system often re-
quires generating a model of the environment, for various
reasons, e.g., if the actual environment is not available (per-
haps does not even exist yet), or cannot easily be controlled
to induce the behaviors of interest, or is restricted in some
ways compared to the most general environment in which
the system is designed to operate. We assume the system
interacts with its environment through an interface that of-
fers a set of methods that the environment may invoke using
local or remote method invocation, and that each method
has a specified type signature. It is straightforward to gen-
erate an environment that, whenever the system is ready
for an input, non-deterministically generates an arbitrary
type-correct input. However, testing with such an environ-

∗The author gratefully acknowledges the support
of NSF under Grant CCR-9876058 and the sup-
port of ONR under Grants N00014-01-1-0109 and
N00014-02-1-0363. Email: stoller@cs.sunysb.edu Web:
http://www.cs.sunysb.edu/˜stoller/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ment is typically inefficient: many equivalent inputs—i.e.,
inputs that lead to equivalent behaviors of the system, in
the sense defined below—may be explored. Explicit-state
model checking with such an environment is typically in-
tractable: the number of type-correct inputs is too large.
More sophisticated environment models are needed, which
explore a proper subset of the inputs and preferably still
provide some guarantee about coverage. Such models can
be constructed based on how the system uses its inputs.

Manual construction of such models can be time consum-
ing (especially if the tester is not the programmer and hence
first needs to understand the code) and error prone. For
example, it is very easy to overlook inputs that cause the
system to exhibit exceptional behavior; in Java, this is es-
pecially true for exceptions that extend RunTimeException

and hence may be thrown by statements other than throw

and are not necessarily listed in throws clauses of methods.
The primary goal of this work is to reduce the effort needed
to construct such models and reduce the number of errors.

Our approach is based on domain partitioning. We regard
a system as a function f from inputs to outputs. If the sys-
tem was non-deterministic, we assume the non-determinism
has been “factored out” and hence is controlled by non-
deterministically selected values supplied by the environ-
ment (this reflects the desire to control all non-determinism
during testing or model-checking). We describe a static pro-
gram analysis that partitions the inputs into equivalence
classes, symbolically represented by predicates, such that in-
puts x and y in the same equivalence class lead to the same
output, i.e., f(x) = f(y). Let π denote the resulting par-
tition. Exploring at least one input from each equivalence
class in π provides 100% output coverage, i.e., every possi-
ble output is exercised. Output coverage is incomparable in
strength to branch or path coverage: it is sometimes stronger
(because it distinguishes different return values) and some-
times weaker (e.g., if there are multiple branches that throw
the same exception, for different reasons, complete output
coverage can be achieved by exploring one of them).

This paper focuses on reactive systems. We regard a re-
active system as a function whose input 〈s, args〉 contains
the current system state s and an input args (method ar-
guments) from the environment, and whose output contains
the updated system state and the return value of the in-
vocation. Output coverage, and hence our partitioning, is
less relevant to non-reactive systems, because correctness re-
quirements for non-reactive systems are typically expressed
as input-output relations, so covering the possible outputs
without regard to the associated inputs is not of much sig-

nificance. In contrast, correctness requirements for reactive
systems are often expressed as invariants on system states,
or as temporal predicates on sequences of states. In this
case, exploring multiple inputs that lead to the same output
is unnecessary. We assume that the specification directly
constrains only (1) states between processing of inputs and
(2) return values; we call such a state, together with the
return value of the preceding invocation, a quiescent state.

For testing with manually produced or systematically gen-
erated test suites, the analysis result can be used to avoid
generating redundant scenarios or to eliminate redundant
scenarios from existing test suites. Using the above model in
which an input to a reactive system is a pair 〈state, args〉, let
partnForState(π, s) denote the set of equivalence classes E
in π such that s is the first component of some pair in E. For
random testing or model checking, one can synthesize an en-
vironment that, whenever the system is ready for an input in
state s, randomly or non-deterministically selects an equiva-
lence class from partnForState(π, s) and uses a single repre-
sentative (with first component s) thereof. Model checking
with this environment explores all feasible sequences of qui-
escent states. The main issues in the synthesis are how to
identify empty equivalence classes (which correspond to in-
feasible program paths) and how to choose a representative
of each non-empty equivalence class. These important issues
can be handled with a combination of decision procedures,
automated theorem provers, and manual effort.

For flexibility, the analysis is parameterized by manually
constructed abstractions for selected classes. Typically, such
“custom” abstractions are used for classes in the Java API
that are relevant to the application domain (e.g., classes
in java.security for secure systems). It appears that the
same abstractions will be effective for many programs in
a given application domain; further experience is needed to
confirm this. The analysis aims to discover how the program
uses its inputs, so the appropriate abstractions of values and
operations usually embody a form of symbolic evaluation.
Automatically generated default abstractions are used for all
other classes. Given the custom abstractions, our analysis
is fully automatic. We are starting to implement it. Semi-
automatic synthesis of an environment from the partition,
as sketched briefly in Section 9, is future work.

For some systems, the partition may contain undesirably
many equivalence classes, either because exploring all feasi-
ble sequences of quiescent states is inherently expensive for
that system, or because the analysis was conservative and
produced more equivalence classes than the coverage crite-
rion requires. The latter cannot always be avoided, because
determining whether two inputs lead to the same quiescent
state is undecidable. The effectiveness of the analysis de-
pends crucially on the use of appropriate abstractions.

If the number of equivalence classes is undesirably large,
an additional step is needed to decide which equivalence
classes to use in testing or model checking, based on other
coverage criteria, heuristics, or user guidance (e.g., the user
supplies a temporal-logic formula, and sequences of inputs
not satisfying the formula are not considered). Separation of
rigorous domain partitioning from heuristics and ad hoc con-
straints is desirable to highlight where and how complete-
ness is sacrificed. In the distributed voting application in
Section 9, the partition analysis is effective in the sense that
it produces a partition with a finite and tractable number
of equivalence classes, so this additional step is not needed.

The analysis can also be useful for program understand-
ing. In effect, it extracts from code a detailed declarative
description of the structures of well-formed input messages.
Including this information in a system’s interface specifica-
tion is often useful. If such a description was prepared man-
ually (perhaps before implementation), our analysis can be
used to help check its consistency with the implementation.

For secure systems, inputs to the system from the environ-
ment (i.e., from the adversary-controlled network) include
arguments to remote methods and return values from re-
mote methods. Our analysis can also be used for domain
partitioning of the latter by augmenting the calling method
with fresh parameters representing return values of remote
method invocations, replacing uses of those return values
with uses of those parameters (turning the remote method
invocations into dead code), computing an input partition
for (the arguments of) the augmented method, and project-
ing the resulting partition onto each of the new parameters,
by existential quantification over the other parameters.

Colby et al.’s work on automatically closing open reactive
programs [1] effectively provides an environment. Applica-
tion of a coarse data abstraction to the system’s inputs from
the environment is an integral part of their approach. Thus,
their approach can be used to check only properties that are
independent of the input values. Our approach does not in-
corporate such an abstraction (although such abstractions
can be applied separately before our analysis) and hence
can be used to check a larger class of properties, with cor-
respondingly larger computational cost.

It is tempting to try to regard our analysis as producing a
program-specific abstract interpretation, in which abstract
values correspond to equivalence classes. However, two val-
ues that are equivalent as inputs are generally not equivalent
as outputs. It is unclear how to reflect this asymmetry in
standard formulations of abstract interpretation.

A direction for future work is to consider equivalence classes
of sequences of inputs; this paper considers one input at a
time.

2. OVERVIEW
Information from a method’s inputs may escape from an

invocation through storage flow or data (value) flow. An
example of the former is a method that returns an object
contained in one of its arguments, possibly without accessing
the data in that object. An example of the latter is a method
that copies values from an object in its arguments into a new
object and then returns the new object. Correspondingly,
our analysis has three steps:

1. Points-to escape (PTE) analysis [9] is used to analyze
the flow of storage locations. The result of this step
is a points-to escape graph (PTE graph) at each pro-
gram point. PTE analysis determines which references
(hence which storage locations) possibly escape from
invocations of the analyzed method.

2. Data-flow analysis is used to analyze the flow of values
of variables and objects. The result of this step is an
(abstract) environment at each program point.

3. An input partition is constructed based on how pa-
rameters and global storage are used in branch condi-
tions, return statements, and updates to global stor-

age. Global storage is static fields and objects reach-
able from them.

Our data-flow analysis, like the PTE analysis in [9], is
expressed as a set of constraints that are solved by a worklist
algorithm.

Step 3 is the most expensive. The cost is proportional to
the sum of the numbers of simple paths in the control-flow
graphs of the methods in the system’s interface. Each of
these methods is analyzed separately, so the total cost is
linear in the overall size of the system, if the size of each
method is fixed. Although the analysis can be expensive, its
cost is typically dominated by the cost of testing or model
checking. Step 3 can be interleaved with testing or model
checking, by generating some equivalence classes, using rep-
resentatives of them, generating more equivalence classes,
and so on.

Input partition analysis must deal with exceptions explic-
itly to achieve sufficient accuracy. Our abstraction for a
method distinguishes the conditions under which the method
throws each type of exception (or terminates normally), and
it characterizes separately the resulting environment in each
case. The underlying heuristic is that different types of
thrown exceptions typically correspond to qualitatively dif-
ferent behaviors. The PTE analysis in [9] assumes excep-
tions are replaced with simpler constructs during pre-process-
ing. We modify it to treat exceptions explicitly.

The main contributions of this paper are: (1) the overall
framework of using multiple program analyses to help effi-
ciently achieve output coverage in testing of open reactive
systems; (2) the abstractions of classes and methods used in
Step 2; (3) the construction of the partition in Step 3; and
(4) the explicit handling of exceptions in Step 1.

The construction in Step 3 is similar to the construction of
the implementation partition in [6], although the target no-
tion of coverage is different. The focus of [6] is on programs
that manipulate numbers and arrays, while this paper fo-
cuses on object-oriented programs in which object creation,
field access, and method invocation are essential operations.
This forces us to incorporate PTE analysis and to use a more
flexible (parameterized) data-flow analysis.

Due to space constraints, we omit the treatment of static
fields and global storage. They cause no difficulties. For the
example in Section 9, they are analyzed as in [8].

3. PROGRAM REPRESENTATION
The program representation is based on [9]. It is similar

to Java bytecode, except that it uses temporary variables in-
stead of an operand stack, and it makes safety checks (e.g.,
check for null pointer before dereference) explicit as separate
operations. For example, a getfield bytecode corresponds
to a statement like: if l == null then throw NullPointer-
Exception else get l.field . Consequently, all exceptions orig-
inate at throw statements or invocation statements.

Each method in the interface between the system and its
environment is analyzed separately. Fix the method m being
analyzed. Stmt is the set of statements in m. L is the set
of local variables of m. Param is the set of parameters
of m. Class is the set of classes used in m. Field is the
set of field names of classes in Class. Let st, l, p, cl, f ,
and v range over Stmt , Local , Param, Class, Field , and
Local ∪ Param ∪ Class, respectively. PrimTy is the set of
primitive (i.e., non-reference) types. τ ranges over all types,

i.e., τ ∈ Class ∪ PrimTy . c ranges over constants (literals).
For each class cl ∈ Class, the static fields of cl are modeled as
instance fields of a unique object associated with the class.
The class name cl is treated as a read-only variable that
points to that unique object. Each variable v has a type,
denoted type(v). A variable v has reference type if type(v) ∈
Class

The body of the method is represented by a control-flow
graph (CFG) whose nodes are labeled with statements. The
CFG for m starts with an enter node enterm and ends with
an exit node exitm. We assume the program has been pre-
processed so that all statements relevant to the analysis are
in one of the following forms:

• constant: l = c
• copy: l = v
• store: l2.f = l1
• load: l1 = l2.f

• array store: l2[l3] = l1
• array load: l1 = l2[l3]
• object creation: l = new cl
• return: return l1

• method invocation: l = l0.m(l1, . . . , lk),
m has the form class.method. l0 is omitted if m is static.

