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Introduction

Computer communications software is becoming increasingly important, as a result of the increas-

ing deployment and use of computer networks. Stringent requirements of real-time processing, ef-

�ciency, reliability, and inter-operability make design and development of such software extremely

challenging. The development typically starts by identifying the services to be provided. A service

is de�ned by its functionality and its interface. The functionality may range from low-level tasks,

such as retransmission of lost messages, to high-level applications, such as electronic mail. The in-

terface describes the supported operations and their parameters. The development continues with

the design of a protocol, which describes the messages that will be exchanged in an implementation

of the service; the protocol speci�es message format (e.g., message length, division into �elds, and

data encoding), timing (e.g., minimum and maximum intervals between messages in certain situa-

tions), and semantics (i.e., the meaning of each message). Finally, an implementation of the service

is constructed. Service de�nitions are often su�ciently 
exible to allow many di�erent implemen-

tations of the service using the same protocol. This allows each computer in a network to use an

implementation optimized for its particular architecture. Since the implementations all follow the

same protocol, they interact correctly to provide the service.

Communication is possible only when all participants follow the same protocol, so standards

are essential. A protocol architecture is a collection of protocols designed to be used together. The

International Organization for Standardization (ISO) issued a standard for an in
uential|though

not widely used|protocol architecture, called the Open Systems Interconnection (OSI) Reference

Model [1]. The Internet Activities Board issues standards for the protocols used on the Internet;

collectively, these form the Internet Architecture or TCP/IP Architecture.

Both of the standards just mentioned (and most other protocol standards) incorporate a classic

design technique: layering. To help manage the complexity of writing, testing, and maintaining
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such software, the overall functionality is divided into several services, and the software is divided

into layers, each implementing one or more services. Figure 1 illustrates layered structure. A

collection of layers is called a protocol stack (or stack, for short). The basic principle is that a

message mi sent by layer i in the sender's stack is delivered to layer i in the receiver's stack [2]. A

layer may modify the body of the message; for example, layer i in the sender's stack encrypts the

body for secrecy, and layer i in the receiver's stack decrypts it. A layer may also insert information

into the message header; for example, layer i in the sender's stack creates a header �eld containing

a sequence number, and layer i in the receiver's stack uses this information to detect missing

messages. Since each layer can add its own header �elds to a message, the headers also form a

stack. Headers pushed onto the header stack by layer i in the sender's protocol stack are popped

o� the header stack by layer i ub the receiver's protocol stack.
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Figure 1: Illustration of message 
ow in a layered system.

The diversity of network hardware and of the requirements on communication software for

di�erent applications has led to the development of a plethora of communication services and

protocols, both public and proprietary. It is helpful to classify them according to the following

fundamental characteristics. Some of these characteristics apply to individual operations in a service

rather than an entire service; di�erent operations in a service may have di�erent characteristics.
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Symmetry. Symmetric services provide communication between peers. For example, message

delivery services are symmetric, i.e., they allow any process to send a message to any other process.

In asymmetric services, the communicating parties have di�erent roles. For example, services that

support interaction between a client (such as a user process) and a server (such as a �le server) are

typically asymmetric. Symmetry of a service is determined primarily by the intrinsic nature of the

service.

Synchrony. In a synchronous (or blocking) service, invoking an operation causes the caller to block

until the requested communication (and associated processing) is completed. For example, a remote

procedure call (RPC) typically causes the caller to block until a result is received from the remote

site; in this case, the RPC operation is synchronous. In an asynchronous (or non-blocking) service,

the caller is able to continue with other tasks processing while the request is actually performed.

For example, a request to send a message might allow the sender to continue before the message

is actually transmitted on the network. Synchrony is determined partly by the nature of the

service but partly by other considerations. For example, although RPC operations are typically

synchronous (and might seem inherently so), asynchronous RPC operations are possible: the caller

continues immediately with other tasks and is noti�ed later when the result (return value) of the

RPC is available. Typically, such noti�cations are provided via up-calls. An up-call is when a

service calls a routine in the application; in contrast, a down-call is when an application invokes

an operation (such as asynchronous RPC) provided by the service. For example, in the down-call

invoking an asynchronous RPC, the application supplies the name of a procedure P ; when the

return value r of the RPC is available, the service invokes P with argument r, typically in a new

thread. This approach can be used to construct asynchronous versions of most synchronous services.

The choice between the synchronous and asynchronous versions is typically based on performance

and ease of programming [3, Chapter 2]. The synchronous version avoids the overhead of creating

a thread for the up-call but may require more threads in the application to achieve the same degree

of concurrency as the asynchronous version.

Reliability. A reliable service guarantees that each requested operation (e.g., transmitting a mes-

sage) is performed successfully, even in the presence of speci�ed numbers or rates of speci�ed types

of failures, such as message loss. If failures of the network or other computers prevent a reliable

service from performing a requested operation, the service detects the problem and noti�es the re-

quester. An unreliable service does not include mechanisms for detecting, overcoming, or reporting

failures. Reliability is not a Boolean attribute; there is a spectrum of possibilities, characterized

by the degree of service degradation resulting from di�erent types and rates of failures. Reliable

services have more overhead than unreliable services. For example, an unreliable message service

3



can send a message and then forget about it. A reliable message service that tolerates message

loss needs to store a copy of the message at the sending machine until the destination con�rms

that the message has been received (or the sending application has been noti�ed that delivery is

impossible); this may incur overhead from copying, bu�er management, and sending and receiving

acknowledgments. Whether this cost is worthwhile depends on the application. Many communi-

cation packages provide both reliable and unreliable versions of services, leaving the choice to the

application.

