
Compositional Branching-Time Measurements

Radu Grosu1, Doron Peled2, C.R. Ramakrishnan3, Scott A. Smolka3,
Scott D. Stoller3, and Junxing Yang3

1 Vienna University of Technology
2 Bar Ilan University

3 Stony Brook University

Abstract. Formal methods are used to increase the reliability of soft-
ware and hardware systems. Methods such as model checking, verifi-
cation and testing are used to search for design and coding errors, in-
tegrated in the process of system design. Beyond checking whether a
system satisfies a particular specification, we may want to measure some
of its quantitative properties. Earlier works on system measurements
suggest extending model checking techniques to measure quantitative
artifacts, based on weights associated with the transitions of a transi-
tion system. Other works allow counting while performing model check-
ing or runtime verification. This paper presents a simple and efficient
compositional measuring framework based on quantitative state testers.
The framework allows combining multiple measures, such as distance
and power consumption, using a variety of functions, such as min, max,
and average. This supports calculation of interesting compound measures
that quantitatively characterize a system’s behavior.

1 Introduction

Model checking techniques [6, 12] are successfully integrated into the software
and hardware development process. More than 30 years of research has pro-
duced multiple techniques. Some of them are quite impressive in the size of
systems that they can handle and in verification speed. A recent trend is to look
at quantitative properties, for example, providing measures on how robustly a
property is satisfied in probabilistic automata [9] or weighted automata [1, 5].
Another approach is to ask for, in addition to the qualitative indication of the
satisfaction of a property, a measurement, which is usually based on the accu-
mulated time required to satisfy parts of the specification [2, 8]. These measures
can be used for optimizing various parameters of the system.

We are motivated to provide a framework for measuring branching properties
of a system. This has received so far little attention, whereas linear properties
have been intensively studied. We aim to develop an efficient compositional mea-
suring framework that extends the idea of testers [10, 11] to allow quantitative
operations. These extended testers are applied to the states of the measured
structure and conceptually communicate with each other through flow of infor-
mation between adjacent states. We generically refer to nodes in the given graph

structure as “states”, although the nodes may represent states in a state space,
locations in a geographical space, etc.

This approach generalizes CTL specification, and in fact we show how to
encode model checking of CTL in this way. This framework inherits its efficiency
from the CTL logic. Nevertheless, instead of writing a CTL formula annotated
with some measurement parameters, we provide a combination of recursive ob-
servers (functions) that work together to provide the desired measurement. The
value associated with each state of the structure by the tester is dependent on
the values at adjacent, i.e., successor and predecessor, states, henceforth called
the neighbors. For example, the property EXp holds in a state if either p holds
there, or there is a successor state where EXp holds.

In order to allow various measurements of a structure, we permit the observ-
ing functions, which combine values to produce outputs, to be over non-Boolean
domains. We can describe the computation associated with this framework as a
synchronized update of values associated with each state, where the new value
is dependent on the previous values associated with that state and its neighbors.
This allows a simple implementation, where in each step, each state applies the
observing function to the previous values associated with its neighbors. On the
one hand, this may not provide the most efficient implementation and should
be optimized. On the other hand, it suggests a way of parallelizing the measure-
ments.

This kind of measuring can be viewed as extending the runtime verification
idea in [11] from checking whether a finite sequence can be extended to satisfy
an LTL formula to measuring an entire structure. Our approach is not limited
to CTL-like Boolean properties but can use different domains, including com-
binations of domains. Section 3 presents an example that uses two measures:
the amount of battery power consumed when a robot traverses a path, and the
shortest distance from the robot to a towing station. Our framework provides a
more flexible measuring tool than most quantitative extensions of logic, which
deal with one fixed measure, most often the average, minimum, or maximum
accumulated length along paths.

When extending the framework from Boolean to more general domains, it
becomes challenging to ensure that the measurement calculation terminates.
Indeed, in general, applying functions recursively may not terminate, and termi-
nation itself can be undecidable. For this reason, we require that a well founded
ordering is used, and successive values of a state in a measured structure must
decrease in this ordering.