• throw: throw l1
• branch: if l1 rel l2 or if l1 rel c

rel is an equality or inequality test, or instanceof.
• primitive: l = l1 op l2,

op is an arithmetic or boolean operation.

An invocation statement invokes the method of the indi-
cated class. Virtual method lookup is eliminated during
pre-processing, by introducing branches with instanceof

conditions. For st ∈ Stmt , pred(st) and succ(st) are the
sets of statements that may execute immediately before and
after st, respectively. The program points immediately be-
fore and after st are denoted •st and st•, respectively. A
branch statement st has a true successor and a false succes-
sor, corresponding to control flow when the condition is true
and false, respectively.

Exceptions.Let Stmtthrower be the set of statements that
can throw exceptions, namely, throw statements and in-
vocation statements. For each st ∈ Stmtthrower, there
are edges in the CFG from st to each exception handler
that can catch an exception thrown by st, and there is an
edge from st to exitm if st might throw an exception not
caught within m. For each such edge 〈st, st′〉, excns(st, st′)
is the set of classes of exceptions that may be thrown at
st and cause control to flow to st′. An invocation state-
ment st has an additional outedge to the statement st′ exe-
cuted next if the invocation returns normally; for this edge,
we take excns(st, st′) = {normal}. For example, suppose
st invokes a method that throws E1, E2, and E3. Sup-
pose st′ is the target of a catch block that encloses st and
catches exceptions of type E4, and there are no smaller catch
blocks enclosing st. Suppose E1 and E2 extend E4. Then
excns(st, st′) = {E1, E2}.

Each method has a variable lexc used for temporary stor-
age of exceptions. When an exception is thrown (by a throw
or invocation statement), lexc is implicitly updated to point
to the exception object. Exception handlers generally start
with l = lexc for some local variable l and thereafter access
the caught exception through l, because method calls in the
handler that throw exceptions clobber lexc .

Example.The program in Figure 1 serves as a running ex-
ample. Method getLength takes an instance sba of SBA

(mnemonic for “SignedByteArray”) as argument and checks
whether sba.sig is a valid signature of sba.data. If so, it
returns an Integer containing sba.data.length; otherwise,
it returns null. getLength uses the following methods of
java.security.Signature. Static method getInstance(alg)
returns a signature object that implements the signature al-
gorithm alg. A signature object o can be used to verify that
a byte array sig is a valid signature of a byte array data with
respect to public key key, as follows: o.initVerify(key) sup-
plies the key; o.update(data) supplies the data; o.verify(sig)
returns a boolean, indicating whether the signature is valid.
A similar sequence of steps is used to generate signatures,
using the following methods of Signature: initSign(key),
update(data), and sign(). sign returns a byte array con-
taining the desired signature.

The CFG for getLength appears in Figure 1. excns(st, st′)
is shown as edge labels. Exception names are abbreviated.
The constructors for Integer and NullPointerException

have been inlined (because they are not in Mcust , introduced
in Section 6). For brevity, in all of the examples in this pa-
per, we ignore the detail field in exception classes, because
the detail message is not used in a significant way in these
examples. As a result, the NullPointerException construc-
tor does not contribute any nodes to the CFG.

4. CORRECTNESS REQUIREMENT
This section describes the correctness requirements for the

analysis. For τ ∈ Class ∪ PrimTy , let the concrete domain
Conτ be the set of all possible values of type τ . For τ ∈
Class, Conτ contains records whose fields contain primitive
values and references (i.e., object identifiers). Let Ref be
the set of references. For any set S, the set Bind(S) of
bindings for S contains partial functions b from S ∪ Ref to
Con such that domain(b) = S ∪ refs(b), where refs(b) is the
set of refrences that appear in b. The universe of concrete
values is Con =

⋃
τ∈Class∪PrimTy Conτ .

Structural equality is an equivalence relation on Con, de-
fined by: primitive values are structurally equal iff they are
equal; objects o1 and o2 are structurally equal iff the graphs
of objects reachable from them are isomorphic, i.e., they
have the same shape and contain the same primitive val-
ues in the same places but may contain different references.
Structurally equal values have the same serialized form. For
R ⊂ Ref , structural equality exact in R is defined like struc-
tural equality with the additional condition that references
in S match exactly in the two graphs. We extend structural
equality to tuples and bindings in the usual homomorphic
way.

Fix a method m. Let Var static be the set of static variables
used by m. Let RetVal denote possible return values of
m; these are elements of Con tagged to indicate whether
the method terminated normally or abruptly. For bindings
args ∈ Bind(Param) and glbl , glbl ′ ∈ Bind(Var static), and

a return value r ∈ RetVal , define the transition relation
m→

by: glbl , args
m→ glbl ′, r iff execution of m(args) starting with

static variable binding glbl can terminate with result r and
with static variable binding glbl ′.

Functions f1 and f2 are compatible if (∀x ∈ domain(f1) ∩
domain(f2) : f1(x) = f2(x)). For compatible functions f1

and f2, let f1 ⊕ f2 denote their “union”. An input par-
tition π for m is a partition of Bind(Param ∪ Var static)

import java.security.*;

class SBA { byte[] data; byte[] sig; }
class C {
final PublicKey pubKey=...; // initializer elided
Integer getLength(SBA sba) {

PublicKey k = this.pubKey;
try {

Signature v =
Signature.getInstance("SHA1withDSA");

v.initVerify(k);
byte[] a = sba.data;
v.update(a);
byte[] s = sba.sig;
boolean b = v.verify(s);
if (b) {

Integer i = new Integer(a.length);
return i; }

} catch (Exception e) {}
return null;

}}

NullPointerExc

k=this.pubKey

v=Signature.getInstance("SHA1withDSA")

if v!=null

v.initVerify(k)

if sba!=null

v.update(a)

a=sba.data

throw npe

b=v.verify(s)

s=sba.sig

e=lexc

exit getLengthreturn i

i.value=alen

i=new Integer

alen=a.length

if a!=null

if b=true

true false

true false

st11

st12

st13

st14

st15

st16

return null st20

entergetLength

false

NullPointerExc

normal InvalidKeyExc

true false

normal

npe=new NullPointerExc

SignatureExc

SignatureExc

true

st2

st1

st4

st5

st6

st7

st8

st9

st10

st3

st17

st18

st19

st21

normal

NoSuchAlgorithmExc

Figure 1: Code and CFG for getLength.

(i.e., each equivalence class in π is a set of bindings for
parameters and static variables) such that: for all φ ∈ π,
for all args1, args2 ∈ Bind(Param), for all glbl , glbl ′1, glbl

′
2 ∈

Bind(Var static) such that glbl is compatible with args1 and
args2, for all r1, r2 ∈ RetVal , if args1 ⊕ glbl ∈ φ and args2 ⊕
glbl ∈ φ and glbl , args1

m→ glbl ′1, r1 and glbl , args2
m→ glbl ′2, r2,

then the quiescent states 〈glbl ′1, r1〉 and 〈glbl ′2, r2〉 are struc-
turally equal exact in refs(args1) ∪ refs(args2) ∪ refs(glbl).

In comparing the final states, we use structural equality
for objects created during execution of the method. This is
appropriate because the semantics of object creation does
not specify which fresh object reference is returned by new,
so the output of well-behaved programs does not depend
on specific heap addresses. In other words, we assume that
programs do not use, e.g., Object.hashCode in patholog-
ical ways. Similarly, if the system’s interface is based on
RMI (not local invocation), then it is appropriate to adopt
a weaker correctness requirement that uses structural equal-
ity for objects in args other than this, because arguments of
a remote method on the server side contain freshly created
objects, so exact object references in the arguments are not
significant.

The correctness requirement and the analysis may be pa-
rameterized by a set of state components to ignore when
comparing quiescent states. This is an example of improv-
ing the analysis by considering how (if at all) information
that escapes an invocation is subsequently used. For exam-
ple, in the examples in this paper, we ignore detail messages
in exceptions thrown by m, because those messages are not
used by the rest of the program in any significant way. An-
other common example is to ignore output to a log file that
is never read by the program.

The correctness requirement may also be parameterized
by an equivalence relation (coarser than structural equality)
on specified classes to use when comparing quiescent states.
The same equivalence relation is then used in the analysis to
define struct(cl) (introduced in Section 8) for those classes.
For example, an instance of the class SignedObject de-
scribed in Section 9 encapsulates a serializable object, called
the payload, and a signature of that object. Our equivalence
relation for this class equates instances containing valid sig-
natures that differ only in the initialization vector used to
generate the signature.

5. STEP 1: PTE ANALYSIS
The points-to escape (PTE) analysis in [9] produces a

PTE graph α(x) = 〈N, O, I, e, r〉 at each program point x of
a method m. N is the set of nodes. Each node represents
a set of objects. O and I are sets of edges that characterize
the objects to which variables and fields with reference type
might point. The return set r indicates which objects might
escape from (an invocation of) m through its return value.
The escape function e describes the other ways in which ob-
jects might escape from m. The rest of this section describes
PTE graphs in more detail.

Five kinds of nodes are used in [9], corresponding to the
ways in which a program can obtain references to objects.
There is an allocation node nst for each object creation state-
ment st in m; nst represents objects allocated at st. There
is a parameter node np for each parameter p of m with refer-
ence type; np represents the argument bound to p. For each
load statement st of the form l1 = l2.f in m such that l1
has reference type, there is a load node nst which represents
objects o such that l2.f might point to o and the reference
to o was stored in l2.f by code outside m. There is a return
node nst for each invocation statement st in m such that the
method invoked by st returns a reference; nst represents ob-
jects returned by invocations at st. There is a class node ncl

for each class cl; it represents an imaginary object whose

fields are the static fields of cl. An object may be repre-
sented by multiple nodes, e.g., if a reference is loaded by
multiple load statements.

Example.A PTE graph for getLength contains (among
other nodes) an allocation node nst14 and a load node nst2.

O and I are sets of outside edges and inside edges, respec-
tively. An edge may connect a variable v to a node, or a
node to a node. An edge from a variable v to a node n rep-
resents the possibility that v points to an object represented
by n. An edge from a node n1 to a node n2 is labeled with
a field name f and represents the possibility that the f field
of some object represented by n1 points to some object rep-
resented by n2. Outside edges represent references created
before the analyzed method was invoked or by concurrently
executing threads; inside edges represent references created
by the analyzed method.

The return set r ⊆ N satisfies: if an object represented by
a node n possibly appears in the return value of m (hence
escapes to the caller), then n ∈ r. The escape function
e describes the ways objects represented by a node might
escape from the method invocation other than through the
return value. e(n) contains a parameter p if some objects
represented by n might be reachable from p. e(n) contains
a class name cl if some objects represented by n might be
reachable from a static field of cl. e(n) contains an allocation
node nst if some objects represented by n might be reachable
from (instance fields of) a runnable object allocated at st.
e(n) contains an invocation statement st if some objects
represented by n might be passed as parameters to or appear
in the return value of an invocation at st.