Number of destinations. A one-to-one communication service provides communication from a

single source to a single destination in a single operation. A one-to-many communication service

provides communication from a single source to multiple destinations in a single operation. Sending

a single message to all machines on a certain network is called broadcasting. Sending a single message

to a selected set of destinations is called multicasting. For example, multicast is useful when a group

of processes on di�erent computers maintain replicas of �les or other data; replication enhances

availability and allows concurrent processing of read-only operations. A multicast may di�er in two

important ways from a sequence of one-to-one send operations; the same applies to broadcast. First,

a multicast can often be implemented more e�ciently, especially if the underlying network hardware

supports broadcast. Second, a multicast may provide stronger reliability guarantees. For example,

a multicast might guarantee that if any destination receives a message, then all destinations that

do not crash also receive that message; this is achieved by having the destinations relay the message

to each other. A sequence of one-to-one sends (even reliable ones) does not guarantee this, because

the sender might crash after some of the sends.

Quality of Service. Quality of service (QoS) refers to the performance guarantees provided by

a communication service. Naturally, performance of a communication service depends on both

the communication software and the underlying network. A QoS contract speci�es the load to be

o�ered by the application and the performance to be supplied by the service. The load to be o�ered

is characterized, for example, by the minimum and average intervals between requests and the size

of requests (e.g., the size of messages being sent). Typical performance metrics for communication

services include throughput, the rate (e.g., in megabits/second) at which data is conveyed, and

delay, the amount of time from when a message is sent until it is received. For example, for a

speci�ed application load, a messaging service might guarantee an average delay of 2 milliseconds

and a maximum delay of 10 milliseconds. Reliability metrics, such as the maximum fraction of sent

messages that are lost, are sometimes included in QoS contracts.
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Connections. A connection-oriented service works like the telephone system: before two processes

on di�erent computers can use the service to communicate, an initialization step is needed to con-

struct a logical connection between those processes. When those processes �nish communicating,

the connection between them is released, analogous to what happens when someone hangs up a tele-

phone. In a connectionless service, each communication request is handled independently of other

requests: any two processes can communicate at any time, without an initialization step. One ben-

e�t of connection-oriented communication is that successful connection establishment assures each

party that the other party is alive and reachable over the network. More importantly, connection

establishment provides an opportunity for the application processes and the communication service

to negotiate a QoS contract and for the communication service to reserve resources so that the

connection will provide the agreed QoS. In some protocol architectures, such as the Asynchronous

Transfer Mode (ATM) protocol architecture, connection establishment involves determining and

�xing a path through the network connecting the two communicating parties. That path may

involve any number of intermediate switches or computers and will be used for all messages sent

along the connection. When the connection is established, the intermediate nodes on the path can

also reserve resources for the connection; thus, such systems are better suited to providing QoS

guarantees. Also, repeated use of this path can provide a considerable performance bene�t, com-

pared to recomputing the path for each message. Reuse of paths is facilitated by use of connection

identi�ers. A connection identi�er is selected when the connection is established and is included in

the header of each message sent along the connection. This identi�er is used by intermediate nodes

as an index for e�cient table lookup of the next node in the path for that connection. Another

bene�t of a connection identi�er is that it indicates a message's destination and typically is shorter

than the destination's globally-unique address; with connectionless communication, each message

contains the destination's globally-unique address.

Core Functionality and Implementation Techniques

This section describes the core functionality that is present in almost all general-purpose commu-

nication software and sketches common implementation techniques.

Addressing and Routing

The three most important questions to ask about an addressing scheme are: (1) What kind of entity

is identi�ed by an address? (2) How are addresses assigned? (3) Given an address, how is the entity

with that address located (in order to send a message to it)? A single protocol architecture may
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involve multiple kinds of addresses. It is common for di�erent kinds of addresses to be used at

di�erent levels. Thus, some layers accept requests containing one kind of address and produce

requests containing a di�erent kind of address.

The lowest layer of a protocol architecture must produce requests containing hardware addresses,

i.e., addresses understood by the underlying network hardware. A network interface is hardware

(usually located on a card in a computer) that implements a connection between a computer and

a network. For example, in IEEE 802.3 local-area networks (Ethernets), each network interface

stores a unique identi�er assigned by the manufacturer; this identi�er is used as an address by

the lowest layer of the software. So, for Ethernet, the answers to the above questions are: (1)

A hardware address identi�es a network interface; (2) Hardware addresses are assigned by the

equipment manufacturer, under the control of IEEE to ensure that addresses are unique; (3) Within

an Ethernet, a message can be sent to a given hardware address simply by transmitting the message,

with a header containing that destination address, on the Ethernet.

Using hardware addresses in higher layers of the software would be problematic. There are

two fundamental (and related) reasons for introducing higher-level kinds of addresses, which are

sometimes called protocol addresses or virtual addresses. One is to provide the ability to address

entities (such as processes or user accounts) that do not correspond directly to hardware devices.

The other reason is to achieve independence, i.e., to make an entity's address independent of details

of the system con�guration. This ensures that changes to those con�guration details do not a�ect

an entity's address. This is an example of the general principle of modularity, namely, that the

interface to an object (entity) should not reveal implementation details. To make these points more

concrete, we brie
y discuss the di�erent kinds of addresses in the Internet Architecture.

The IP address is the lowest-level kind of protocol address in the Internet Architecture. IP

addresses are independent of the type of underlying network hardware (Ethernet, token ring, ATM,

etc.). This is essential for constructing heterogeneous networks like the Internet. Also, hardware

addresses in some types of networks (such as token ring) are not globally unique; IP addresses are

globally unique. We characterize IP addresses by answering the three questions above. (1) An IP

address identi�es a connection between a computer and a network (note that the IP address can

remain the same even if the network interface implementing that connection is changed). (2) An

IP address has two parts: a pre�x and a su�x. A pre�x is assigned by a central authority (e.g., the

Internet Assigned Number Authority) to each local network in the Internet; the administrators of

that local network assign su�xes to particular connections to that network. (3) An IP address is

translated into a hardware address; this is called address resolution. A simple and widely-applicable

approach to address resolution is table lookup, using direct indexing or hashing. The table lookup

may be done by the sender itself or by a designated server. In networks that allow hardware
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addresses to be assigned by the local administrator, hardware addresses can be computed and

assigned as some function of the protocol address. On broadcast networks, another possibility is to

broadcast a query containing the protocol address in question; if that address belongs to a machine

on the local network, that machine sends a reply containing its hardware address. For e�ciency,

the results of such queries are cached. This last approach (broadcasting plus caching) is commonly

used for IP address resolution in Ethernets.