Our view of measurement is local, from the point of view of a state in the
measured structure. To demonstrate the difference from a global view, consider
CTL model checking, where a monotonicity argument can be applied on the
(increasing or decreasing, respectively) size of the states while calculating the
(least or greatest, respectively) fixed-points. Instead, our measurement needs to
decrease locally, on the values calculated on the states. As the calculated values
may not contain the information needed to show progress toward termination,
we add another component: a counter that counts down from the size of the state

2

space (the number of states) or its diameter (the length of the longest simple
path). This is a generalization of the bounds used in bounded model checking [3].

Our formalism presents a combination of observing functions, applied syn-
chronously to the states of the measured structure, and guarded by a local
well-foundedness argument to ensure termination. This can be viewed as a de-
notational approach, defining the measurement, but is also very close to the
operational approach, defining the kind of computation needed at each state of
the structure, for a finite number of steps. Therefore, we also suggest develop-
ing logics that allow more abstract and denotational representations of desired
measurements, and translating (compiling) the logics into the testers used in our
framework. We illustrate this approach in the example in Section 3, by presenting
some CTL-like formulas extended to express various measurements.

The closest work to this paper, as far as we know, is [4]. There, an integer-
based measurement of a state space is sought, and calculated using quantitative
bound automata, with decision procedures based on dynamic programming. Our
approach, based on testers, is more of a specification formalism, allowing us to
directly describe the measure of a structure by the combination of functions
(whose type can be Boolean, integer, or any other finitely representable type)
and flow of information between states and their neighbors. Both approaches
realize the need to bound the computation, where this is done in [4] by providing
a bound on the number of iterations, and in our framework by requiring values
to decrease in a well-founded ordering.

The remainder of the paper is organized as follows. Section 2 presents our
framework, including our extended concept of testers, and shows how to express
CTL model checking in our framework. Section 3 presents an example based on
a mobile robot that illustrates the expressiveness of our framework.

2 Measuring Structures

Our computation model is based on a collection of synchronous processes that
communicate via shared variables. Each process has input, output, and state
variables, which may take values from arbitrary domains, including Boolean,
Integers, Reals, and Cartesian products. In each step of the computation, each
process updates its output and state variables based on a transition relation that
relates the values of its output and next-state variables to the values of its input
and current state variables. Transitions may in general be nondeterministic,
although the examples in this paper focus on deterministic processes for the
purpose of measurement.

The topology of this process network is specified by mapping output variables
of a process to input variables of other processes. Additionally, each process is
associated with a function that maps the current value of its state variables to a
value from a well-founded domain. This value is required to decrease whenever
the tester’s state changes, guaranteeing termination.

3

Testers

An atomic tester T is a process having the following components:

– T 〈i〉 is a finite set of input variables;
– T 〈o〉 is a finite set of output variables;
– T 〈state〉 is a finite set of state variables (with specific initial values);
– T 〈ρ〉 is a transition function, mapping values of T 〈i〉 ∪ T 〈state〉 to values of
T 〈state〉 ∪ T 〈o〉; and

– T 〈w〉, a function mapping values of T 〈state〉 to values in a well-founded
order (W,�).

Note that we represent testers as structures with named components, and we
use the notation T 〈c〉 to select component c of tester T . A tester is stateless if
it has no state variables.

The above definition of testers differs from the original notion in [10] in sev-
eral ways. First, our testers are primarily intended for measuring properties of
finite structures, and are not equipped with justice or compassion predicates.
Second, our testers have explicit input and output variables, while those in [10]
operate over streams of boolean values and have input and output defined im-
plicitly. Third, and perhaps most importantly, the variables in our testers are
not restricted to be boolean; in fact, tester variables can range over any do-
main including structured ones. Finally, each tester is equipped with a function
T 〈w〉 used to ensure termination. Semantically, we require that, in every tran-
sition of a tester, either the valuation of its state variables remains unchanged,
or the valuation changes from v to v′ and T 〈w〉(v′) � T 〈w〉(v). This ensures
termination.

A tester circuit, C, is a collection of interconnected atomic testers. More
precisely, C = 〈T , I, O,S〉, where T is a set of atomic testers, I ⊆ ∪T∈T T 〈i〉 and
O ⊆ ∪T∈T T 〈o〉 are the sets of inputs and outputs, respectively, of the circuit,
and S ⊆ ((

⋃
T∈T T 〈o〉)×(

⋃
T∈T T 〈i〉)) specifies the connections between testers,

by associating input variables with output variables. For convenience, we assume
that input and output variables have globally unique names.

