Safe CPS from Unsafe Controllers

Usama Mehmood
Stony Brook University
Stony Brook, USA

Scott A. Smolka
Stony Brook University
Stony Brook, USA

ABSTRACT

Modern cyber-physical systems (CPS) interact with the physical
world, hence their correctness is important. In this work, we build
upon the Simplex Architecture, where control authority may switch
from an unverified and potentially unsafe advanced controller to a
verified-safe baseline controller in order to maintain system safety.
We take the approach further by lifting the requirement that the
baseline controller must be verified or even correct, instead also
treating it as a black-box component. This change is important;
there are many types of powerful control techniques—model pre-
dictive control and neural network controllers—that often work
well in practice, but are unlikely to be formally proven correct
due to complexity. We prove such an architecture maintains safety,
and present case studies where model-predictive control provides
safety for multi-robot coordination, and unverified neural networks
provably prevent collisions for groups of F-16 aircraft.

KEYWORDS
Simplex Architecture, Formal Verification, Cyber-Physical Systems

1 INTRODUCTION

Modern cyber-physical systems (CPS) are found in vital domains
such as transportation, autonomy, health-care, energy, agriculture,
and defense. As these systems perform complex functions, they
require complex designs. Since CPS interact with the physical world,
correctness is especially important, but formal analysis can be
difficult for complex systems.

In the design of such CPS, powerful techniques such as model-
predictive control and deep reinforcement learning are increasingly
being considered instead of traditional high-level control design.
Such trends exacerbate the safety verification problem as classical
verification strategies are poorly suited for these new designs.

One approach for dynamically providing safety for systems with
complex and unverified components is runtime assurance [2], where
the state of the plant is monitored at runtime to detect possible
imminent violations of formal properties. If necessary, corrective
measures are taken to avoid the violations. A well-known runtime
assurance technique is the Simplex Architecture [6], which has
been applied to a wide range of systems. The Simplex Architecture,
shown in Figure 1(a), guarantees safety of the plant by deploying a
verified safe baseline controller (BC) in conjunction with the per-
formance oriented advanced controller (AC). The decision module
(DM) periodically monitors the state of the system and switches
the control from AC to BC if a safety violation is imminent.

Stanley Bak
Stony Brook University
Stony Brook, USA

Scott D. Stoller
Stony Brook University
Stony Brook, USA

Advanced

Advanced
Controller

Decision Controller
Module Plant -
- Command + com Decision [emmand
‘‘‘‘‘‘‘‘‘‘ g - Module Low-Level
Gt Lookahead Controller

Baseline
Sensor Controller | IR o
Daa Coa

Plant
+

Baseline
Controller

(a) Traditional Simplex Architec- (b) Black-Box Simplex Architec-
ture ture

Figure 1: The Black-Box Simplex Architecture guarantees
safety despite a black-box AC and a black-box BC.

The successful application of the original Simplex Architecture
requires creating a provably safe BC, a difficult task for many sys-
tems. Further, many classes of controllers, such as those designed
using model-predictive control, rapidly-exploring random trees,
or neural-network controllers, may work well in practice, but are
difficult to verify and therefore cannot be used as BCs. The main
contribution of this work is to overcome this limitation. We
propose the Black-Box Simplex Architecture, a variant of the tradi-
tional Simplex Architecture that can guarantee the safety of the
system despite an unverified and even incorrect BC, which is treated
as a black box.

In the Black-Box Simplex Architecture, shown in Figure 1(b), the
BC tries to produce a sequence of commands that begins with the
AC’s current command and brings the plant to a state where main-
taining the safety property is easy. If the DM is able to verify the
safety of the proposed command sequence, it is stored for potential
use as a backup plan at the next time step and the AC controls the
plant at the current time step. Otherwise, safe command sequence
stored in the previous time step takes over the control until another
safe command sequence is produced.

We demonstrate the effectiveness of the proposed approach by
successfully applying it for collision avoidance on a multi-robot
coordination system and on groups of F-16 aircraft. Further, we
formally establish that the Black-Box Simplex Architecture guar-
antees safety of the system. In this paper, we will briefly discuss
the results of the case studies and introduce the Black-Box Simplex.
For further details on the case studies and the safety theorem we
refer the readers to the full paper [5].

2 BLACK-BOX SIMPLEX

We consider discrete-time plant dynamics, modeled as a function
f(xi, ui, wi) = xip1 where x; € X is the system state, u; € U is a
control input command, w; € W is an environmental disturbance,
and i € Z* is the time step.

The Black-Box Simplex Architecture, shown in Figure 1(b), lifts
the requirement that the BC is verified, allowing provable safety

b
= |
8 \ r
NN
p— NV,
[S A 2 P
4 T AL g
AN [g
\ L/ \ g
g
of &~)f S Z.
/N 7) &
P s
4 - (///— - X E
¥ =) .
P o~k ’
\ Yy \ nce:
‘] ' East / West Position (ft)
e
8 4 0 4 8

Figure 2: Left: 12 robots reach targets safely. The trajectory
segments where stored BC commands are used are shown
in blue. Right: 15 aircraft cross the center of the circle while
maintaining the 1500 ft separation distance.

with both an unverified AC and an unverified BC. Apart from
eliminating the need to establish safety of the BC, the Black-Box
Simplex Architecture differs from the traditional Simplex Archi-
tecture in other important ways. First, the AC shares its command
with the BC instead of passing it directly to the decision module.
Second, the BC uses this command as the starting point of a com-
mand sequence intended to safely recover the system. Many control
techniques naturally produce command sequences, such as model
predictive control with a finite-step horizon or controllers derived
from rapidly-exploring random trees (RRTs). If a model of the low-
level controllers and plant is provided, a traditional single-output
controller can be used to create a command sequence through re-
peated invocations and system simulation.