Resolving a protocol address into a hardware address is useful only if the protocol address refers

to an entity on the same local network; otherwise, the hardware address is not particularly useful,

because a message cannot be addressed directly to it. A message is sent to a non-local protocol

address by repeatedly forwarding the message along a sequence of machines, each connected to

two or more local networks, such that the sequence forms a path from the sender to the �nal

destination. The problem of �nding such a path is called routing. In networks with irregular

topologies, routing is usually done by table lookup; for example, in the Internet, lookup of the

pre�x part of a destination IP address yields the IP address of the next machine in a path to that

destination. Typically, the routing table indicates a default router, to which messages are sent when

there is no explicit entry for the pre�x of the destination address.

For modularity, the lowest layer that introduces protocol addresses should completely hide

hardware addresses from higher layers, making those layers more hardware-independent [2, Section

15.15]. In the Internet Architecture, IP addresses are introduced by the layer immediately below

the IP layer; that layer is called the network access layer, network interface layer, or host-to-network

layer.

Domain names are a higher-level kind of protocol address in the Internet Architecture. There

are two main reasons for introducing domain names. One is independence: domain names are more

independent of network topology than IP addresses. An IP address is tied to a particular local

network; if a machine is moved to a di�erent (e.g., faster) local network, which corresponds to a

di�erent IP address pre�x, then the machine's IP address must change. In contrast, the domain

name of that machine could remain unchanged. The second main reason for introducing domain

names is that IP addresses are binary (for e�ciency) and thus are hard for users to remember and

enter; domain names are easier to remember and enter because they are hierarchical and textual.

For example, bone.cs.indiana.edu is a domain name; the dots separate the name into segments

that re
ect the hierarchical structure. A domain name, like an IP address, identi�es a connection

between a computer and a network. Assignment of domain names is based on the hierarchical

structure of the names. For example, an authority associated with .edu assigns indiana.edu to Indi-

ana University; an authority at Indiana University assigns cs.indiana.edu to the Computer Science

Department; and so on. A domain name is resolved (translated) into an IP address by the Domain
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Name System (DNS); DNS is based on table lookups by a hierarchy of servers, corresponding to

the hierarchical structure of domain names.

At the application level, the goal of communication is often to access a service provided by a

process on a di�erent machine. A domain name is not suitable for identifying a service, because

a single machine with a single network connection might run several processes o�ering di�erent

services. This motivates the introduction of a new kind of address. It is desirable for the ad-

dress of a service to be independent of the machine providing the service; otherwise, if a service

is moved between machines for the purpose of fault-tolerance (e.g., because the machine that

usually provides the service crashed) or load-balancing, its address must change. The Internet

Architecture does not directly support machine-independent addresses, though some experimental

architectures, such as Amoeba, do [3]. Consequently, the (machine-dependent) address for a ser-

vice can be constructed simply by concatenating the domain name (or IP address) of a machine

with an identi�er|called a port|that identi�es that service on that machine. For example, on

UNIX systems, the DNS server conventionally uses port 53; thus, the address of the DNS server

on ns.indiana.edu is ns.indiana.edu:53.

Only a few basic services (like DNS) have ports that are �xed by convention. For other services,

the port corresponding to a particular service is looked up in a system-speci�c table. A directory

server accepts requests containing the textual name of a service (e.g., \time-of-day") and returns

the corresponding port and, if appropriate, the domain name (or IP address) of a machine o�ering

that service. The directory service itself is a basic service with a �xed port. In systems with such

directory servers, these textual names for services constitute a new machine-independent kind of

address, though they are not part of the Internet Architecture per se.

Fragmentation and Reassembly

Each type of network hardware has a maximum transmission unit (MTU), which is the largest

amount of data that can be conveyed in a single transmission. A layer in the protocol stack can

hide this restriction from higher layers by performing fragmentation and reassembly, i.e., by splitting

large messages into smaller pieces for transmission, and reassembling them into the original message

at the receiver.

Flow Control

Di�erences in hardware speed and operating load between a sender and receiver may cause data

overrun, in which data arrives at the receiver faster than the receiver can handle it, causing the

receiver to drop data. The receiver can try to keep up with the sender by simply bu�ering the

incoming data (and processing it later), but data overrun will still occur if the receiver runs out of
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bu�er space. Flow control is the problem of preventing data overrun. Note that 
ow control can be

performed in one or more layers in a protocol architecture. In the following discussion, \message"

refers to the unit of transmission (e.g., packet or frame) at the layer being considered.

The simplest 
ow-control technique is stop and wait. After sending each message, the sender

waits for the receiver to send an acknowledgment indicating that it is ready to receive the next

message. This technique is easy to implement but greatly reduces the throughput. So, we relax the

restriction on the sender, allowing it to send multiple messages before checking whether the receiver

is ready to receive more. This technique is called sliding-window 
ow control. The window size w

is the maximum number of messages that can be in transit simultaneously. The sender sends the

(i+ w)th message only after it has received some indication that the receiver has already received

the ith message. The name \sliding window" comes from the mental image of a window of width

w sliding forward along the stream of messages to be sent. The window size is determined mainly

by the amount of bu�er space available at the receiver. In connection-oriented communication, the

window size is typically determined as part of connection establishment.

The implementation of 
ow control in a particular layer of a protocol architecture is a�ected by

whether the message service provided by the lower layers is reliable. Implementations of reliable

delivery and 
ow control both involve acknowledgments, so their implementations are combined

in some protocol architectures, such as TCP/IP. Combining their implementations has another

bene�t, discussed below under reliable delivery (in short, the window size provides a bound on the

number of messages stored for possible retransmission).