Exceptions.To analyze exceptions explicitly, we introduce
a sixth kind of node. For each invocation statement st
that can throw an exception, the PTE graph contains an
exc-return node nexc

st , which represents exceptions thrown
there. The transfer function for throw l updates the PTE
graph the same way as the copy lexc = l. The transfer
function for a skipped invocation statement st of the form
l = l0.m(l1, . . . , lk) is similar to the transfer function for
skipped invocation sites in [9, Section 6.1]. Let stn be the
normal successor of st (i.e., excns(st, stn) = {normal}). Let
ste be an exceptional successor of st (i.e., any successor
other than stn). The PTE graph at •stn is computed ex-
actly as in [9, Section 6.1]. The PTE graph at •ste is com-
puted similarly, except (1) updating outedges of lexc to point
to ne

st, instead of updating outedges of l to point to nst, and
(2) requiring st ∈ e(ne

st) instead of st ∈ e(nst).

Example.The PTE graph for C.getLength at •return i

appears in Figure 2. Parameter nodes are identified by print-
ing the name of the parameter inside. Other nodes in the
PTE graph are identified by the label of the corresponding
node in the CFG in Figure 1. For example, the load node
labeled “st2” (also known as nst2) corresponds to the load
statement in node 2 of the CFG

6. PARAMETERS OF THE ANALYSIS AND
SIMPLIFYING ASSUMPTIONS

The analysis is parameterized by the following sets.
Mfun is a set of functional methods. A method m1 is

functional if (i) an invocation of m1 does not update stor-

st3 st3 exc−return

st10 exc−return

ist14allocation exc−returnst8

return v

load
k

pubKey

load

load

st9

data

sig

a

s

st7
sba sba

param

this
param

st2

st5exc−return

Figure 2: PTE graph for C.getLength at •return i.
Italic labels indicate the kind of each node. The
return set is r = {nst14}. The escape function e
is: e(nthis) = this, e(nsba) = {sba}, e(nst2) = {this, st5},
e(nst3) = {st3}, e(nst5) = {sba}, e(nst7) = {sba}, and
e(ne

st) = ∅ for all invocation statements st.

age locations that escape from m1, and (ii) every storage
location it reads from either is captured in m1, appears in
its arguments, or is read-only. Note that this definition de-
pends on which storage locations are read-only and hence
depends on ClassrdOnly and ParamrdOnly , defined below.

Mcust is a set of methods for which the user supplies cus-
tom abstractions of the kind described in Section 7.2. All
other methods are inlined before Step 1; we assume those
methods are not recursive. During PTE analysis, invoca-
tions of methods in Mcust are treated as skipped invoca-
tion sites. Mcust is the only analysis parameter that affects
Step 1. We require Mcust ⊇ Mfun . For convenience, we as-
sume that all exceptions thrown by methods in Mcust are
caught by the caller; this can always be satisfied by mod-
ifying the program to catch and re-throw the exceptions.
This assumption ensures that all exceptions thrown by the
method being analyzed are thrown explicitly. We also as-
sume that information does not escape through methods in
Mcust . This assumption could easily be eliminated by sup-
plying, for each method in Mcust , a characterization of which
parameters’ values might escape, and generalizing the defi-
nitions of Stmtesc and esc(st) to reflect that values may also
escape via method invocations.

Classcust and PrimTycust are sets of classes and primi-
tive types, respectively, for which the user supplies custom
abstractions of the kind described in Section 7.1.

ClassrdOnly is a set of read-only classes. A class cl is
read-only if the system never updates objects reachable from
static fields of cl, except during initialization, which is as-
sumed to complete before processing of inputs from the en-
vironment.

ParamrdOnly is a set of read-only parameters. A parameter
p of method m is read-only if m never updates objects reach-
able from p. For systems with RMI-based interfaces, typi-
cally ParamrdOnly = Param \ {this}. The analysis tracks
values retrieved from read-only parameters and (static fields
of) read-only classes but (for simplicity) not from other pa-
rameters and static fields. To eliminate this limitation, we
would need to consider possible aliasing relationships among
those objects (because, in the presence of aliasing, an update
to, say, p1.f1 could also update p2.f1).

As mentioned in Section 1, we assume non-determinism
in the system has been factored out.

7. STEP 2: DATA-FLOW ANALYSIS
Section 7.1 introduces the abstract domains. We define an

abstract domain Dτ for each type τ and then combine these
domains into a single overall abstract domain D. An element
of Dcl represents a set of states that an instance of class cl
can be in. By default, Dcl is a tuple of abstract values, each
indicating the possible values of one field of the instance.
For selected classes, manually constructed abstractions may
be used instead of this default abstraction.

Section 7.2 describes the data-flow analysis algorithm.

7.1 Domains and Environments
The data-flow analysis aims to discover how the program

uses its inputs, so each domain Dτ should be able to repre-
sent values retrieved from the inputs. Let Rtrvdτ be a set
of expressions that represent values of type τ retrieved from
read-only parameters and read-only static variables. Specif-
ically, these expressions are built recursively from read-only
parameters and read-only static variables and two kinds of
retrieval operations, namely, field accesses and invocations
of functional methods. For example, if p1, p2 ∈ Param and
f1, f2 ∈ Field and m1 ∈ Mfun , then Rtrvdτ contains the
expression p1.f1.m1(p2.f2), assuming it type-checks and has
type τ . Note that Rtrvdcl includes expressions whose type
is a subclass of cl. To achieve the above desideratum, we
require Dτ ⊇ Rtrvdτ .

For each class cl, the analysis uses: (1) an abstract domain
Dcl, which comes with a join (least upper bound) operation
tcl (equivalently, it could come with a partial ordering, and
we could infer the join operation); (2) a load function such
that, for s in Dcl, loadcl(s, f) represents the possible values
of field f in an instance of cl in a state represented by s;
(3) a store function such that for s in Dcl and a field f of
cl and a value d, storecl(s, f, d) is in Dcl and represents the
possible states of an instance of cl obtained by starting in a
state represented by s and then storing d in field f .

Default Abstractions.The following default abstraction is
used for classes not in Classcust . Dcl is the union of Rtrvdcl,
a few special values (discussed next), and the cross product
of the abstract domains for the fields of cl. A special value,
null, is included to represent that a reference might be null.
Let τ1, . . . , τn denote the types of the instance fields of cl,
and let cl(x1, . . . , xn) denote a record (tuple) with the indi-
cated fields (components). The default abstract domain for
cl is

Dcl = {cl(d1, . . . , dn) | d1 ∈ Dτ1 , . . . , dn ∈ Dτn}
∪ Rtrvdcl ∪ {null}.

When applied to a tuple in Dcl, the default load and store
functions for cl select or update the specified field of the
record. When applied to null, the load and store functions
return >, a special abstract value that represents “all in-
formation” (or “arbitrary information”). When applied to
an element of Rtrvdcl, the load function performs the sym-
bolic retrieval in the obvious way (e.g., loadcl(p1.f1, f2) =
p1.f1.f2), and the store function simply returns >. More
accurate store functions are possible but have not been nec-
essary.

The default abstract domain for an array class has two
fields: length and elements. It does not distinguish val-
ues of individual elements: the value of the elements field
represents possible values of all elements.

For a primitive type T , the analysis uses an abstract do-
main DT . The default abstract domain for a primitive type
T is DT = ConT ∪ RtrvdT , and the join operation returns
> whenever its operands are not equal and are both not
⊥. One could easily parameterize the analysis with respect
to abstractions for operations on primitive types. For sim-
plicity, very coarse abstractions of these operations are hard-
wired into the transfer functions in Section 7.2. This suffices
for our current applications.

Custom Abstractions.For each class cl in Classcust , the
abstract domain and the load and store functions are man-
ually written. Custom domains are also required to satisfy
Dτ ⊇ Rtrvdτ .

The custom abstractions needed for our current applica-
tions are designed in a straightforward way, by introduc-
ing symbolic representations of (i) return values of methods
of classes in Classcust and (ii) return values of methods of
other classes whose results are typically used as arguments
to methods of classes in Classcust and whose values affect the
qualitative behavior (e.g., whether an exception is thrown,
and if so, which type of exception) of those methods. Our
naming convention is that the symbolic representation of the
return value of a method foo is foo(args), where args denotes
abstractions of the arguments of foo, including this.

Overall Domain.The type-specific domains Dτ are en-
hanced to include bottom and top elements and to allow sets
of possible values. The special abstract values ⊥ and > rep-
resent “no information” and “all information”, respectively.
The enhanced type-specific domains PwrDτ are combined
into an overall domain D.

PwrDτ = {⊥,>} ∪ PowerSet(Dτ) (1)

x tτ y =


y if x = ⊥
x if y = ⊥
> if x = > ∨ y = >
x ∪ y otherwise

D =
⋃

τ∈Class∪PrimTy

PwrDτ

Example.Analysis of programs that use cryptography re-
lies on custom (i.e., manually written but typically application-
independent) abstractions for some classes in java.security

and related classes and primitive types. We describe an ab-
straction for java.security.Signature, which is used for
the running example and the voting system in Section 9.
For brevity, we usually omit package names; for example,
Signature refers to java.security.Signature. A similar
abstraction for MessageDigest is used in the analysis of the
voting system in Section 9.

The Signature API requires that the information to be
signed be marshalled into a byte array. The most com-
mon approach to marshalling uses ObjectOutputStream and
ByteArrayOutputStream, like the code in Figure 5. Another
approach is to form a string and then use String.getBytes,
which converts a string into a byte array. Thus, custom ab-

stractions are also used for String, StringBuffer, ByteArray-
OutputStream and ObjectOutputStream. The custom ab-
stract domains defined below use the following abstract val-
ues. For x ∈ DByteArrayOutputStream, toByteArray(x) repre-
sents the return value of x.toByteArray(). getBytes(x) and
toString(x) are analogous to toByteArray(x). writeObj (o)
represents the data appended to an ObjectOutputStream by
writeObject(o).writeInt is analogous to writeObj . sign(alg ,
key , data) represents the return value of an invocation of
Signature.sign() on an instance of Signature with signa-
ture algorithm alg (for brevity, we omit the algorithm pa-
rameters), public key key, and data data. Signature(alg ,mode,
key , data) represents the state of an instance of Signature,
where: alg represents the signature algorithm; mode is “unini-
tialized”, “signing”, or “verifying” (depending on whether
initSign or initVerify was invoked more recently); key
represents the cryptographic key; and data represents the
data for which a signature will be created or verified when
sign() or verify(byte[] signature) is invoked. For a set
S, S∗ denotes the set of finite sequences of elements of S.

DString = RtrvdString ∪ (char∗ ∪ {toString(x) | x ∈ RtrvdObject})∗
DStringBuffer = DString

DObjectOutputStream = ({writeObj (x) | x ∈ RtrvdObject}
∪ {writeInt(x) | x ∈ Dint})∗
∪ RtrvdObjectOutputStream

DByteArrayOutputStream = DObjectOutputStream

∪ RtrvdByteArrayOutputStream

Dbyte[] = {getBytes(x) | x ∈ DString}
∪ {toByteArray(x) | x ∈ DByteArrayOutputStream}
∪ {sign(alg, key, data) | alg ∈ RtrvdString

∧ key ∈ DPublicKey

∧ data ∈ Dbyte[]}
∪ Rtrvdbyte[]

DSignature = {Signature(alg ,mode, key , data) |
alg ∈ RtrvdString

∧mode ∈ {uninit, signing, verifying}
∧ key ∈ DKey ∧ data ∈ Dbyte[]}

∪ Rtrvdsignature

This definition of PwrDByteArrayOutputStream suffices for appli-
cations in which every ByteArrayOutputStream is fed from
an ObjectOutputStream. We use the default abstract do-
main for int, PublicKey, and Key. Note that PublicKey

extends Key.
These classes have no public instance fields, so for the

custom load and store functions, it suffices to use functions
that always return >.