The computation in a tester circuit starts with all testers in initial states.
The initial output of all testers is a special value “⊥”. Each tester evolves syn-
chronously, reading its inputs, and evaluating the transition function, thereby
computing its next state and outputs.

CTL Model Checking with Testers

We now illustrate the use of testers, treating the model checking of CTL formulas
as an instance of measurement of a given Kripke structure. In the following, we
assume a standard definition of a Kripke structure K over a finite set of states S
and atomic propositions P , given by 〈S,→, σ〉, where →⊆ S × S is a transition
relation, and σ is a function mapping states in S to sets of propositions. Given
a Kripke structure K, let n(K) denote the number of states in K, and let d(K)

4

denote the diameter of K, i.e., the length of the longest cycle-free path in its
transition graph. A state t is a successor of a states s if s→ t.

We consider CTL formulas over a set of propositions P specified using the
following syntax:

ϕ ::= P | ¬ϕ | (ϕ ∧ ϕ) | EXϕ | E(ϕUϕ) | A(ϕUϕ)

Additional operators of CTL can be defined in terms of these, e.g., true =
¬(p∧¬p) for some proposition p, EFϕ = E(true U ϕ), AGϕ = ¬EF (true U ¬ϕ),
and AXϕ = ¬EX¬ϕ.

We now describe the construction of a tester circuit for checking whether a
given Kripke structure is a model for a given CTL formula ϕ. Recall that the
outputs of all testers are initially set to an undefined value ⊥. We extend the
standard Boolean operators in a symmetric way as follows: true ∨ ⊥ = true,
true ∧ ⊥ = ⊥, false ∨ ⊥ = ⊥, false ∧ ⊥ = false, and ¬⊥ = ⊥.

For each formula ϕ and state s ∈ S, we construct a circuit Cϕ,s based on the
structure of ϕ, as defined below. Each circuit Cϕ,s has a single output variable
and is designed so that the final value of the output variable is true iff ϕ holds at
state s. For CTL model checking, the circuits have no inputs, so for brevity, we
omit the specification of input variables for circuits in the following construction.
We express each transition relation as a set of equations (one for each state
variable and output variable) in which unprimed variables represent the values
of variables in the current state, and primed variables represent the values of
variables in the next state. For brevity, we also omit the mapping to well-founded
orders; standard arguments can be used to show termination of this calculation.

case: ϕ is a proposition p: Let Tp,s be a stateless tester such that Tp,s〈i〉 =
{}, Tp,s〈o〉 = {o}, and Tp,s〈ρ〉 = {o′ = (p ∈ σ(s))}. Then Cϕ,s =
〈{Tp,s}, {o}, ∅〉.

case: ϕ is a negated formula ¬ϕ1: Let Tϕ,s be a stateless tester such that
Tϕ,s〈i〉 = {i}, Tϕ,s〈o〉 = {o}, and Tϕ,s〈ρ〉 = {o′ = ¬i}.
Let Cϕ1,s = 〈T1, {o1},S1〉. Then Cϕ,s = 〈{Tϕ,s} ∪ T1, {o},S ∪ {(o1, i)}〉.

case: ϕ is a conjunction ϕ1 ∧ ϕ2: Let Tϕ,s be a stateless tester such that
Tϕ,s〈i〉 = {i1, i2}, Tϕ,s〈o〉 = {o}, and Tϕ,s〈ρ〉 = {o′ = i1 ∧ i2}. Let
Cϕ1,s = 〈T1, {o1},S1〉 and Cϕ2,s = 〈T2, {o2},S2〉. Then Cϕ,s = 〈{Tϕ,s} ∪
T1 ∪ T2, {o},S ∪ {(o1, i1), (o2, i2)}〉.

case: ϕ is an exists-next formula EXϕ1: Let state s have n successors. Let
Tϕ,s be stateless tester with n inputs, namely, r1, . . . rn, and one out-
put o such that o′ =

∨
i ri. Formally, Tϕ,s〈i〉 = {r1, . . . , rn}, Tϕ,s〈o〉 =

{o}, and Tϕ,s〈ρ〉 = {o′ =
∨
i ri}.