Reliable Delivery

In reliable services, di�erent techniques are used to cope with di�erent kinds of errors. Message

corruption is usually handled using error-detecting codes (EDCs), which enable the recipient to

determine with high probability whether a message has been corrupted by random errors during

transmission. For e�ciency, error-detecting codes are usually implemented in hardware. If an

error is detected, the error-detecting hardware simply reports the problem to the communication

software. Typically, the net e�ect is the same as if the corrupted message had been lost. Error-

correcting codes can also be used, but for most communication media (except perhaps wireless) the

error rate is su�ciently low that the additional overhead of error-correcting codes is not worthwhile.

Message loss is handled by detecting that a message has been lost and then retransmitting it.

There are two basic approaches to detecting message loss: positive acknowledgment and negative

acknowledgment. In the positive acknowledgment approach, on receiving a message, the recipient

sends an acknowledgment. If the sender does not receive an acknowledgment within the expected

time interval, it times out and resends the message. Note that a message might be resent merely
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because the acknowledgment is lost; thus, on receiving a message that it received before, the

recipient just resends the acknowledgment. Including a sequence number (modulo some �xed

quantity) in each message allows e�cient detection of duplicates. The negative acknowledgment

approach also uses sequence numbers (modulo some �xed quantity). If the recipient observes a

gap in the sequence numbers on received messages|for example, if it receives a message numbered

7 immediately after receiving a message numbered 5|then it sends a negative acknowledgment

to the sender, requesting retransmission of the missing message(s). When the sender �nishes

transmitting, no gap will be detected even if the last few messages are lost. Similarly, a pause in

transmission can delay detection of message loss. To overcome these problems, if the receiver does

not receive a message from a sender for some period of time, it times out and sends a message to

the sender, specifying the sequence number of the last message received; if any messages were lost,

the sender retransmits them. Negative acknowledgments are typically more e�cient than positive

acknowledgments, though also more complicated to implement.

A potential problem with negative acknowledgment schemes is that, if a continuous stream

of messages are sent and no messages are lost, the sender will not receive any feedback from the

receiver, so it will not know when to discard copies of old messages. Combining the implementation

of reliable delivery with sliding-window 
ow control, which forces an acknowledgment to be sent at

least after every wth message received, overcomes this problem: the sender needs to store copies of

at most the last w messages, where w is the window size.

In situations where message delay is predictable (i.e., has low variance)|for example, communi-

cation within a local-area network|it is reasonable to use �xed values for the time-outs that control

retransmission. In situations where message delay is less predictable|for example, communication

over the Internet|adaptive time-outs are much more e�ective. A sender maintains an estimate of

the current round-trip delay to the receiver, by recording the time at which it sends each message

to which it expects a reply, and, when the reply arrives, computing the round-trip delay for that

message/reply and incorporating it into a weighted average. To allow the time-out value to adapt

quickly to changes in the round-trip delay, the sender can also maintain an estimate of the variance

in the round-trip time and compute the retransmission time-out as a linear combination of the

weighted average and the estimated variance [4]. This approach is used in most implementations

of TCP.

Retransmission is e�ective against transient problems, but additional mechanisms are needed

to cope with longer-term network problems or computer crashes. If an operation has not succeeded

after a certain number of retries, a reliable service typically aborts the operation and reports this

to the application. If the service is connection-oriented, this typically has the e�ect of closing the

relevant connection.
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Where should the layers that provide reliability (using EDCs and retransmission) be located in

a protocol architecture? A particularly important issue is whether to place them above or below

the layer that performs routing. If they are placed below the routing layer, then reliability is

implemented on a \hop-by-hop" (link-by-link) basis; if they are placed above it, then reliability

is implemented on an \end-to-end" basis. First consider retransmission. If retransmission is done

hop-by-hop, then there is still a small chance that messages get lost, e.g., if a software bug causes an

intermediate node to lose a message after sending an acknowledgment for it. (In a wide-area network

such as the Internet, the two communicating parties might know nothing about the operating

systems and protocol implementations being run in the intermediate nodes, so the possibility of

bugs should not be dismissed lightly.) Thus, performing retransmission on an end-to-end basis

provides a stronger guarantee. This is a classic example of an end-to-end argument [5]. Now

consider EDCs. An end-to-end argument implies that EDCs should be used above the routing

layer. This indeed provides the desired reliability. However, in many systems, it is desirable to use

EDCs on a hop-by-hop basis as well, to improve performance. If a message gets corrupted, the

corruption is detected immediately, and the previous node in the path retransmits the message.

If EDCs were not used on a hop-by-hop basis, then the corrupted message would be forwarded

to the �nal destination before the corruption is detected, and then the message would have to

be retransmitted along the entire path from source to destination. A similar argument can be

made for performing retransmission on a hop-by-hop basis as well. However, for most systems that

argument does not hold up quantitatively, because the frequency of message loss is so low relative

to the overhead of a hop-by-hop retransmission mechanism that the savings would be outweighed

by the overhead.

Congestion Control

Congestion occurs when an intermediate node in a route receives data faster than it can forward

the data to the next node in the route. Congestion can occur even if all of the computers and links

operate at the same speed. For example, if a node is receiving packets with the same destination

from two di�erent senders on two di�erent links, then the maximum rate at which the node can

forward those packets to the destination is only half of the maximum rate at which the node can

receive those packets. When the node's bu�ers are full, it will be forced to drop packets. Even if

the node has large bu�ers and does not drop packets, the packets will experience increasing delays,

as they remain bu�ered for increasingly long times. If reliable message delivery is involved, then

the delays or message loss due to congestion provoke retransmissions, which can increase the rate

at which packets are being sent and thereby cause worse congestion. Furthermore, if a congested

node is dropping packets instead of storing and acknowledging them, then the node sending those
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packets cannot release the bu�ers containing them, and this might force that node to drop incoming

packets, thereby causing congestion to spread. Thus, it is important for a network to detect and

react to congestion quickly, or better, to prevent congestion. This is the problem of congestion

control.