The decision module checks the BC’s command sequence, pos-
sibly rejecting it if safety is not ensured. As long as the AC drives
the system through states where the BC can recover, it continues
to actuate the system. However, if the BC fails to compute a safe
command sequence, due to the fault of either the unverified AC or
the unverified BC, the decision module can still recover the system
using the safe command sequence from the previous step.

The applicability of Black-Box Simplex depends on the feasi-
bility of two system-specific steps: (i) constructing safe command
sequences and (ii) proving their safety at runtime. For some sys-
tems, a safe command sequence can simply bring the system to a
stop. An autonomous car, for example, could have safe command
sequences that steer the car to the side of the road and then stop.

Proving safety of a given command sequence can also be chal-
lenging and depends on the system dynamics. For nondeterministic
systems, this could involve performing reachability computations
at runtime [1, 4]. Such techniques assume an accurate system model
is available in order to compute reachable sets. In the Black-Simplex
Architecture, although both controllers are unverified, we do not
combine them into a single unverified controller for two reasons.
First, the design of the safety controller is easier if it is kept simple
and is not burdened with fulfilling all mission-specific goals. Sec-
ond, it allows for the use of off-the-shelf controller strategies that
are focused on either mission completion or safety.

3 CASE STUDIES

We show-case the results for two case studies: a multi-robot coordi-
nation system, and a mid-air collision avoidance system for groups
of F-16 aircraft. In both case studies, in the initial state the agents

are evenly-spaced on a circle and the AC’s commands will cause
a collision at the center of the circle. The safety property is that
the aircraft and robots are to maintain a separation of a fixed value
between them.

For the multi-robot coordination study, the robots are modelled
as points with double-integrator dynamics. They are to reach a
target located on the opposite side of the initial circle. Both the AC
and the BC are designed using centralized model predictive control
(MPC), which produces command sequences as part of the solution
of an optimization problem: hence prone to failure as the optimal
solutions are not guaranteed by the numerical non-linear methods.
Nevertheless, as shown in Figure 2, the Black-Box Simplex is able to
prevent all collisions while all robots are able to reach their targets.

For the multi-aircraft study, each aircraft is modeled with 16
state variables, including positional states, positional velocities,
rotational states, rotational velocities, an engine thrust lag term, and
integrator states for the low-level controllers. The model includes
high-level autopilot logic for waypoint following, which is used in
the AC. For the BC, we build upon the ACASXu system designed for
unmanned aircraft [3] which issues horizontal turn advisories based
on the relative positions of two aircraft, an ownship and an intruder.
We adapt this system to the multi-aircraft case by having each
aircraft run an instance of ACASXu against every other aircraft. To
create command sequences, we advance the plant model and re-
run ACASXu from the future state multiple times in a closed-loop
fashion. The ACASXu system is neural network compression of a
large look-up table and hence is unsafe. Our results show that the
aircraft maintain the desired horizontal separation.

4 CONCLUSIONS

We have presented the Black-Box Simplex Architecture, a methodol-
ogy for constructing safe CPS from unverified black-box high-level
controllers. The main tradeoff present in Black-Box Simplex is that
the decision module has increased complexity, and for the system
to perform smoothly, it must be able to quickly verify command
sequences. This itself is not an easy problem. With the proposed ap-
proach, however, we have reduced the difficult problem of proving
high-level safety to a simpler problem of performance optimization
of the decision module logic. Black-Box Simplex provides a feasible
path for the verification of systems that are otherwise unverifiable
in practice.

REFERENCES

[1] Stanley Bak, Taylor T. Johnson, Marco Caccamo, and Lui Sha. 2014. Real-Time
Reachability for Verified Simplex Design. In 35th IEEE Real-Time Systems Sympo-
sium (RTSS 2014). IEEE Computer Society, Rome, Italy.

[2] Matthew Clark, Xenofon Koutsoukos, Joseph Porter, Ratnesh Kumar, George Pap-
pas, Oleg Sokolsky, Insup Lee, and Lee Pike. 2013. A study on run time assurance for
complex cyber physical systems. Technical Report. Air Force Research Laboratory,
Aerospace Systems Directorate.

[3] Mykel JKochenderfer and JP Chryssanthacopoulos. 2011. Robust airborne collision
avoidance through dynamic programming. Massachusetts Institute of Technology,
Lincoln Laboratory, Project Report ATC-371130 (2011).

[4] Qin Lin, Xin Chen, Aman Khurana, and John Dolan. 2020. ReachFlow: An Online
Safety Assurance Framework for Waypoint-Following of Self-driving Cars. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[5] Usama Mehmood, Stanley Bak, Scott A. Smolka, and Scott D. Stoller. 2021. Safe
CPS from Unsafe Controllers. arXiv:2102.12981 [cs.SE]

[6] L.Sha.2001. Using Simplicity to Control Complexity. IEEE Software 18, 4 (2001),
20-28. https://doi.org/10.1109/MS.2001.936213

https://arxiv.org/abs/2102.12981
https://doi.org/10.1109/MS.2001.936213

	Abstract
	1 Introduction
	2 Black-Box Simplex
	3 Case Studies
	4 Conclusions
	References