Let the successors of s be t1, t2, . . . , tn. Let Cϕ1,tj = 〈Tj , oj ,Sj〉 for each
successor tj .
Then Cϕ,s = 〈{Tϕ,s} ∪

⋃
j=1..n Tj , {o},S ∪

⋃
j=1..n{(oj , rj)}〉.

case: ϕ is an exists-until formula E(ϕ1Uϕ2): Let state s have n successors.
Let Tϕ,s be a tester with 2 + n inputs, namely, i1, i2, r1, . . . rn, one output

5

o, and one state variable x initialized to d(K), the diameter of the Kripke
structure. The tester is such that at each step after i1 and i2 get non-⊥ values,
x is decremented, and the output o′ is computed as i2 ∨ (i1 ∧ (

∨
j=1..n rj)).

If x reaches 0 and the output is ⊥, then it is set to false. Formally,
Tϕ,s〈i〉 = {i1, i2, r1, . . . , rn}
Tϕ,s〈o〉 = o

Tϕ,s〈state〉 = {x = d(K)}

Tϕ,s〈ρ〉 =


x′ =

{
if i1 = ⊥ ∨ i2 = ⊥ then x
else if x > 0 then x− 1 else 0

o′ = if x = 0 ∧ v = ⊥ then false else v
where v = i2 ∨ (i1 ∧ (

∨
j=1..n rj))


Let Cϕ1,s = 〈T1, {o1},S1〉 and Cϕ2,s = 〈T2, {o2},S2〉. Let s have n successors,

namely t1, t2, . . . , tn. Let Cϕ,tj = 〈T̂j , {ôj}, Ŝj〉 for each successor tj . Let

T = T1 ∪ T2 ∪
⋃
j=1..n T̂j and S = S1 ∪ S2 ∪

⋃
j=1..n Ŝj .

Then Cϕ,s = 〈T ∪ {Tϕ,s}, {o},S ∪ {(o1, i1), (o2, i2)} ∪
⋃
j=1..n{(ôj , rj)}〉.

case: ϕ is an always-until formula A(ϕ1Uϕ2): This is similar to the exists-
until case above, except that it performs a conjunction (instead of a disjunc-
tion) over the results ri from successor states. Let state s have n successors.
Let Tϕ,s be a tester with 2 + n inputs, namely, i1, i2, r1, . . . rn, one output
o, and one state variable x initialized to d(K), the diameter of the Kripke
structure. Let

Tϕ,s〈i〉 = {i1, i2, r1, . . . , rn}
Tϕ,s〈o〉 = o

Tϕ,s〈state〉 = {x = d(K)}

Tϕ,s〈ρ〉 =


x′ =

{
if i1 = ⊥ ∨ i2 = ⊥ then x
else if x > 0 then x− 1 else 0

o′ = if x = 0 ∧ v = ⊥ then false else v
where v = i2 ∨ (i1 ∧ (

∧
j=1..n rj))


Let Cϕ1,s = 〈T1, {o1},S1〉 and Cϕ2,s = 〈T2, {o2},S2〉. Let s have n successors,

namely t1, t2, . . . , tn. Let Cϕ,tj = 〈T̂j , ôj , Ŝj〉 for each successor tj . Let T =

T1 ∪ T2 ∪
⋃
j=1..n T̂j and S = S1 ∪ S2 ∪

⋃
j=1..n Ŝj .

Then Cϕ,s = 〈T ∪ {Tϕ,s}, {o},S ∪ {(o1, i1), (o2, i2)} ∪
⋃
j=1..n{(ôj , rj)}〉.

3 Example

We illustrate the use of testers by measuring the weighted branching structure
of an autonomous robot with respect to a desired CTL property. The movement
of the robot within its environment is expressed with the finite, weighted Kripke
structure K = (S, s1,→, σ, c, d) shown in Figure 1(a). State s1 is marked by σ as
initial, and states s5 and s6 are marked by σ as towing. Each transition →ij of
K is annotated with two weights. The first weight, cij , is the energy consumed
(as a percentage of a fully charged battery) along →ij , i.e., when moving from
state si to state sj . The second weight, dij , is the distance traveled (in meters)
along →ij .