The likelihood of congestion can be reduced by careful design of the entire protocol architecture,

including retransmission time-outs, window size, routing algorithm, etc. Limiting the rate at which

packets are injected into the network can also help prevent congestion. Two techniques for this are

admission control and tra�c shaping [6, Section 5.3]. Admission control is used with connection-

oriented communication; if the network is heavily loaded, the admission control mechanism will

refuse requests to establish new connections. Tra�c shaping is based on the observation that

bursty communication can cause congestion even if smooth communication with the same average

throughput would not. When an application sends a burst of messages, a tra�c shaping algorithm

may bu�er some of the messages at the sender and inject them gradually into the network.

The above techniques do not completely eliminate congestion, so techniques for detecting and

reducing congestion are also needed. One approach to detecting congestion is for each intermediate

node to keep track of the number of packets dropped due to lack of bu�er space. However, there is

a remaining problem of how to inform the appropriate senders of the congestion, so they will reduce

their transmission rate. This is non-trivial because, once congestion has started, it is di�cult to

ensure that any information gets through the network in a timely fashion. A second approach, which

has the bene�t of circumventing this problem, is for senders to estimate congestion by detecting

packet loss. This is reasonable because modern network hardware (except wireless) is su�ciently

reliable that most packet loss is due to congestion. With this approach, when a sender detects

message delay or loss, it immediately reduces its transmission rate, then gradually increases the

rate as long as no further problems occur. If sliding-window 
ow control is used, the transmission

rate can be adjusted by changing the window size.

The sliding-window technique is remarkable for its utility in so many aspects of communica-

tion: 
ow control, reliability, and congestion control. Many implementations of TCP use a single

sliding-window mechanism to deal e�ciently with these three issues. One consequence is a lack of

modularity in those implementations. A separate layer could be used to deal with each of these

issues; the resulting system would be more modular but probably less e�cient. This example illus-

trates that in layered software, the division into layers needs to be carefully chosen, so that it does

not unduly constrain the possible implementations.
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Ordered Delivery

Many applications expect messages to be delivered in FIFO order, i.e., in the order that the

messages were sent. Typically, in local networks, communication is intrinsically FIFO. However, in

wide-area networks, it is possible (with some routing algorithms) for di�erent messages to follow

di�erent paths from the sender to the receiver; if one path is slower than another, messages might

arrive out-of-order.

The most straightforward approach to ensuring FIFO delivery is to tag each message with a

sequence number. The receiver stores the sequence number i of the last message delivered. If a

message with a number other than i + 1, arrives, the receiver stores it for later delivery and then

continues waiting for message i + 1. Unbounded sequence numbers are relatively ine�cient, so it

is desirable to replace with �xed-size numbers, speci�cally, with sequence numbers modulo a small

�xed value. Justifying this replacement requires additional information about the system, such

as an upper bound on message delay or, if messages contain timestamps, an upper bound on the

di�erence between the sender's and receiver's clocks.

Connection Management

Connection management is the problem of establishing and terminating connections between pairs

of parties in a connection-oriented communication service. As mentioned in the introduction, in

some protocol architectures, such as the ATM protocol architecture, connections are used through-

out the architecture; in such systems, connection establishment involves determining and �xing a

path through the network that will be used for all messages sent along the connection.

In other protocol architectures, connections are used only at higher levels|in particular, above

the routing layer. In such systems, only the sender and receiver (not intermediate nodes) are

aware of the connection. This is the case in the Internet Architecture, where TCP, a connection-

oriented protocol, is layered over the IP protocol, which is connectionless. If the layer responsible

for connection management is above layers that provide reliable FIFO delivery, then the protocols

are reasonably straightforward; otherwise, the connection management protocol will itself need to

implement time-outs and retransmission to cope with message loss [7, Section 17.2].

Managing connections used for multicasts among groups of arbitrary size is part of group man-

agement, which is discussed below.

Con�guration and Initialization

Communication software must be con�gured (initialized) before it can be used. Typical con�gu-

ration parameters for an IP protocol stack include the IP address of the computer it is running

on, the IP address of the default router, and the IP address of a DNS server. A simple way to
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provide values for con�guration parameters is to manually create a disk �le containing them. This

approach is brittle and inconvenient: a change in the network con�guration requires changing the

con�guration �le on each a�ected computer. This approach is especially inconvenient for portable

computers, which may be attached to several di�erent networks in a day.

The Internet architecture includes several protocols that help automate con�guration of a pro-

tocol stack; we discuss two of them. The Bootstrap Protocol (BOOTP) enables a booting machine

to automatically obtain values of several parameters, including the addresses mentioned above, by

requesting them from a server, which maintains a database of the necessary information. BOOTP is

used on broadcast networks (like Ethernet), so the request is broadcast to all machines on the local

network. The BOOTP server replies; other machines simply ignore the request. Thus, the booting

machine does not need to know the BOOTP server's IP address or hardware address. However,

the request message cannot contain the sender's IP address, since the sender does not know it yet,

so how does the BOOTP server determine the destination address for its reply? One option is for

the BOOTP server to broadcast the reply. If the sender is able to include its hardware address

in the request message, then a more e�cient option is for the server to send the reply directly to

that hardware address. The latter option is interesting because it violates a modularity principle

stated above, namely, that the network access layer hides hardware addresses from the layers and

applications above it. The BOOTP server runs above that layer (above the UDP layer, in fact), so

according to that modularity principle, it should deal with IP addresses, not hardware addresses.

This illustrates how di�cult achieving modularity can be in complex communication software.

The Dynamic Host Con�guration Protocol (DHCP) is an extension to BOOTP that allows the

server to dynamically allocate IP addresses (in BOOTP, the server only looks up pre-assigned IP

addresses in a table). When a portable computer is plugged into a local network, the DHCP server

automatically assigns it an IP address, which it uses for the duration of its connection to that local

network.

