

978-1-4577-1591-4/11/$26.00 ©2011 IEEE

Programming and Optimizing Distributed Algorithms

An Overview

Yanhong A. Liu Bo Lin Scott D. Stoller
 Computer Science Department, State University of New York at Stony Brook

 liu,bolin,stoller@cs.stonybrook.edu

Abstract— This paper gives an overview of a high-level language
for programming distributed algorithms, compilation of the
language to generate executable code, and powerful optimizations
that incrementalize expensive synchronization conditions with
respect to messages sent and received. The language, DistAlgo,
allows distributed algorithms to be expressed easily and clearly,
making it easier to understand them precisely and to generate
executable implementations. Incrementalization transforms
complex quantifications over sets of processes and sequences of
messages sent and received into message handlers that perform
low-level assignments and incremental updates, avoiding the need
to write them manually. This drastically reduces local processing
time complexities and reduces unbounded space used for message
history sequences to auxiliary space needed for incremental
computation. We have implemented a prototype of the compiler
and the optimizations and experimented with a variety of well-
known distributed algorithms. Our results strongly confirm the
benefits of the language and the optimizations.

Keywords- distributed algorithms; incrementalization;
optimization; very high-level languages

I. MOTIVATION

Distributed algorithms are at the core of distributed

systems, which are increasingly indispensable in our daily
lives. Yet, developing practical implementations of distributed
algorithms with correctness and efficiency assurance remains a
challenging, recurring task.

 Study of distributed algorithms has relied on either
pseudo-code with English, which is high-level but
imprecise, or formal specification languages, which are
precise but harder to understand, lacking mechanisms for
building real distributed systems, or not executable at all.

 At the same time, programming of distributed systems has
mainly been concerned with program efficiency and has
relied mostly on the use of low-level or complex libraries
and to a lesser extent on built-in mechanisms in restricted
programming models.

What's needed is (1) a simple and powerful language that can
express distributed algorithms at a high level and yet has a
clear semantics for precise execution as well as verification,
and is fully integrated into widely used programming
languages for building real distributed systems, together with
(2) powerful optimizations that can transform high-level
algorithm descriptions into efficient implementations.

II. A VERY HIGH LEVEL LANGUAGE FOR CLEAR

DESCRIPTION OF DISTRIBUTED ALGORITHMS

We have developed DistAlgo, a very high-level language for

expressing distributed algorithms that combines advantages of
pseudo-code, formal specification languages, and programming
languages. We identified the following basic features needed
for distributed algorithms, and designed DistAlgo to support
them clearly and precisely:

(A) distributed processes that can send messages

(B) handling of received messages with support for
atomicity

(C) waiting on conditions for synchronization, involving
quantifications over sets of processes and history of
messages, which are the deepest part of the algorithms

(D) configuration with library support

DistAlgo supports these features by building on an object-
oriented language that supports high-level queries and
quantifications over sets and sequences.

DistAlgo allows distributed algorithms to be expressed
clearly at a high level, almost exactly like pseudo-code, but
also precisely, like in formal specification languages, and be
executed as part of real applications, as in programming
languages. The main reason that algorithms written in
DistAlgo are almost like pseudo-code is that complex
synchronization conditions can be expressed using high-level
quantifications over sets and sequences, including especially
the history of messages sent and received.

Expressing synchronization conditions at such a high level
allows the correctness of the algorithms to be proved much
more easily. However, if executed straightforwardly, each
quantifier will cause a linear factor in running time, and any
use of the message history will cause space usage to be
unbounded.

III. POWERFUL OPTIMIZATIONS FOR GENERATING EFFICIENT

IMPLEMENTATIONS

The main challenges in generating efficient

implementations are higher-level control structures and data
types. The most expensive features, by far, are synchronization
conditions expressed using quantifications over complex

978-1-4577-1591-4/11/$26.00 ©2011 IEEE

objects and high-level data types, which are most often the set
of processes and the history of messages.

To address this problem, quantifications over the history of
messages sent to and received from other processes must be
performed incrementally as messages are sent and received.
There has been much previous research on incrementalizing
expensive computations, for set languages, recursive functions,
logic rules, and objects, but not for general quantifications.
Also, previously studied general methods are for centralized
programs, not distributed programs.

Our method is to automatically transform each send and
receive clause in the program into an update to the sequence for
message history, incrementally maintain the truth values of
synchronization conditions and necessary auxiliary values as
the sequences of messages sent and received are updated, and
finally remove those sequences as dead variables.

To incrementally maintain the truth values of general
quantifications, our method first transforms them into set
queries. However, translating nested quantifications simply
into nested queries can incur asymptotically more space and
time overhead than necessary. The key idea is to minimize the
nesting of queries. This avoids maintaining unnecessary
intermediate results, saving both time and space, and
furthermore yielding simpler programs. Our
incrementalization method also allows the time and space
complexity of the generated programs to be easily analyzed.
Overall, our method allows efficient implementations to be
generated, without manually coding the algorithms and
applying ad hoc optimizations. It can even lead to
simplification of the original algorithms.

IV. IMPLEMENTATIONS AND EXPERIMENTS

We have implemented an initial prototype of DistAlgo by

extending the Python programming language, because Python
has rich support for very high-level constructs for ease of
programming, and simple and consistent syntax for ease of
reading; Python is also widely used in practice and
increasingly used in teaching.

We have applied the method to a set of well-known
distributed algorithms from main distributed algorithm
textbooks and papers, including different variants of
algorithms for distributed mutual exclusion, leader election,
atomic commit, and Paxos and Byzantine Paxos for distributed
consensus.

We have performed several sets of experiments, which
helped show that (1) DistAlgo allows distributed algorithms to
be expressed more easily and clearly, compared with other
languages, (2) our optimizations improve the time and space
asymptotically as analyzed, and (3) generated
implementations, even though not yet optimized for constant
factors, are not too far in performance from manually
optimized programs.

 Directions for future work include formal semantics for the
language, verification, additional optimizations, and improved
implementations.