A custom abstraction is used for boolean. Its design
follows the general pattern described above. Specifically,
PwrDboolean contains the following kinds of elements re-
lated to Signature: verify(alg , key , data, sig), which repre-
sents a return value of Signature.verify, holds iff sig is
a valid signature of data using key key and signature algo-
rithm alg (this is false if, e.g., sig is null, or key is invalid);
availableSigAlg(alg) holds iff signature algorithm alg is avail-
able in the run-time environment; and compatible(keyAlg,
sigAlg) holds if the specified algorithms are compatible (e.g.,
compatible("DSA", "SHA1withDSA") holds; compatible("DSA",
"SHA1withRSA") does not). To see why, for example, el-
ements of the form verify(· · ·) are useful for analysis of
getLength, note that the output of getLength depends on
the return value of the invocation of verify, so, to achieve
accurate input partitioning, the analysis needs to determine

how that return value depends on the inputs to the method;
such elements of PwrDboolean support this.

Environments.An environment maps local variables with
primitive types, parameters with primitive types, and nodes
in the PTE graph to D. (The PTE graph contains every-
thing we need to know about values of local variables and pa-
rameters with reference types.) Let Lclprim and Paramprim

be the sets of local variables and parameters, respectively,
with primitive types. Let N be the set of nodes of the PTE
graph. Then Env = (Lclprim ∪ Paramprim ∪N) → D. Let ρ
range over Env .

Example.The environment ρ at the program point be-
fore node st16 of the CFG for C.getLength appears be-
low. Integer(d) is an element of the default abstraction for
Integer. [] denotes a byte array of length zero. nlbl denotes
the node labeled with lbl in Figure 2.

ρ(nthis)= {this}
ρ(nsba)= {sba}
ρ(nst2)= {this.pubKey}
ρ(nst3)= {Signature(”SHA1withDSA”, verifying,

this.pubKey, [])}
ρ(ne

st3)=⊥
ρ(ne

st4)=⊥
ρ(nst5)= {sba.data}
ρ(nst7)= {sba.sig}
ρ(ne

st8)=⊥
ρ(nst14)= {Integer(sba.data.length)}

ρ(b)= {verify(”SHA1withDSA”, this.pubKey,
sba.data, sba.sig)}

In ρ(nst3), the data component of the Signature is a byte
array of length zero, because Signature.verify resets that
component. All the exc-return nodes n have ρ(n) = ⊥ and
e(n) = ∅ at this program point, because the corresponding
exceptions are not thrown on any path to this point.

7.2 Data-Flow Analysis Algorithm
This subsection describes how to calculate an environment

at each program point. Readers not interested in the details
of this calculation may jump to Section 8.

When analyzing a method m in the system’s interface,
all methods not in Mcust are inlined. For each method m
in Mcust , a method abstraction [[m]] describing the behav-
ior of m must be supplied. The data-flow analysis is ex-
pressed as a set of constraints that are solved by a worklist
algorithm. Each constraint relates the state before a state-
ment st with the state after execution of st; the constraint
is expressed in terms of a transfer function [[st]] that cap-
tures the relevant semantics of st. The transfer function
for an invocation statement uses the method abstraction for
the invoked method. The next three subsections describe
method abstractions, transfer functions, and the constraint-
based analysis algorithm, respectively.

7.2.1 Abstractions of Methods inMcust

Let thrownExc(m) denote the set of exception types that
method m can throw (including subclasses of RunTimeExcep-
tion) plus a special element “normal” representing normal
termination. For an invocation statement st that invokes m,
let thrownExc(st) = thrownExc(m).

For each method m in Mcust , an abstract version [[m]] is

supplied. Consider an invocation statement st of the form
l = l0.m(l1, . . . , lk). If m returns a reference and can throw
an exception, then the data-flow analysis determines the ef-
fect of st on the environment by calling [[m]]α(•st)(l, l0, l1, . . . ,

lk, nst, n
exc
st , ρ). Recall that α is the result of PTE analysis;

the PTE graph α(•st) is an argument to [[m]]. If m does
not return a reference or cannot throw an exception, then
the next-to-next-to-last or next-to-last argument to [[m]], re-
spectively, is a dummy value.

The call to [[m]] returns a pair of functions 〈fenv, fguard〉,
both with domain thrownExc(m). fenv(e) is the environ-
ment obtained by updating ρ to reflect the effect of execu-
tion of m when m terminates in the manner described by
e. fguard(e) is (an over-approximation of) the pre-condition
for m to terminate in the manner described by e. fguard(e)
is in Dboolean. If m returns a reference or primitive value,
the return value is reflected in fenv(normal) by an updated
binding for nst or l, respectively. For e 6= normal, fenv(e)
contains an updated binding for nexc

st . We represent fenv and
fguard as sets of pairs or as λ-terms. Recall that (λv. expr) is
a function with parameter v that returns the value of expr.

The program checks whether the target l0 is null before
the method invocation, so abstractions of methods can as-
sume l0 is non-null.

The environment ρ[x 7→ y] is the same as ρ except that
x is mapped to y. Similarly, ρ[∀x ∈ S : x 7→ y] is an
environment with an updated binding for each x in S. Let
g range over PTE graphs. Ig is the set of inside edges of g,
and Ig(v) = {n | 〈v, n〉 ∈ Ig}.

Two auxiliary functions, getVal and setVal, are useful for
expressing many method abstractions. getValg(ρ, v) looks
up the value of a variable v at a program point with PTE
graph g and environment ρ. If v has reference type, getVal
follows edges in g to determine the nodes to which v might
point, uses the environment ρ to obtain the values associated
with those nodes, and returns the join of those values. The
join operation on D is induced by the join operations on the
type-specific domains:

x tD y =

x tτ y if x ∈ Dτ ∧ y ∈ Dτ

for some τ
> otherwise

Since tD is associative and commutative, we generalize it
to apply to any subset of D, and take tD∅ = ⊥.

getValg(ρ, v) = if type(v) ∈ Class then tD {ρ(n) | n ∈ Ig(v)}
else ρ(v)

setValg(ρ, l, d) returns an updated environment that re-
flects the effect of an assignment l = d executed from a pro-
gram point with PTE graph g and environment ρ. Suppose
type(l) ∈ Class. If l has outedges to exactly one node n,
and n represents at most one object (it is easy to give suffi-
cient conditions for this), then g determines a single storage
location to which l definitely points, and we say that l is sin-
gular in g, denoted singularg(l). In this case, setValg(ρ, l, d)
returns an environment in which that storage location is
mapped to d. This is called strong update. Otherwise, each
storage location to which g possibly points is mapped to the
join of its current value and d, because we do not know which
location will actually be updated by the assignment. This
is called weak update. If type(l) ∈ PrimTy , strong update is

always used.

setValg(ρ, l, d) = if type(l) ∈ Class then
if singularg(l) then ρ[∀n ∈ Ig(l) : n 7→ d]
else ρ[∀n ∈ Ig(l) : n 7→ ρ(n) tD d]

else ρ[l 7→ d]

singular is defined as follows. A node n is singular in
a PTE graph g if it represents at most one object; this
is true if (1) either n is an inside node, and the object
creation statement st corresponding to n is not contained
in a cycle in the CFG (hence st executes at most once),
or n is a parameter node; and (2) n does not escape ex-
cept possibly through the parameters or return value (i.e.,
eg(n) ⊆ Param). singularg(l) holds if Ig(l) contains exactly
one node n, and n is singular in g.

Example.Our abstractions for methods of ByteArrayOut-
putStream, ObjectOutputStream, and Signature perform
straightforward manipulations of the abstract values defined
in Section 7.1. We give an abstraction for Signature.verify
here; a few other method abstractions appear in Appendix
A.

The behavior of verify is sketched in Section 3. An ab-
straction for it appears in Figure 3. The notation is based on
Standard ML. The method declarator Signature.verify([B)Z
specifies the method’s name and type signature using nota-
tion from Java bytecode. Recall that verify has two pa-
rameters: this of type Signature, and signature of type
byte[]. getVal is used to obtain the values this and sig
of the parameters. If either argument to our abstraction for
verify is an abstract value containing multiple possible val-
ues, our abstraction “gives up” (i.e., returns a very approx-
imate answer). getMode is a selector for DSignature, defined
by: getMode(Signature(alg ,mode, key , data)) = mode. If
getMode(this) 6= verifying, SignatureException is thrown,
i.e., the environment is updated to bind the exc-return node
ne to a SignatureException. Recall that cl() is a tuple con-
structor for the default abstraction for a class cl with no in-
stance fields. We use a zero-ary constructor for Signature-
Exception and other exception classes, because we ignore
the sole instance field of these classes, namely the detail mes-
sage, as mentioned in Section 3. This is safe because, when
using the default cryptography provider in Sun JDK 1.3, the
detail messages do not contain significant information from
the parameters. If getMode(this) = verifying, the environ-
ment is updated in two steps: first, setVal is used to update
the values bound to nodes corresponding to this (specifi-
cally, nodes that l0 points to); second, the return value is
bound to l (the return value is bound to a variable, not a
node, because it has primitive type). The return value of
the call to sign is represented by verify(alg , key , data, sig),
which is described in Section 7.1. It is easy to improve
this abstraction so that it sometimes returns a specific an-
swer (true or false) when the argument is an element of
PwrDbyte[] of the form {sign(alg , key , data)}.

7.2.2 Transfer Functions
For a statement st, the transfer function [[st]] character-

izes the effect of execution of st on the environment (a more
formal requirement appears in Section 10). Stmt invoc is the
set of invocation statements. If st 6∈ Stmt invoc , then [[st]](ρ)
is the environment resulting from execution of st in envi-
ronment ρ. If st ∈ Stmt invoc , then for x ∈ thrownExc(st),

[[Signature.verify([B)Z]]g(l, l0, l1, n, nexc , ρ) =

let thisp = getValg(ρ, l0)
and signaturep = getVal(ρ, l1) in
if thisp = {this} and signaturep = {sig}
for some this ∈ DSignature and sig ∈ Dbyte[] then

let exns = {SignatureException,
NullPointerException}

and 〈alg ,mode, key , data〉 =
〈getAlg(this), getMode(this),
getKey(this), getData(this)〉 in

let result = verify(alg , key , data, sig)
and this ′ = {Signature(alg ,mode, key , [])} in
let fenv = {〈normal, setValg(ρ, l0, this

′)[l 7→ result]〉}
∪

⋃
cl∈exns{〈cl, ρ[nexc 7→ cl()]〉}

and fguard =
{〈normal, getMode(this) = verifying ∧ sig 6= null〉,
〈SignatureException, getMode(this) 6= verifying〉,
〈NullPointerException, getMode(this) = verifying

∧sig = null〉} in
〈fenv, fguard〉

else 〈(λ exc.>), (λ exc.true)〉

Figure 3: Abstraction for Signature.verify.

[[st]](ρ)(e) is the environment resulting from execution of st
in environment ρ if x terminates in the manner described
by e. If st executed in ρ cannot terminate in the manner
described by e, then [[st]](ρ)(e) is unconstrained (although
returning ⊥ makes the analysis more accurate).