6

(a) EF(4) AGEF(2)

EF(1)

(b) EF(3)

EF(2) EF(5)1 2 5

643

10,30

11,30

10,30

10,35

5,30

5,30

10,30

Fig. 1. (a) Weighted Kripke structure associated with the movement of a robot. On
each edge, the first weight represents the energy consumed on that edge, and the second
weight represents the distance traveled on that edge. (b) Communication structure of
the tester EF (2). This tester receives horizontal messages from the testers EF (5)
and EF (3), sends horizontal messages to the testers EF (1) and EF (4), and vertical
messages to the tester AGEF (2).

We would like to check and measure the following property ϕ: Whenever the
robot reaches a state where its overall battery consumption bc > 80, there is a
towing state within a distance td < 100. Let ts be an atomic proposition that is
true in towing states. Then, ϕ can be written in a CTL-like logic as:

ϕ
.
= AGbc> 80 EFtd< 100 ts

Although ϕ seems to capture our intuition, we encounter difficulties as soon
as we seek to measure it, due to the inherent nondeterminism in CTL formulas.
In fact, we are not interested in any towing distance td< 100 from a state, but
in its minimal towing distance. Hence, the property we would like to measure
can be more precisely stated as: Whenever the robot reaches a state where its
overall battery consumption bc> 80, there is a minimal towing distance td< 100.

Testers

In order to capture, and more importantly, to properly measure such properties
in all their generality, we associate with each temporal operator, and each state of
the weighted Kripke structure K, a tester. These testers communicate in a data-
flow fashion both horizontally, with the testers of the same kind, and vertically,
with the testers corresponding to the enclosing operator.

For example, the communication structure of the EF tester associated with
state s2 is shown in Figure 1(b). This tester receives messages from the EF
testers associated with its successor states s3 and s5 in K, and sends messages
to the EF testers associated with its predecessor states s1 and s4 in K. It also
sends messages to the tester AGEF of its enclosing formula at state s2.

As the example indicates, the communication structure of a tester is com-
pletely defined by the structure K, the formula ϕ we intend to measure, and
the state s with which the tester is associated. A tester accumulates (folds) path
information in K starting at (or ending in) s and passes it to the other testers.
In order to do this, the tester requires the following information: (1) a proce-
dure for folding information along a single path, (2) a procedure for folding the
information from multiple paths, and (3) a termination condition.

7

A natural way to provide such information is through a complete, idempo-
tent dioid structure D= (+,×, 0, 1), where + is an additive, commutative and
idempotent monoid, with neutral element 0, and × is a multiplicative monoid,
with neutral element 1. In this setting, (1) is taken care of by multiplication,
(2) is taken care of by the addition, and (3) is taken care of by the completeness
of the dioid. In some cases, however, one would like to fold information using
other operations, such as averaging. In such situations, an explicit termination
condition, which we refer to as a “stopping criterion”, has to be provided, as the
completeness of the dioid does not suffice. Stopping criteria can also be used to
speed up the computation.

For AF and AG formulas, an operator folding the information computed in
all their satisfying states must also be provided. To make the above discussion
more precise, let us define the testers associated with ϕ.

The EF Tester

Consider first the EF tester associated with the subformula EFtd< 100 ts at state
s4. In this state, we have two paths that satisfy the constraint td< 100: the path
p1 = s4s6 with associated towing distance td1 = 30, and the path p2 = s4s2s5 with
associated towing distance td2 = 65.

The towing distances td1 and td2 are computed by folding the weights along
the paths p1 and p2, respectively, in an additive fashion. Moreover, since we are
only interested in the shortest path, we fold the information among different
paths by taking their minimum. Hence, the idempotent dioid structure we are
interested in is D= (min,+,∞, 0). The stopping criterion, ψ

.
= (td≥ 100) is not

necessary for convergence, but it speeds up the computation, and helps compute
the measure for the entire CTL formula ϕ. The atomic proposition we are passing
to the EF tester as a parameter is simply p

.
= ts.

Given the above considerations, the general specification of an EFDψ p (s,K)
tester can be given once and for all as below. We assume that the communication
structure is automatically compiled in EF from K and ϕ. For readibility of the
tester, we instantiate p, ψ and D in its definition.