The Internet Architecture

As an example of how the core functionality described above can be organized, we sketch the

layered structure of the Internet Architecture. No standard explicitly de�nes this structure, but

it is reasonable to consider the Internet Architecture as having �ve layers, which we discuss from

bottom to top.

The physical layer provides the ability to transmit an unstructured bit stream over a physical

link. This layer is often implemented in hardware or �rmware in the network interface.
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The network access layer deals with the organization of data into blocks called frames and with

the synchronization, error control (e.g., checksums), and 
ow control needed to transmit frames

over a physical link. The format of a frame is dependent on the type of network hardware. This

layer also deals with resolution of IP addresses into hardware addresses.

The Internet layer deals with the organization of data into blocks called packets and with routing

of packets. The format of a packet is hardware-independent. This layer performs fragmentation and

reassembly when a packet is routed through a local network whose frame size is smaller than the

size of the packet. In summary, this layer provides unreliable, unordered (i.e., not necessarily FIFO)

transmission of packets between any two hosts in an internetwork (i.e., a collection of interconnected

local-area networks).

There are two standard transport layers. Both extend addresses to contain a port number as

well as an IP address. That is essentially all the User Datagram Protocol (UDP) does. UDP is used

for applications for which unreliable unordered message delivery su�ces. The Transmission Con-

trol Protocol (TCP) provides connection-oriented reliable transmission of streams of data. Thus,

implementations of TCP must provide connection management, reliability, and ordered delivery.

For e�ciency, most implementations of TCP are based on a sliding-window mechanism and also

deal with 
ow control and congestion control.

Many di�erent protocols can appear in the application layer, including BOOTP and DHCP,

which run over UDP, and protocols that support applications like �le transfer or electronic mail.

High-Level Communication Services

Communication services that provide the ability to send sequences of messages or streams of data

are natural from a bottom-up perspective, since they correspond relatively closely to the operations

provided by the network interface. From a top-down perspective, there are many applications for

which other \higher-level" communication services are more natural and more convenient. The

classic examples of such services are remote procedure call and distributed shared memory. More

recently, distributed objects and group communication have been receiving increasing attention.

Each of these communication services is \higher-level" than messaging by virtue of some form

of transparency. Transparency means that the communication service hides (makes transparent)

some aspect of communication or distribution. Thus, the application can be written more like a

centralized program; this is typically easier for the programmer.
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Group Communication

Group communication allows a collection of processes|called a group|to be treated as a single

entity. The basic functions of a group communication system are group management and multicast.

Group management supports addition and removal of members, allowing a group's membership to

change dynamically. Multicast sends a message to all members of a group. Group communication

is especially useful for constructing fault-tolerant systems [8]. Support for fault-tolerance can

be integrated into group management and multicast. This greatly reduces the burden on the

application programmer. In such systems, group management includes a mechanism that monitors

all members of a group and automatically removes members that are crashed or unreachable. Also,

such systems provide totally-ordered atomic multicast. Total ordering guarantees that multicast

messages are received in the same order by all members (except members that crash and hence do

not receive some of the messages). Atomicity guarantees that if any member of the target group

receives the message, then all members that do not crash also receive the message. A variety of

distributed algorithms have been developed to enforce these guarantees [9, 10, 11].

To illustrate the bene�ts of group communication, consider a group of servers that provide a

directory service. Each server maintains a copy of the directory; this allows concurrent processing

of read-only operations and keeps the directory available even if some servers fail. Updates to

the directory are disseminated by multicast to the group. Use of totally-ordered atomic multicast

conveniently ensures that after each update, all non-crashed servers have identical copies of the

directory. Since multicasts are addressed to a group, rather than a speci�c list of machines, the

application does not need to keep track of the group membership; the group management system

does that automatically.

The use of group names as addresses is a useful abstraction in many settings. This is the

basis of a second class of applications of group communication, namely, those involving publica-

tion/subscription communication [8]. In this style of communication, some processes \publish"

information associated with some topic, and all processes that have \subscribed" to that topic

receive that information. In group-communication terms, a group is formed for each topic, and

information is published by multicasting it to the group. Processes subscribe to a topic by joining

the corresponding group. For example, group communication is well-suited to �nancial trading

applications, because they typically require fault-tolerance and involve publication/subscription

communication, with topics corresponding to market sectors or stocks.

Remote Procedure Call

A remote procedure call (RPC) mechanism allows a process to call a procedure that gets executed

on a di�erent computer [12, 13]. The code needed for communication|namely, code for the caller
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to send the procedure's arguments to the remote computer, code for the remote computer to receive

the arguments, invoke the procedure, and send the return value back to the caller, and code for

the caller to receive the return value|is implicit in the procedure call. Thus, communication is, to

some extent, transparent. Normally, the address of the remote machine is not indicated explicitly;

instead, a binding server (also called a directory server; cf. the above discussion of addressing) is

queried to obtain the address of a computer on which the procedure can be invoked. The most

widely-used RPC standard is Open Network Computing RPC [14], which is based on Sun RPC.

The remote method invocation (RMI) facility of the Java programming language [15] is a form

of RPC with some extensions. RPC is especially well-suited to client-server communication. For

example, communication in the Sun Network File System (NFS) [16] is done by RPC. This, the

caller and the remote computer are sometimes referred to as the client and the server, respectively.

RPC hides the tasks of marshalling and unmarshalling from the application programmer. Mar-

shalling is the task of formatting and arranging data values (such as a procedure's arguments or

return values) so that they can be sent in a single message; unmarshalling is the task of extracting

those data values from the message. In the simplest case, marshalling involves determining the size

(in bytes) of each data value and copying the data values into the message; even this code is tedious

to write by hand when variable-length data, such as character strings, is involved. More gener-

ally, to allow RPCs between computers with di�erent architectures, marshalling involves conversion

between di�erent data representations. Furthermore, some RPC mechanisms support passing of

linked data structures, such as linked lists or graphs; e�cient marshalling of such data structures

is non-trivial, especially if the data structures may contain cycles.