The transfer functions are implicitly parameterized by the
result α of PTE analysis; this allows, e.g., the transfer func-
tion for a store statement st to use the PTE graph α(•st)
to determine which nodes represent objects that might be
updated by st. Let eg denote the escape function of PTE
graph g. For d ∈ D, let

load(d, f) =


d if d ∈ {⊥,>}
{loadcl(d, f) | d ∈ d} if d ⊆ Dcl for some

cl ∈ Class with a field f
> otherwise

The transfer functions in Figure 4 are reasonably straight-
forward, except perhaps for load and store statements. Con-
sider a load statement stload. If type(l1) ∈ PrimTy , the
transfer function for stload updates the environment in a
straightforward way. If type(l1) ∈ Class, the transfer func-
tion for stload updates ρ(nstload) to represent values that
may be loaded into l1 from field f of an object o such that a
reference to o was stored in l2.f by code outside m; if SE is
empty, no such objects exist, and ρ(nstload) is set to ⊥. The
transfer function for store statements, like the definition of
setVal, uses strong update or weak update, as appropriate.
A field f of class cl is singular, denoted singularFld(cl.f),
if it represents a single location in an instance of cl; this is
false only for the elements field of array classes.

Our data-flow analysis, like the PTE analysis in [9], does
not attempt to exclude infeasible execution paths; thus, the
transfer function for branch statements is simply the identity
function, and the guard function returned by [[m]] is ignored
in [[stcall]]. Currently, branch conditions and guards are used
only in Step 3. They could also be used to increase the
accuracy of data-flow analysis.

[[l = c]](ρ) = if type(l) ∈ Class then ρ else ρ[l 7→ {c}]
[[l = v]](ρ) = if type(l) ∈ Class then ρ else ρ[l 7→ ρ(v)]

[[stload]](ρ) =
let g = α(•stload) in
if type(l1) ∈ Class then

let SE = {n ∈ Ig(l2) | eg(n) 6= ∅} in
ρ[nstload 7→ tD{load(ρ(n), f) | n ∈ SE}]

else ρ[l1 7→ tD{load(ρ(n), f) | n ∈ Ig(l2)}]
[[ststore]](ρ) =

let τ = type(l2)
and g = α(•ststore)
and d = getValg(ρ, l1) in
if singularg(l2) ∧ singularFld(τ.f) then

ρ[(∀n ∈ Ig(l2) : n 7→ storeτ (ρ(n), f, d))]
else ρ[(∀n ∈ Ig(l2) : n 7→ storeτ (ρ(n), f,

d tD load(ρ(n), f)))]

[[l1 = l2[l3]]](ρ) = [[l1 = l2.elements]](ρ)
[[l2[l3] = l1]](ρ) = [[l2.elements = l1]](ρ)

[[stid]](ρ) = ρ

[[stcall]](ρ) =
let 〈fenv, 〉 = [[m]]α(•stcall)

(l, l0, l1, . . . , lk, nstcall , n
exc
stcall , ρ)

in fenv

[[l := l1 op l2]](ρ) = ρ[l 7→ >]

Figure 4: Transfer functions. m denotes an instance
method in Mcust ; for a static method, omit l0. stload
has the form l1 = l2.f . ststore has the form l2.f = l1.
stid is a return, throw, object creation, or branch
statement. stcall has the form l = l0.m(l1, . . . , lk).

7.2.3 Calculation of Environments
The data-flow analysis produces a function β that maps

program points to environments, except that, for each in-
vocation statement st, β maps the program point st• to a
function of type thrownExc(st) → Env . β is the least so-
lution of the following constraints. It can be computed by
a straightforward worklist algorithm that uses the transfer
functions to propagate successively better approximations to
the environment at each program point until a fixed-point
is reached.

The initial environment is

ρ0(x) =


{x} if x ∈ Paramprim or x is a parameter node
{x} if x is ncl ∈ N for some cl ∈ ClassrdOnly

{>} if x is ncl ∈ N for some cl 6∈ ClassrdOnly

⊥ otherwise

The join operation tEnv for Env is the point-wise exten-
sion of tD. Since tEnv is associate and commutative, we
generalize it to apply to any set of environments. Note that
tEnv∅ = ⊥. ≥Env is the partial order induced by the join
operation tEnv . Nesc is the set of nodes that possibly es-
cape the method before it returns (i.e., that escape other
than through the return value) and are not read-only. Re-
call from Section 6 that nodes reachable from ClassrdOnly ∪
ParamrdOnly are read-only, and methods in Mcust do not
let objects escape, so Nesc is the set of nodes n such that
eα(exitm•)(n) 6⊆ ClassrdOnly ∪ ParamrdOnly ∪ Stmt invoc . Con-
straints on the last line below use > to reflect the possibility
that nodes in Nesc might be updated arbitrarily by concur-

rently executing threads.

β(enterm•) = ρ0

β(•st) = (
⊔

Env{β(st′•) | st′ ∈ pred(st) \ Stmtthrower})
tEnv (

⊔
Env{β(st′•)(e) | st′ ∈ pred(st) ∩ Stmtthrower

∧ e ∈ excns(st′, st)})

β(st•) ≥Env [[st]](β(•st)) for st 6= enterm

β(st•)(n) = > for st ∈ Stmt and n ∈ Nesc

8. STEP 3: CALCULATION OF PARTITION
We introduce three items that capture the relevant infor-

mation from Steps 1 and 2. We then use these items to
construct a partition. The partition reflects the informa-
tion about inputs that can escape from the method. In-
formation can escape either by being part of a value that
escapes (e.g., sba.data.length is part of the return value of
getLength) or by being inferrable from a value that escapes
(e.g., verify(”SHA1withDSA”, this.pubKey, sba.data, sba.sig)
is inferrable when the return value of getLength is an Integer).
Accordingly, the items are: (1) a set Stmtesc of statements
that might let values escape from invocations of m; (2) for
each st ∈ Stmtesc , an abstract value esc(st) representing
information that possibly escapes at st; and (3) for each
st ∈ Stmt and st′ ∈ succ(st), a predicate guard(st, st′) that
is a necessary condition for control to flow from st to st′.

These three items are easily computed from the results α
and β of PTE analysis and data-flow analysis, respectively.
Stmtesc contains all return statements, throw statements
that throw an exception that might not be caught in m, and
store statements l2.f = l1 and array store statements l2[l3] =
l1 such that Iα(•st)(l2) ∩Nesc 6= ∅, where Nesc is defined in
the last paragraph of Section 7. For st ∈ Stmtesc , var(st)
denotes the variable denoted by l1 in Section 3. For a state-
ment st in Stmtesc , esc(st) = getValα(•st)(β(•st), var(st)).
For statements other than branches and method invoca-
tions, guard(st, st′) is the constant predicate “true”. If st
is an invocation statement and st′ is a successor of st, then
guard(st, st′) is determined by the conditions in fguard (re-
turned by the method abstraction) and excns(st, st′) in a
straightforward way. If st is a branch statement, then the
predicate is constructed in a straightforward way from st and
β(•st). For example, suppose st is if l != 0, st′ is the false
successor of st, the type of l is int, and the default abstrac-
tion is used for int. If β(•st)(l) ∈ {⊥,>}, then guard(st, st′)
is true (true is always a safe approximation); otherwise,
guard(st, st′) is

∨
x∈β(•st)(l) x = 0. If st is if l == null, and

st′ is the true successor of st, and β(•st)(l) 6∈ {⊥,>}, then
guard(st, st′) =

∨
x∈β(•st)(l) x = null. Conditionals of the

form if l 6= null are handled similarly. For all other pointer
comparisons, we take guard(st, sttrue) and guard(st, stfalse)
to be true, although a more accurate analysis is possible
based on the PTE graph. With this simple approximation,
guards are unaffected by aliasing.

In general, guards are boolean formulas built from
⋃

τ Rtrvdτ ,
the binary relations corresponding to kinds of branch state-
ments (namely, =, 6=, >, <,≥,≤, instanceof), and boolean
operators.

We extend the notion of a guard from edges to paths. Let
Paths contain all feasible (i.e., executable for some input)
edge-simple (i.e., no repeated edges) paths from enterm to

exitm. For σ ∈ Paths, let guard(σ) be the conjunction of
the guards of the edges in σ. Note that guards are expressed
in terms of initial, not current, values of parameters and
global storage, so they are not invalidated by assignments.
If Paths also contains infeasible paths, the analysis result
may contain some empty equivalence classes; this does not
violate the correctness requirement but is undesirable noise.

For σ ∈ Paths, let st1, . . . , stn be the sequence of state-
ments st in Stmtesc that appear on σ and satisfy esc(st) 6∈
{⊥,>}. The information that escapes along σ is repre-
sented abstractly (symbolically) by esc(σ) = esc(st1)×· · ·×
esc(stn). The set of distinct concrete data structures that
might escape along σ is

escStruct(σ) = struct(type(var(st1)))× · · ·
×struct(type(var(stn)))

where struct(τ) is Conτ quotiented by structural equality; in
other words, struct(τ) is a partition of Conτ into equivalence
classes based on structural equality.

Our partition aims for output coverage, so inputs that
produce the same output may be placed in the same equiv-
alence class. Accordingly, let PPaths be the partition of
Paths under the equivalence relation: σ ≡ σ′ if esc(σ) =
esc(σ′) ∧ |esc(σ)| = 1. The condition |esc(σ)| = 1 reflects
the fact that, if |esc(σ)| > 1, then different paths might be
needed to produce different elements of esc(σ). For σ̂ ∈
PPaths, let guard(σ̂) =

∨
σ∈σ̂ guard(σ) and escStruct(σ̂) =⋃

σ∈σ̂ escStruct(σ).
If there exists st ∈ Stmtesc such that esc(st) = >, then the

analysis result is undefined (the analysis could still provide
some constraints on an input partition based on analysis
results for paths that do not contain such statements, but
we do not pursue this). Otherwise, the partition contains
an equivalence class for each structurally distinct value s
that can escape along some path in some equivalence class
σ̂ in PPaths. The partition also reflects that only inputs
satisfying guard(σ̂) can lead to output s along σ̂.

partn(m) =
⋃

σ̂ ∈ PPaths
x ∈ esc(σ̂)
s ∈ escStruct(σ̂)

{{parstat | x ∈ s ∧ guard(σ̂)}}

(2)

where parstat is a tuple containing the parameters of m
and classes whose static fields are used by m. Occurrences
of parameters and static variables in x and guard(σ̂) are
captured (bound) by parstat in the set comprehension. The
formula has two levels of curly braces, because the partition
is a set of equivalence classes, and each equivalence class is
a set (of bindings). For an abstract value x, the meaning of
x ∈ s is: x ∈ s iff s contains some instance of cl represented
by x. The set of instances represented by an abstract value
is closed under structural equality, so s contains either all
or none of the instances of cl represented by x.

We apply the following simplifications to obtain the fi-
nal analysis result. Guards are simplified using standard
boolean identities. If all fields of a class cl have primitive
type, we replace the union over struct(cl) with unions over
the values of those fields; for example, replace⋃

s∈struct(Integer)

{{parstat | x ∈ s ∧ · · · }}

with
⋃

i∈int{{parstat | x.value = i ∧ · · · }}. If x ∈ esc(σ̂) is a
constant (e.g., null), we simplify

⋃
s∈escStruct(σ̂){{parstat | · · · }}

to {{parstat | guard(σ̂)}}.