EF
(min,+,∞,0)
td≥ 100 ts (s,K)

{
init: td = (σ(s) = ts) ? 0 : ∞
stop: td ≥ 100
transition:
td = mint∈(s→t) (td, receiveEF(t)+ dst))
sendEF(t)t∈(t→s) = td

sendAGEF(s) = (td ≥ 100) ? (b = F, td = td) : (b = T, td = td);
}

Note that this section uses a more concise and less formal notation for testers,
including a send-receive notation for communication. For example, sendEF(t) =

td denotes sending the value of td to the tester for the EF formula at state t,
and receiveEF(t) denotes the value received from the EF tester at state t. This

8

notation can be translated straightforwardly into the more formal notation in
Section 2. We also use tuples with named fields as communication messages.

The AG Tester

The tester associated with the AGbc> 80 property can be defined independently
of the rest of the subformulas in ϕ. The purpose of this tester is to compute the
battery consumption in a forward fashion, starting from the initial state.

We would like to stop the computation of the battery consumption at a given
state s, as soon as we arrive (for the first time) at s with bc> 80. Moreover, if
we arrive at s along two different paths with values bc1 and bc2, we would like
to consider only the maximum of bc1 and bc2. Hence, the dioid structure we are
interested in has the form D= (max,+,−∞, 0). The termination condition in
this case is ψ

.
= (bc> 80).

The intuition is as follows. In structure K of Figure 1(a), there is no simple
path ending in a state with bc> 80. However, looping sufficiently many times
within the cycle s2s3s4s2 increases the battery consumption until we arrive at
s3 with bc= 81, and thereafter in s4, s2, and s6 with bc equal to 86, 91 and 96,
respectively. Hence, we can define (once and for all) the AG tester as below.
Again, for readability, we instantiate the parameters ψ and D.

AG
(max,+,−∞,0)
bc> 80 (s,K)

{
init: bc = (σ(s) = init) ? 0 : −∞
stop: bc > 80
transition:

if (bc ≤ 80) then
bc = maxt∈(t→s) (bc, receiveEF(t)+ cts))

sendAG(t)t∈(s→t) = bc

sendAGEF(s) = bc> 80 ? (b = T, bc = bc) : (b = F, bc = bc)
}

The AGEF tester.

The AGEF tester at state s collects the information from its AGEF peers, and
from the AG and the EF testers at state s. Then, in conjunction with its AGEF
peers, it checks and measures the top-level formula ϕ.

For each state where if bc> 80 holds then it is also the case that td< 100
holds (which is the formal requirement in ϕ), we would like for our example
that AGEF (s) first compute the linear combination lc= 0.6×bc+ 0.4× td. We
would then like it to back propagate this information so that the initial state
will contain the average of all such linear combinations.

The main problem in the back propagation is the cycle s2s3s4s2: simply
sending lc to the AGEF testers of all its predecessor states would result in
double counting. Assuming the existence of a linear order on the states, with
the initial state as minimal, we therefore send the lc information to only a single
predecessor, the one which is minimal in the state ordering.

9

To ensure termination as well as proper property checking and measuring,
each AGEF tester sends a tuple (bb, ns, lcSum, done). The value bb is true when
the state satisfies ¬(bc> 80)∨ (td< 100), and all of its greater AGEF successors
do. The value lcSum is the sum of the lc value of the current AGEF state and the
lc values of its greater successors. The value of ns is the number of states whose
lc values are summed in lcSum. The value of done is true when all the greater
AGEF successors are done; this value is also used as the stopping condition of
the AGEF tester. Note that the average of the lc values can always be computed
as lcSum/ns; for brevity, this calculation is omitted from the pseudocode for the
AGEF tester.

The structure D = (avg, lin(0.6, 0.4), 0) contains the commutative monoid
for avg, and the linear-combination operator (with its associated weights). One
therefore needs in addition a state ordering, and the termination condition done.
Given all these considerations, the specification of the AGEF tester is as follows:

AGEF
(avg,lin(0.6,0.4),0)
done (s,K)