RPC may be implemented over a connectionless protocol, like UDP, or a connection-oriented

protocol, like TCP. UDP has less overhead, because it does not provide reliability, 
ow control, or

congestion control. The primary bene�t of using UDP is the decreased overhead|in particular, the

decreased load on the server, because in many client-server systems, servers are more heavily loaded

than clients [17]. For a server with hundreds or thousands of frequent or infrequent clients, the

costs of establishing, maintaining, and terminating connections could cause the server to become a

bottleneck. The lack of 
ow control in UDP is partially compensated by the fact that RPC has an

intrinsic form of 
ow control. A caller waits for a reply after sending a single RPC request; if the

procedure's arguments are not too large, this is like a sliding-window mechanism with a window

size of 1. If reliability is needed, it may still be possible to exploit the asymmetric nature of RPC

to provide reliability with little increase in the load on the server. Speci�cally, if it is acceptable

for the server to execute an RPC multiple times, then reliability can be achieved by incorporating

a retransmission mechanism only in the client. The server sends replies unreliably; if a reply gets

lost, the client retransmits the request, causing the server to repeat the RPC and re-send the reply.
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Message loss is infrequent, so the decreased overhead at the server typically outweighs the cost of

the repeated procedure calls. In contrast, with a symmetric reliable protocol like TCP, servers never

execute an RPC twice, but clients and servers both bu�er and retransmit their outgoing messages.

To provide congestion control, a longer time-out can be used for each successive retransmission by

the client; this helps clear the congestion.

An RPC can be repeated without harm if it is idempotent, i.e., if executing it multiple times

has the same e�ect as executing it once. All read-only operations are idempotent, and with careful

interface design, many services can provide idempotent update operations as well. For example,

the �le access protocol in Sun NFS includes an operation that writes data at a speci�ed o�set

within a �le; this operation is idempotent. It does not include an operation that appends data

to a �le, because appending is not idempotent. Idempotent operations have an additional bene�t.

If a server crashes and recovers, it may be di�cult or impossible to determine what operations

were performed just before the crash. That information is not needed if operations are idempotent:

even if the server crashed after executing the procedure call and before sending the reply, it is safe

for the client to retransmit the request and have the recovered server re-execute it. Thus, use of

idempotent operations helps make server failures transparent to clients.

RPC has several limitations. Typically, procedures that use global variables cannot be called re-

motely. Similarly, procedures that perform input or output (to screen, disk, printer, etc.) generally

produce di�erent e�ects if called remotely. In some systems, aliasing among input arguments is not

preserved when arguments are marshalled. For example, a procedure's arguments might include an

integer x and an integer array a. The procedure's return value might depend on whether x is aliased

to some element of a. However, straightforward implementations of marshalling would not neces-

sarily preserve such aliasing. Marshalling entire arrays or linked data structures may be ine�cient,

especially if the procedure only reads or writes a small fraction of the data. Uninitialized pointer

variables may cause problems when marshalling linked data structures. RPC is poorly suited to

communication of continuous streams of data, such as video, and to communication involving more

than two parties. Finally, an RPC can fail in more ways than a local procedure call; for example,

an RPC can fail because the remote computer crashed or is running an incompatible version of

the software. A mechanism is needed to report such errors to the caller, e.g., by introducing new

exceptions.

Distributed Shared Memory

RPC takes a speci�c program construct|namely, procedure call|and extends it to operate re-

motely. Distributed Shared Memory (DSM) [18] takes two program constructs|namely, memory

read and memory write|and extends them to operate remotely. Shared memory is attractive be-
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cause it provides a unifying model for programming di�erent types of concurrent systems: multiple

threads in one process, multiple processes on one uni-processor or multi-processor computer, and|

with DSM|multiple processes on di�erent computers. For collections of peer processes that share

data, DSM allows a more natural programming style than RPC. Primarily, this is because DSM

hides from the application programmer decisions about where data should be stored and when data

needs to be transmitted. With RPC, procedure declarations and interfaces explicitly indicate what

data to send. In contrast, a DSM system automatically transmits and stores data as needed to

make it available to all processes.

Two important dimensions for classifying DSM systems are the consistency model and the unit

of sharing. The consistency model speci�es when the e�ect of an update becomes visible on other

computers, i.e., when memory reads on other computers should return the newly-written value.

The behavior of a centralized memory is characterized by strict consistency: any read to a memory

location a returns the value stored by the most recent write to a [3, Chapter 6]. Implementing

strict consistency in a distributed system is prohibitively expensive. A slightly weaker model is

sequential consistency: the result of any execution is the same as if the operations of all processors

were executed in some sequential order, and the operations of each individual processor appears in

this sequence in the order speci�ed by its program [19]. Intuitively, sequential consistency di�ers

from strict consistency by allowing a read to return an \old" value if there is no way for any

process to determine that the returned value is old. Implementing sequential consistency can incur

signi�cant overhead, so a multitude of weaker models have been proposed; Tanenbaum provides a

good overview [3, Chapter 6]. Weaker models incur less overhead but are harder for application

programmers to use, because weaker models are farther from providing the illusion of a centralized

shared memory.

The unit of sharing speci�es the chunks of data that are necessarily stored and transmitted

together. DSM can be viewed as an extension to a traditional virtual-memory system, in which

invalid pages are fetched from other computers instead of from disk. From this perspective, it

is natural to use a page of memory as the unit of sharing, as in [18]. This allows the DSM

implementation to exploit hardware and operating-system support for virtual memory. When a

shared page is not available locally, it is marked as invalid in the process's page table, so an access

to that page causes a page fault. The page fault handler requests the page from an appropriate

computer (as described below) and blocks the process. When the page arrives, the process is

unblocked, with the program counter pointing to the instruction that caused the page fault.