Example.To illustrate the calculation of partn(getLength),
consider the path σ ∈ Paths(getLength) that contains nodes
1-16 and 21. The only statement on σ and in Stmtesc is
st16. We have esc(st16) = {Integer(sba.data.length)}. We
take the constructor for tuples with 1 component to be the
identity function, so esc(σ) = esc(st16) and

escStruct(σ) = {{o ∈ ConInteger | o.value = val} | val ∈ int},

and guard(σ) = normalGetLength, where the macro nor-
malGetLength is defined by

normalGetLength =
availableSigAlg(”SHA1withDSA”)

∧ sba 6= null ∧ this.pubKey 6= null
∧ compatible(this.pubKey.getAlgorithm(), ”SHA1withDSA”)
∧ verify(”SHA1withDSA”, this.pubKey, sba.data, sba.sig).

In PPaths, σ is in a singleton equivalence class, which we
denote by σ̂, so guard(σ̂) = guard(σ) and escStruct(σ̂) =
escStruct(σ). The contribution of σ̂ to the partition is⋃

c∈struct(Integer)

{{〈this, sba〉 | Integer(sba.data.length) ∈ c
∧ normalGetLength}}.

Applying the above simplifications (specifically, replacing
the union of Integer with a union over int), we obtain the
expression on lines 2 and 3 of equation (3) below. Equation
(3) is the final analysis result. All incorrectly signed inputs
are in one equivalence class. All correctly signed inputs with
the same data length are in one equivalence class.

partn(C.getLength) =
{{〈this, sba〉 | ¬normalGetLength}}
∪

⋃
i∈int{{〈this, sba〉 | sba.data.length = i

∧ normalGetLength}}

(3)

9. CASE STUDY: VOTING SYSTEM
We applied the analysis to our implementation of the

fault-tolerant and intrusion-tolerant distributed voting sys-
tem described in [5]. It has seven remote methods. We
describe the analysis of equivalence classes for the argu-
ments of one of them, namely, PSI.contend. PSI stands
for PollingStationImplementation. The contend method is
a challenge for the analysis, because its entire argument es-
capes in some cases. When a voter casts a ballot at a server
(“polling station” and “server” are synonymous), that server
remotely invokes contend on a quorum of servers. In the no-
tation of [5], the argument of contend is a request of the form
〈y1, y2〉 signed by some polling station ui, where y1 identifies
the voter, and y2 is evidence that the voter actually voted
at ui. contend checks that 〈y1, y2〉 is correctly signed by ui,
and that the values of y1 and y2 are correct, based on data
in the hashtable PSI.accessTag. If not, contend throws a
VotingExc. Otherwise, the request is well-formed, and uj

believes that voter y1 attempted to vote at ui. A dishon-
est voter might try to vote multiple times, so contend next
checks a hashtable to see whether voter y1 already voted
at some polling station uj . If so, contend returns evidence
that y1 voted at uj ; if not, contend stores its argument in
the hashtable as evidence that voter y1 voted at ui and then
signs and returns its argument. For brevity, Figures 5 and 6

are based on a slightly simplified version of contend that, if
the request is well-formed, simply returns its argument (i.e.,
the check of whether voter y1 already voted is omitted); this
leads to almost the same equivalence classes.

In our implementation, the argument of contend is an in-
stance of SignedObject, which is similar to java.security.-

SignedObject; it has fields Serializable obj (the pay-
load), int signer (the ID of the server that signed the pay-
load), and byte[] sig (the signature). Code for contend

and SignedObject.verify appear in Figure 5. contend in-
vokes static method PSI.pubKey(int ps), which looks up
ps in static variable PSI.pubKeyArray. contend directly ac-
cesses static variable PSI.accessTag. SignedObject.verify
accesses static variable PSI.sigAlg.

The payload of the SignedObject argument to contend

should be a NetObject. A NetObject has two fields, y1

and y2, corresponding to y1 and y2 above. These fields
have type ByteArrayEquals, which is like byte[] except
that equals and hashCode are overridden with methods
whose return values depend only on the contents of the ar-
ray. SignedObject.verify and ByteArrayEquals.equals

are not in Mcust , so they are inlined for the analysis. The
latter method calls java.util.Arrays.equals, which is in
Mfun .

The control-flow graph and PTE graph for contend ap-
pear in Appendix B.

Analysis results.Analysis of contend produces the parti-
tion in Figure 6. The three items in partn(contend) corre-
spond to contend returning a VotingExc, a NullPointer-

Exception, and the argument so, respectively.
The analysis result uses elements of Dboolean of the fol-

lowing forms: serializable(o), introduced by the abstraction
for ObjectOutputStream.writeObject, holds if o is serial-
izable; containsKey(h, k), introduced by the abstraction for
Hashtable.containsKey (see Section 9.1), holds if hashtable
h contains an entry with key k; and arraysEquals(a, a2), in-
troduced by the abstraction for Arrays.equals(byte[] a,

byte[] a2), holds if the two byte arrays have the same con-
tents. In the voting system, signatures (i.e., byte arrays
returned by Signature.sign) are only passed around and
verified, so it is safe to define struct(SignedObject) based
on the equivalence relation that equates instances that differ
only in the initialization vector used to generate the signa-
ture. The partition also uses abstract values of the form
element(v), which represents all elements of the collection
v; such abstract values are introduced by the abstraction for
Vector.elementAt.

For any fixed values of read-only global storage, the par-
tition partn(PSI.contend) contains a finite number of equiv-
alence classes. The form in which the partition is expressed
does not make this readily apparent. In future work, we
plan to investigate automatic transformations that make
this more evident by replacing predicates with unions. A
predicate of the form containsKey(h, k) corresponds natu-
rally to a union over the set of keys in h. Similarly, a pred-
icate of the form arraysEquals(a, element(a2)) corresponds
to a union over the set of elements of a2. Introduction of
unions is also a step towards generation of code for the envi-
ronment; the next step is to translate unions into iterations
(loops).

If incorrect values of static variables are considered infea-
sible in this application, then the second equivalence class

// remote method PSI.contend
public synchronized SignedObject
contend(SignedObject so) throws VotingExc {

if (so==null || !so.verify(pubKey(so.signer)))
// null ref. or invalid signature
throw new VotingExc();

if (!(so.obj instanceof NetObject))
throw new VotingExc();

NetObject n = (NetObject)so.obj;

boolean aTcK = accessTag.containsKey(n.y1);
if (!aTcK)
throw new VotingExc(); // invalid voter ID y1

Vector v = (Vector)accessTag.get(n.y1);

// The description in [MalkiReiter98] suggests:
// y2OK = v.contains(n.y2);
// The correct check is:
boolean y2OK = n.y2.equals(v.elementAt(so.signer));
if (!y2OK)
throw new VotingExc(); // invalid access tag y2

// remainder of method has been simplified (see text)
return so;

}

// method SignedObject.verify
public boolean verify(PublicKey k) {
boolean verifies = false;
if (obj != null && sig != null) {
try {
Signature dsa = Signature.getInstance(PSI.sigAlg);
dsa.initVerify(k);
ByteArrayOutputStream baos =

new ByteArrayOutputStream();
ObjectOutputStream oos =

new ObjectOutputStream(baos);
oos.writeObject(obj);
dsa.update(baos.toByteArray());
verifies = dsa.verify(sig);

}
catch (Exception exc) { }

}
return verifies;

}

Figure 5: Source code for contend and verify.

in partn(PSI.contend) is empty.
Input partition analysis of all the remote methods pro-

duces about 25 equivalence classes or families of equivalence
classes for arguments or return values of remote methods.

Model checking.To generate code for the adversary based
on the analysis result, we followed the approach in [7, 4].
Writing code that simulates voters is trivial. We tested the
voting system together with the resulting environment in
our implementation of a VeriSoft-like [2, 3] state-less model
checker for distributed Java programs that communicate by
RMI. It intercepts all invocations of and returns from re-
mote methods and gives control to its own scheduler at
those points. It provides an operation int Random(int n)

that (like VeriSoft’s VS Toss) non-deterministically selects
and returns a number between 0 and n − 1; the scheduler

partn(PSI.contend) =
{{〈this, so, PSI〉 | ¬contendNormal1}}

∪ {{〈this, so, PSI〉 | contendNormal1
∧ (PSI.pubKeyArray = null

∨ PSI.accessTag = null)}}
∪

⋃
c∈struct(SignedObject){{〈this, so, PSI〉 | contendNormal2

∧ so ∈ c}}
contendNormal1 =

so 6= null ∧ so.obj 6= null
∧ so.signer ∈ [0..PSI.pubKeyArray.length− 1]
∧ so.sig 6= null ∧ availableSigAlg(PSI.sigAlg)
∧ PSI.pubKey(so.signer) 6= null
∧ compatible(PSI.pubKey(so.signer).getAlgorithm(),

PSI.sigAlg)
∧ serializable(so.obj)
∧ verify(PSI.sigAlg,

PSI.pubKey(so.signer),
toByteArray(writeObj (so.obj)), so.sig)

∧ so.obj instanceof NetObject

contendNormal2 =
contendNormal1 ∧ PSI.pubKeyArray 6= null

∧ PSI.accessTag 6= null
∧ containsKey(PSI.accessTag, so.obj.y1)
∧ arraysEquals(so.obj.y2,

element(PSI.accessTag.get(so.obj.y1)))

Figure 6: Partition for contend.

explores all of these values. This feature is used to non-
deterministically select which remote method to invoke next
and which equivalence class to use for the arguments or re-
turn value of an RMI. As in VeriSoft, the model checker
backs up to a previous state s by restarting the system and
re-executing a sequence of transitions that leads to s.

We model-checked the voting phase (not the tallying phase)
of an election in a system configuration with 4 honest polling
stations, 1 compromised polling station, 6 quorums, 1 voter,
1 candidate, and a stack depth limit (i.e., bound on num-
ber of interactions between system and environment in an
execution) of 4. This small configuration is useful for check-
ing the property: if an uncompromised server uj records (in
its hash table) that a voter v voted at an uncompromised
server ui, then v voted at ui. The model checker found a
violation of this property in 2 seconds (on a 440 MHz Sun
Ultra 10), due to an error in the description of the algorithm
in [5], which says, “Each server, upon receiving 〈y1, y2〉 in
ui’s signed request . . . , finds the access tag 〈y1, S〉 and ver-
ifies that h(y2) ∈ S.” In fact, the correct (and intended
by the authors) version is to regard S as an array indexed
by server ID and have the server verify that h(y2) = S[i].
Figure 5 shows the original and corrected code. The model-
checker checked the corrected system in 83 seconds, explor-
ing 31,125 transitions (excluding 80,629 transitions executed
during replay) and using 28 MB RAM. The number of dis-
tinct explored states is not easily determined, because the
model-checker is state-less.

9.1 Analysis of Aggregates
We extend the above data-flow analysis to analyze aggre-

gate data structures—such as arrays and classes that im-
plement java.util.Collection—more accurately. Specifi-

cally, the goals are (1) to recognize when a method’s behav-
ior depends on whether a value is an element of a particular
collection, and (2) to recognize when all elements of an ag-
gregate satisfy a predicate (e.g., all elements of ballotArray
are signed with an appropriate key).