{
init:
bb = (receiveAG(s).b ⇒ receiveEF(s).b)
lcSum = bb ? lin(0.6,0.4)(receiveAG(s).bc, receiveEF(s).td): 0

ns = 1

done = F

stop: done

transition:
alreadyDone = done

done = ∧t∈(s→t)∧(t>s)(receiveAGEF(t).done)
if (done ∧ ¬alreadyDone) then
sb = ∧t∈(s→t)∧(t>s)(receiveAGEF(t).bb)
bb = bb∧ sb
ns = ns + sumt∈(s→t)∧(t>s)(receiveAGEF(t).ns)
lcSum = lcSum + sumt∈(s→t)∧(t>s)(receiveAGEF(t).lcSum)

predecessor = mint∈(t→s)∧(t<s)(t)
sendAGEF(predecessor) = (bb = bb, ns = ns, lcSum = lcSum, done = done)

}

To simplify the pseudo-code, we assume that the receives from the AG and EF
testers in the init section block the AGEF tester until the computations of
the AG and EF testers have terminated, because we want the AGEF tester to
compute with the final values from those testers. This implicit synchronization
can be implemented explicitly using additional variables.

This tester has the property that the formula ϕ is true, provided that the
AGEF tester of state s1 is done and its Boolean value bb is true. In that case,
the desired average is lcSum/ns.

Implementation and results.

We implemented the robot example in MATLAB to gain experience with the
behavior and performance of these testers. We used centralized data structures

10

for initial-prototyping purposes. As future work, we plan to develop a distributed
implementation.

In Table 1, we present the results obtained from the testers. One can easily
check that all boolean and real values are correctly computed and propagated
to a tester’s neighbors. The final result is the tuple (T, 6, 337.0) computed by
the AGEF tester for the initial state s1. These values convey the fact that the
property does hold for the weighted Kripke structure K of Figure 1(a) and yields
the desired average as 337.0/6 = 56.17.

EF Testers AG Testers AGEF Testers
b td b bc bb ns lcSum

s1 T 65 F 0 T 6 337.0

s2 T 35 T 91 T 2 117.2

s3 T 60 T 81 T 3 193.8

s4 T 30 T 86 T 2 121.2

s5 T 0 T 81 T 1 48.6

s6 T 0 T 96 T 1 57.6

Table 1. Results obtained from the testers for the robot example

References

1. Shaull Almagor, Udi Boker, Orna Kupferman: What’s Decidable about Weighted
Automata? LNCS 6996, Springer-Verlag, ATVA 2011: 482-491.

2. Rajeev Alur, Kousha Etessami, Salvatore La Torre, Doron Peled: Parametric tem-
poral logic for ”model measuring”. ACM Trans. Comput. Log. 2(3): 388-407 (2001).

3. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, Yunshan
Zhu: Bounded Model Checking. Vol. 58 of Advances in Computers, Academic Press,
2003.

4. Arindam Chakrabarti, Krishnendu Chatterjee, Thomas A. Henzinger, Orna
Kupferman, Rupak Majumdar: Verifying Quantitative Properties Using Bound
Functions. LNCS 3725, Springer-Verlag, CHARME 2005: 50-64.

5. Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger: Expressiveness and
Closure Properties for Quantitative Languages. LNCS Logical Methods in Com-
puter Science 6(3) (2010).

6. Edmund M. Clarke, E. Allen Emerson: Design and Synthesis of Synchroniza-
tion Skeletons Using Branching-Time Temporal Logic. LNCS 131, Springer-Verlag,
Logic of Programs 1981: 52-71.

7. E. Allen Emerson, Edmund M. Clarke: Characterizing Correctness Properties of
Parallel Programs Using Fixpoints. LNCS 85, Springer-Verlag ICALP 1980: 169-
181.

8. Peter Faymonville, Bernd Finkbeiner, Doron Peled: Monitoring Parametric Tem-
poral Logic. VMCAI 2014: 357-375.

9. Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, David Parker: Automated
Verification Techniques for Probabilistic Systems. LNCS 6659, Springer-Verlag,
SFM 2011: 53-113.

11

10. Yonit Kesten, Amir Pnueli, Li-on Raviv: Algorithmic Verification of Linear Tem-
poral Logic Specifications. ICALP 1998: 1-16.

11. Amir Pnueli, Aleksandr Zaks: PSL Model Checking and Run-Time Verification
Via Testers. FM 2006: 573-586.

12. Jean-Pierre Queille, Joseph Sifakis: Iterative Methods for the Analysis of Petri
Nets. LNCS 51, Springer-Verlag, Selected Papers from the First and the Second
European Workshop on Application and Theory of Petri Nets 1981: 161-167.

12