Enforcing sequential consistency is easy in implementations where there is always at most one

copy of each object. To e�ciently support objects that are read concurrently by several computers,

most implementations of DSM allow objects to be replicated, i.e., allow multiple copies to exist. A
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typical protocol for ensuring sequential consistency in such a system works as follows. Each copy of

a sharing unit (SU) is tagged as read-only or read-write. Before writing to a SU, a computer must

acquire the SU in read-write mode. When a computer acquires a SU in read-write mode, all other

copies of that SU are invalidated. The process with the read-write copy (or, if there is none, the

last process to have such a copy) is called the owner. The owner maintains a list of the computers

having read-only copies of the SU. When a computer wants a copy of a SU, it sends a request

to the owner. When the owner receives a request for a read-only copy, the owner makes its copy

read-only. When the owner receives a request for a read-write copy, it invalidates its own copy and

tells all other machines with read-only copies to invalidate them; when those other machines have

replied to the invalidation message, the owner grants a read-write copy (and hence ownership) to

the requester. How does a computer �nd the owner of a SU? A simple approach is to designate for

each SU a particular computer called its manager. The manager keeps track of the owner of the

SU. Thus, to obtain a copy of a SU, a computer sends a request to the manager, which forwards

the request to the owner, which replies to the requester.

Synchronization constructs, such as semaphores, require special treatment in DSM implementa-

tions, to avoid busy-waiting loops that repeatedly access shared variables; such loops would cause

excessive communication.

Page-based DSM su�ers from false sharing: if two shared variables happen to be on the same

page, and one computer repeatedly writes to one of them, and another computer repeatedly reads

(or writes) the other, then there will be signi�cant ine�ciency as one (or both) copies of the page

repeatedly get(s) invalidated. To avoid this problem, some DSM systems take the unit of sharing

to be a single shared variable, rather than a page. The page-fault-based implementation described

above can still be used if each shared variable is put a separate page. Another bene�t of variable-

based DSM is that shared variables are explicit in the application program, so hints about typical

access patterns for each variable can be obtained from program analysis or from programmer

annotations. Based on these hints, the DSM system can increase e�ciency by using di�erent

implementations for di�erent shared variables. In short, compared to page-based DSM, variable-

based DSM is higher-level and provides more opportunity for exploiting high-level information

about programs. A logical next step in the same direction is object-based shared memory, or

distributed objects.

Shared Objects

In object-oriented programming, an object encapsulates both data and methods, i.e., procedures

that access the data in the object. For example, a stack object includes data (the sequence of items

on the stack) and some methods (e.g., push, pop, and is-empty?) that access that data. Objects
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are typed; the types are called classes. Objects provide modularity, because (normally) the data

in an object can be accessed only by that object's methods. The concept of shared objects is a

natural generalization of the concept of shared variables. In concurrent programming, a major

advantage of shared objects over shared variables is that common patterns of synchronization, such

as mutually-exclusive access to an object, can be expressed in declaratively in class de�nitions and

implemented by the run-time system of the programming language, thereby reducing the burden

on the application programmer.

Just as objects combine data and methods, shared objects combine aspects of DSM and RPC. A

shared object system, like a DSM system, hides from the application programmer decisions about

where to store and when to transmit objects. If a computer does not have a copy of an object

when a method is called, the shared object system can either obtain a local copy, as for a shared

variable in DSM, or invoke the method remotely, like an RPC. The latter is called remote method

invocation (RMI). Shared objects can be implemented by combining implementation techniques for

RPC and DSM. This approach underlies the shared objects provided by the Orca programming

language [20].

Most current implementations of distributed object systems are simpler (hence, for some ac-

cess patterns, slightly more e�cient, but for some access patterns, much less e�cient) than the

DSM-like shared objects described above. Speci�cally, most current implementations do not sup-

port replication of objects and do not allow the owner of an object to change. Consequently, all

invocations of the methods of a particular object are executed on the same computer, regardless of

which computer invoked them. For example, this is the case for distributed objects in version 1.1

of the Java programming language [21]. (Objects are sometimes copied, but this is fundamentally

di�erent than replication: an update to a copy of an object has no e�ect on the original or other

copies.) However, it is expected that future implementations will support replication.

Optimizing Communication Software

As network hardware continues to improve, software is becoming the bottleneck in many communication-

intensive applications. Specialized optimizations can greatly improve the performance of com-

munication software. We consider two important classes of optimizations: copy elimination and

integrated layer processing.

Sending a message can involve copying the contents of the message multiple copies. For example,

the message might be copied from the address space of the sending user process into a bu�er in

the operating system kernel (e.g., because the network interface is busy, so the message can't be
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sent immediately) and then copied to the network interface for transmission. Similarly, receiving

a message might involve copying the message from a bu�er on the network interface into a kernel

bu�er and then into the address space of the user process. Copies between kernel bu�ers and

user space can be eliminated by exploiting hardware support for page-based virtual memory [3,

Chapter 2]. By manipulating the page table (or a corresponding data structure, depending on the

system), a page|and hence the data on that page|can be moved between address spaces. Thus,

if each message is put on a separate page, such manipulations can replace one copy operation at the

sender and another at the receiver. For short messages, the bene�t is negligible; for large messages,

the bene�t can be signi�cant. Some experimental systems achieve \zero-copy" communication

by reprogramming the network interface to directly access bu�ers in user address spaces [22]; an

additional bene�t of this design is that messages can be sent and received without the participation

of the kernel.

Integrated layer processing (ILP) reduces the overhead from modular (layered) implementation

of communication software [23, 24]. Consider a protocol stack containing two or more layers that

each access every byte of a message (e.g., layers that compute a checksum or put the data into a

standard format for transmission). In a strictly layered implementation, each byte of the message is

loaded into a register (from cache or main memory), processed, and then stored (into cache or main

memory) in each of these layers. Combining these separate loops into a single loop reduces the

number of loads and stores: each byte of the message is loaded once, processed by the operations

from all layers, and then stored once. Having the programmer combine the loops manually is tedious

and destroys modularity. A more promising approach is to have an program transformation system

that automatically integrates the loops [25].

Cross-references. Communication Protocols.
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