Analyzing Membership.A typical subproblem of mem-
bership analysis is, for a Vector v, to recognize membership
in v for a return value of v.elementAt and for an object
o when v.contains(o) returns true. A general approach
to membership analysis is to introduce a map from con-
trol points to membership relationships and give transfer
functions to compute it. We adopt a more concise but
less expressive approach, by encoding this information in
RtrvdObject and Dbool and using appropriate abstractions for
methods that access collections. For our current applica-
tions, it suffices to keep track of membership in (read-only)
collections referenced from read-only parameters and read-
only static fields, so we extend RtrvdObject with terms of the
form element(v), which represents an arbitrary element of
the collection represented by v, where v ∈ RtrvdObject (if
v does not represent a collection, then element(v) is not
well-formed and will not arise in analysis of type-correct
programs). Load and store functions for DObject are easily
extended to accommodate these elements. We briefly de-
scribe abstractions for some methods of collections. Details
of some of the abstractions appear in Figure 7.
Hashtable.containsKey is in Mfun . Our abstraction for it

is similar in style to the abstraction for verify. Recall that
h.containsKey(k) returns true iff hashtable h contains an
entry with key k. The abstraction uses getVal to obtain both
an element this of RtrvdHashtable representing the state of the
target Hashtable and an element k of RtrvdObject represent-
ing the key being looked up, and, if the key is not null, re-
turns containsKey(this, k). This requires that PwrDboolean

contains containsKey(h, k) for all h ∈ RtrvdHashtable and
k ∈ RtrvdObject.
Hashtable.get is in Mfun . Our abstraction for it is like

the abstraction for containsKey except that the environ-
ment associated with normal termination in the “true” branch
is setValg(ρ, l, {m.get(k)}), not ρ[l 7→ {containsKey(m, k)}],
where m.get(k) is in RtrvdObject.
Vector.contains and Vector.elementAt are in Mfun . Our

abstraction for Vector.contains is similar to our abstrac-
tion for containsKey. For Vector.elementAt, if the target
object is a vector v and the method terminates normally
(it can also throw ArrayIndexOutOfBoundsException), the
abstraction returns element(v), to indicate that the return
value is an element of v.

Currently, we track membership only in read-only collec-
tions that are not updated after initialization, so our ab-
stractions for update methods simply return >. More accu-
rate abstractions could easily be used.
Arrays.equals is in Mfun . Our abstraction for it is similar

in style to our abstraction for containsKey. PwrDboolean

contains arraysEquals(a1, a2) for all array classes τ and all
a1 ∈ Rtrvdτ and a2 ∈ Rtrvdτ .

Properties of Elements of Aggregates.The second goal
above requires extending the form of predicates to allow
quantification over aggregates and recognizing code that it-
erates over aggregates. For analysis of many programs, it
suffices to recognize cycles in the CFG with one or two sim-

[[Hashtable.containsKey(LObject;)Z]]g(l, l0, l1, n, nexc , ρ) =

let thisp = getValg(ρ, l0)
and keyp = getValg(ρ, l1) in
if thisp = {this} and keyp = {key}
for some this ∈ RtrvdHashtable and key ∈ RtrvdObject then

let exns = {ClassCastException,
NullPointerException} in

let fenv = {〈normal, ρ[l 7→ {containsKey(this, key)}]〉}
∪

⋃
cl∈exns{〈cl, ρ[nexc 7→ cl()]〉}

and fguard = {〈normal, key 6= null〉,
〈NullPointerException, key = null〉,
〈ClassCastException, false〉} in

〈fenv, fguard〉
else 〈(λ exc.>), (λ exc.true)〉

[[Vector.elementAt(I)LObject;]]g(l, l0, l1, n, nexc , ρ) =

let thisp = getValg(ρ, l0)
and indexp = getValg(ρ, l1) in
if thisp = {this} and indexp = {index}
for some this ∈ RtrvdVector and index ∈ Rtrvdint then

let exns = {ArrayIndexOutOfBoundsException} in
let fenv = {〈normal, setValg(ρ, l, {element(this)})〉}

∪
⋃

cl∈exns{〈cl, ρ[nexc 7→ cl()]〉}
and fguard = {〈normal, index ∈ [0, this.size()− 1]〉,

〈ArrayIndexOutOfBoundsException,
index 6∈ [0, this.size()− 1]〉} in

〈fenv, fguard〉
else 〈(λ exc.>), (λ exc.true)〉

Figure 7: Abstractions for some methods related to
aggregates.

ple forms (e.g., counter-based loops that iterate over arrays
and vectors, and loops that use iterators over collections).
If analysis of the loop body shows that some predicate φ
holds for the “current” element and some other syntactic
conditions hold, then the guard on the control flow edge
traversed during normal termination of the loop may assert
that φ holds for all elements of the aggregate.

We extend predicates to contain quantifications over ag-
gregate data structures. We discuss only quantifications
over arrays; quantifications over collections can be handled
similarly. Extend the formulas used to express guards to
include variables x (bound by quantifiers) and quantifica-
tions of the form (∀x ∈ a : φ), where a is in Dcl for some
array class cl, and φ is a formula. Occurrences of elements
of Rtrvdτ (for any τ) in a predicate may be tagged with a
local variable, as discussed below.

A statement st accesses a node n if st contains a variable
v of reference type such that n ∈ Iα(•st)(v). A statement
st (possibly) updates a node n if (1) st is a store statement
l2.f = l1 and n ∈ Iα(•st)(l2), or (2) st is an invocation
statement l = l0.m(l1, . . . , ln) and there exists ρ such that
the return value of [[m]](l, l0, . . . , lk, nst, n

exc
st , ρ) contains an

environment ρ1 such that ρ(n) 6= ρ1(n) (this is easily deter-
mined by inspection of the definition of [[m]]).

For an array class τ and a ∈ Rtrvdτ , an array iteration
over a with iteration variable l is a subgraph of the CFG of
the form in Figure 8 such that there exists n3 ∈ N (which
represents the array a) such that

false

true

G

st2

1

==l2

st

st

=l
4st

l
3

st5

=0

1

l2 3.length=l

1]if l 1 +11

1
l

st6 : l=l3][

Figure 8: Subgraph recognized as iteration over an
array.

1. subgraph G (the body of the loop) and all pictured
nodes except st1 have only the pictured inedges (they
may have additional outedges, and there may be mul-
tiple edges from G to st4)

2. Iα(•st2)(l3) = {n3} ∧ β(•st2)(n3) = a

3. G contains an array load statement st6 of the form
l = l3[l1] that appears before all other statements in G
that access l. G contains no other updates to l.

4. G does not update l1 or l2. G does not update n3

(which represents the array) or load node nst6 (which
represents an element of the array).

st5 is called the final node of the iteration.
guardA(st, st′) is defined the same way as guard(st, st′)

except as follows. If st′ is in the body of an iteration over a
with iteration variable l, and st ∈ pred(st′), then guardA(st, st′)
is the same as guard(st, st′) except that uses of the value of l
are tagged to indicate that they are from l. If st′ is the final
node of an iteration over a with iteration variable l, and st
is the predecessor of st′, then

guardA(st, st′) = guard(st, st′) ∧ (∀x ∈ a : guard(•st)[vl := x])
(4)

where the expression in square brackets indicates substitu-
tion of x for all values v labeled with l. This replacement
is safe because, in the transfer function for array load, the
array index is not used on the right side of the equation,
so guard(st, st′) is independent of l1 and hence holds for all
emements of the array, not only the last element. The anal-
ysis results are defined as in Section 8, except using guardA

instead of guard .

10. SEMANTICS OF TRANSFER FUNCTIONS
This section describes soundness for transfer functions.
A binding b ∈ Bind(Param∪Var static) can be extended to

a function [[·]]base
b ∈ (

⋃
τ Rtrvdτ) → PowerSet(Con), defined

by structural induction on elements of Rtrvdτ . The use of
a powerset here is needed only to accommodate values of
the form element(v), described in Section 9.1. We further
extend this function to an interpretation

[[·]]D1
b ∈ (

⋃
τ∈Class∪PrimTy

Dτ) → PowerSet(Con).

For this purpose, we require that each custom abstraction
Dτ is accompanied by an interprertation for elements of Dτ .

For elements cl(d1, . . . , dn) of default abstractions, we use

the straightforward interpretation, namely, [[cl(d1, . . . , dn)]]D1
b

is the set of instances of cl whose field values are consistent
with d1, . . . , dn, i.e., the i’th field has a value in [[di]]

D1
b .

Finally, we extend this function to an interpretation [[·]]Db ∈
D → PowerSet(Con), with the stipulation that [[⊥]]Db = Con

and [[>]]Db = Con.
A (concrete) state σ contains values for operand stack,

static variables, heap, etc. For a PTE graph g and an envi-
ronment ρ, let [[g, ρ]]stateb be the set of states σ represented
by g and ρ, i.e., (1) g represents the heap in σ under some
abstraction relation r ⊆ Con ×N , according to the seman-
tics of PTE graphs [9], (2) for all v ∈ Paramprim ∪ Lclprim ,

the value of v in σ is in [[ρ(v)]]Db , and (3) for all 〈o, n〉 ∈ r,

o ∈ [[ρ(n)]]Db . For a state σ, let ps(σ) denote the restriction
of σ to bindings for parameters and static variables. Define

the relation
st→ by: σ

st→ σ′ iff execution of statement st in
state σ can lead to state σ′.

Soundness of the environment transfer function [[st]] for
a statement st in a method m requires the following. Let
α be the result of PTE analysis of m. For all ρ ∈ Env ,
for all states σ and σ′ such that σ ∈ [[α(•st), ρ]]stateps(σ) and

σ
st→ σ′, (1) if st 6∈ Stmt invoc , σ′ ∈ [[α(st•), [[st]](ρ)]]stateps(σ) and

(2) if st ∈ Stmt invoc , σ′ ∈ [[α(st•), [[st]](ρ)(e)]]stateps(σ), where

e ∈ thrownExc(st) is the manner in which the invocation
terminated (this can be determined from σ′).

11. PARTITIONS FOR RETURN VALUES
OF REMOTE METHODS

The preceding analysis is aimed at determining equiva-
lence classes for arguments of remote methods. In secure
systems, it is also necessary to determine equivalence classes
for return values of remote methods, since these are also con-
trolled by the adversary. We adapt the preceding analysis for
this purpose by augmenting the caller with fresh parameters
representing return values of remotely invoked methods and
computing an input partition for the augmented method.

For each invocation statement st that invokes a remote
method m (we assume such statements can be identified
statically), (1) augment m with parameters pst,x for x ∈
thrownExc(m)∪RemoteException, (2) add m to Mcust (hence
the invocation is not inlined) with a custom abstraction for
this call site (we use mst as the method name to emphasize
that this abstraction is for use only at st):

[[mst]]g(l, l0, l1, . . . , lk, n, nexc , ρ) =

{〈x, setValg(ρ, l, npst,x)〉 | x ∈ (thrownExc(m)
∪ RemoteException)}.

(5)

and (3) add st to Stmtesc , because the arguments escape
from the caller. Note that we allow here an exception to our
usual assumption that information does not escape through
methods in Mcust .

Since Stmtesc now contains (remote) invocation statements,
in order to use the partition construction in Section 8, we
need to extend the definition of var(st) to apply to invo-
cation statements. The simplest approach is to treat an
invocation statement of the form l = l0.m(l1, . . . , lk) as k
separate statements, where var(sti) returns li. (General-
izing var so it returns a set of variables is equivalent but

notationally awkward.)
The analysis yields an input partition for the augmented

method m. A partition for the return values (normal and
exceptional) of each remote-method call site is obtained by
projecting the input partition for m onto the parameters
introduced for that call site, by existential quantification
over the other parameters.

If a remote method m invokes remote methods, the input
partition for arguments of m is obtained by projecting the
input partition for the augmented version of m onto the
original parameters. The remote method invocations are
treated as skipped call sites in PTE analysis, so the results
of PTE analysis reflect the fact that arguments to remote
methods escape from m.

Acknowledgments.I thank the reviewers for their helpful
comments.

12. REFERENCES
[1] Christopher Colby, Patrice Godefroid, and Lalita

Jagadeesan. Automatically closing open reactive
programs. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 345–357, 1998.

[2] Patrice Godefroid. Model checking for programming
languages using VeriSoft. In Proc. 24th ACM
Symposium on Principles of Programming Languages
(POPL), pages 174–186. ACM Press, 1997.

[3] Patrice Godefroid, Robert S. Hanmer, and Lalita
Jagadeesan. Model checking without a model: An
analysis of the heart-beat monitor of a telephone switch
using VeriSoft. In Proc. ACM International Symposium
on Software Testing and Analysis (ISSTA), pages
124–133. ACM Press, 1998.

[4] Gavin Lowe. Casper: A compiler for the analysis of
security protocols. In Proc. 10th IEEE Computer
Security Foundations Workshop (CSFW), 1997.

[5] Dahlia Malkhi and Michael Reiter. Secure and scalable
replication in Phalanx. In Proc. 17th IEEE Symposium
on Reliable Distributed Systems, pages 51–60, 1998.

[6] Debra J. Richardson and Lori A. Clarke. Partition
analysis: A method combining testing and verification.
IEEE Transactions on Software Engineering,
11(12):1477–1490, December 1985.

[7] A.W. Roscoe and M.H. Goldsmith. The perfect “spy”
for model-checking cryptoprotocols. In Proc. DIMACS
Workshop on Design and Formal Verification of
Security Protocols, September 1997.

[8] Scott D. Stoller. Domain partitioning for open reactive
systems. Technical Report DAR-02-6, SUNY at Stony
Brook, Computer Science Dept., February 2002.
Available at www.cs.sunysb.edu/~stoller/partn.html.

[9] John Whaley and Martin Rinard. Compositional
pointer and escape analysis for Java programs. In Proc.
ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA),
pages 187–206, October 1999.

APPENDIX

A. METHOD ABSTRACTIONS FOR
SIGNATURE

Figures 9 and 10 contain abstractions of some methods of
Signature. Abstractions of the other methods are similar.
getAlg and getData are selectors for DSignature, like getMode
in Section 7.2. Each exception class has an instance field
with type String that holds a detail message. With the
default cryptography provider in Sun JDK 1.3, the detail
message does not contain significant information from the
parameters, so we omit it below; e.g., we write Invalid-

KeyException() instead of InvalidKeyException("Could not

initialize for signing with the given key."). For brev-
ity, we omit package names; e.g., we write C.m(LString;)V

instead of C.m(Ljava.lang.String;)V. In many applications,
update is called only once between calls to initSign or
initVerify; we use a simple abstraction for update that
suffices for such applications. In the abstraction for verify,
we use strong update for n, because if the method invoca-
tion completes normally, then it definitely updates the ob-
ject represented by n; similarly, an incorrect mode causes
an exception, which is not represented by the normal return
value, so the latter can be determined independently of the
mode. Signature.verify resets the working data to empty.

B. ANALYSIS DETAILS FOR PSI.CONTEND
The control-flow graph of contend, with SignedObject.-

verify inlined, appears in Figure 11. The classes of all
the objects can easily be determined statically, so dynamic
dispatch code is not introduced.

To help the figure fit on the page, some instanceof checks
and corresponding throws of ClassCastException (namely,
from (Vector)accessTag.get(y1) and ByteArrayEquals.-

equals) are elided, as are store statements that involve lexc .
Some load statements (e.g., for so.sig and n.y1) and the
invocation statement for elementAt are folded into other
statements in the figure but are really separate statements.
The exception handler in SignedObject.verify is not shown
explicitly. The unique exit node appears in multiple places
in the figure.

The PTE graph for contend at •return so appears in
Figure 12. In Figure 11, some load statements are folded
into other statements to save space (e.g., a load of so.obj is
folded into if so.obj!=null), so the target variable of the
load does not appear in Figure 11. In Figure 12, such vari-
ables are named as follows: the i’th statement that loads
so.obj is soobji = so.obj; and so on. (The CFG for
contend is acyclic, so this is unambiguous.) The identity
of each node in the PTE graph is clear from the annotations
and the variable pointing to it; for example, baos points
to the allocation node corresponding to new ByteArray-

OutputStream. So, instead of putting identifying informa-
tion inside each node n (as in Figure 2), we put ρ(n) (we
elide curly braces for singleton sets), where ρ is the envi-
ronment at •return so. The environment for variables with

[[Signature.initVerify(LPublicKey;)V]]g(l, l0, l1, n, nexc , ρ) =

let thisp = getValg(ρ, l0) in
let keyp = getValg(ρ, l1) in
if thisp = {this} and keyp = {key} for some this ∈ DSignature

and key ∈ DKey then
let exns = {InvalidKeyException}
and result = {Signature(getAlg(this), verifying, key , [])} in
let fenv = {〈normal, setValg(ρ, l0, result)〉}

∪
⋃

cl∈exns{〈cl, ρ[nexc 7→ cl()]〉}
and fguard =
{〈normal, key 6= null ∧ compatible(key .getAlgorithm(),

getAlg(this))〉,
〈InvalidKeyException,
key = null ∨ ¬compatible(key .getAlgorithm(),

getAlg(this))〉} in
〈fenv, fguard〉

else 〈(λ exc.>), (λ exc.true)〉

[[Signature.getInstance(LString;)LSignature;]]g(l, l1, n, nexc , ρ) =

let algp = getValg(ρ, l1) in
if algp = {alg} for some alg ∈ DString then

let exns = {NoSuchAlgorithmException}
and result = {Signature(alg , uninit, null, null)} in
let fenv = {〈normal, setValg(ρ, l, result)〉}

∪
⋃

cl∈exns{〈cl, ρ[nexc 7→ cl()]〉}
and fguard = {〈normal, alg 6= null ∧ availableSigAlg(alg)〉,

〈NoSuchAlgorithmException,
alg = null ∨ ¬availableSigAlg(alg)〉} in

〈fenv, fguard〉
else 〈(λ exc.>), (λ exc.true)〉

[[Signature.update([B)V]]g(l, l0, l1, n, nexc , ρ) =

let thisp = getValg(ρ, l0)
and datap = getValg(ρ, l1) in
if thisp = {this} and datap = {data} and getData(this) = []
for some this ∈ DSignature and data ∈ Dbyte[] then

let exns = {SignatureException}
and 〈alg ,mode, key , []〉 =

〈getAlg(this), getMode(this),
getKey(this), getData(this)〉 in

and result = {Signature(alg ,mode, key , data)} in
let fenv = {〈normal, setValg(ρ, l0, result)〉}

∪
⋃

cl∈exns{〈cl, ρ[nexc 7→ cl()]〉}
and fguard = {〈normal, getMode(this) 6= uninit〉,

〈SignatureException,
getMode(this) = uninit〉} in

〈fenv, fguard〉
else 〈(λ exc.>), (λ exc.true)〉

Figure 9: Abstractions of some methods of
Signature.

primitive type is1

ρ(verifies) = {verify(PSI.sigAlg, PSI.pubKey(so.signer),
toByteArray(writeObj (so.obj)), so.sig),

false}
ρ(aTcK) = containsKey(PSI.accessTag, so.obj.y1)
ρ(y2OK) = arraysEquals(so.obj.y2,

element(PSI.accessTag.get(so.obj.y1)))
1The fact that verifies cannot be false at this point is not
reflected in the environment; it is reflected in the guards,
described in Section 8.

[[Signature.sign()[B]]g(l, l0, n, nexc , ρ) =

let thisp = getValg(ρ, l0) in
if thisp = {this} for some this ∈ DSignature then

let exns = {SignatureException}
and 〈alg ,mode, key , data〉 =

〈getAlg(this), getMode(this),
getKey(this), getData(this)〉 in

let result = sign(alg ,mode, key , data)
and this ′ = {Signature(alg ,mode, key , [])} in
let fenv = {〈normal, setValg(ρ, l0, this

′)[n 7→ result]〉}
∪

⋃
cl∈exns{〈cl, ρ[nexc 7→ cl()]〉}

and fguard = {〈normal, getMode(this) = signing〉,
〈SignatureException,
getMode(this) 6= signing〉} in

〈fenv, fguard〉
else 〈(λ exc.>), (λ exc.true)〉

Figure 10: Abstractions of some methods of
Signature, continued.

The return set r of the PTE graph contains nso, all load
nodes reachable from nso, all allocation nodes for VotingExc
and NullPointerException, and the exc-return nodes for
the invocation statements that call PSI.pubKey and v.elementAt

(these two nodes represent ArrayIndexOutOfBoundsException).
Regarding the escape function e, e(n) is non-empty for all
nodes except the exc-return nodes and the allocation nodes
for ObjectOutputStream, VotingExc, and NullPointerExcep-

tion.

normal

entercontend

if PSI.aT!=null

n=so.obj

if ny2!=null

exitcontend

throw exc

exc=new VotingExc()

throw exc

exc=new VotingExc()

throw exc

exc=new NullPointerExc()

throw exc

exc=new VotingExc()

throw exc

exc=new VotingExc()

contendexit

throw exc

exc=new NullPointerExc()

return so

if so==null

k=PSI.pubKey(so.signer)

verifies=false

if so.obj!=null

if so.sig!=null

dsa=Signature.getInstance(sigAlg)

dsa.initVerify(k)

baos=new ByteArrayOutputStream()

oos=new ObjectOutputStream(baos)

oos.writeObject(so.obj)

ba=baos.toByteArray()

dsa.update(ba)

verifies=dsa.verify(so.sig)

false

normal

true false

true false

normal

normal

normal

normal

if so.obj instance NetObject

normal

true

SignatureException

true

exitcontend

AIOOBExc

InvalidKeyException

NoSuchAlgorithmException

NotSerializableException, ...

SignatureException

false

if !verifies

if aTcK

true

v=aT.get(n.y1)

aT=PSI.accessTag

false

false

aTcK=aT.containsKey(n.y1)

true

y2=v.elementAt(so.signer)

normal

true

ny2=n.y2

true
y2OK=Arrays.equals(ny2, y2)

if y2OK

false

AIOOBExc

false

normal

true

false

Figure 11: Control-flow graph for contend.
AIOOBExc abbreviates ArrayIndexOutOfBound-
sException.

so.obj

so.obj

so.obj so.obj.y1
load

so.sig
load

writeObj(so.obj)

return and exc−return nodes for call to elementAt

return and exc−return nodes for call to pubKey

so
param so

load

load soobj

soobj

load

obj

obj

obj

y1
n

so.obj.y2
loady2

1

2

ny11

ny2

sigsig

so.sig
load

sosig

sosig1

2

baos

allocation
oos

out

allocation

PSI.accessTag.get(so.obj.y1)
v

Sig(PSI.sigAlg, verify, PSI.pubKey(so.signer), [])

PSI.pubKey(so.signer)

elt(PSI.acccessTag.get(so.obj.y1))

alloc. nodes for

y2

k

class
PSI PSI.accessTag

accessTag aTload

PSI.sigAlg
loadsigAlg

toByteArray(writeObj(so.obj)) ba

and new NullPtrExc stmtsnew VotingExc

dsa

writeObj(so.obj)

return and exc−return nodes for call to

toByteArray

return node for call to get

getInstance

return and exc−return nodes for call to

PSIsigAlg1

this
thisparam

Figure 12: PTE graph for contend at •return so.

