
Springer Nature 2021 LATEX template

The Black-Box Simplex Architecture for Runtime Assurance

of Multi-Agent CPS

Sanaz Sheikhi1, Usama Mehmood2, Stanley Bak1*, Scott A. Smolka1* and Scott D.
Stoller1*

1Department of Computer Science, Stony Brook University.
2Department of Computer Science, Information Technology University.

*Corresponding author(s). E-mail(s): sbak@cs.stonybrook.edu; sas@cs.stonybrook.edu;
stoller@cs.stonybrook.edu;

Abstract

The Simplex Architecture is a runtime assurance framework where control authority may switch from
an unverified and potentially unsafe advanced controller to a backup baseline controller in order to
maintain the safety of an autonomous cyber-physical system. In this work, we show that runtime checks
can replace the requirement to statically verify safety of the baseline controller. This is important
as there are many powerful control techniques, such as model-predictive control and neural network
controllers, that work well in practice but are difficult to statically verify. Since the method does not
use internal information about the advanced or baseline controller, we call the approach the Black-Box
Simplex Architecture. We prove the architecture is safe and present two case studies where (i) model-
predictive control provides safe multi-robot coordination, and (ii) neural networks provably prevent
collisions in groups of F-16 aircraft, despite the controllers occasionally outputting unsafe commands.
We further show how to safely blend commands from the advanced and baseline controllers in multi-
agent systems, reducing the performance impact when switching is necessary to preserve safety.

Keywords: Black-Box Simplex, Runtime Assurance, Autonomous CPS, Multi-agent

1 Introduction

Autonomous cyber-physical systems (CPS) have
the potential to transform vital domains such as
transportation, health-care, and energy manage-
ment. As these systems perform complex func-
tions, they often require complex designs. More-
over, since autonomous CPS interact with the
physical world, they are typically safety-critical.
Formal analysis, however, can be difficult for
complex systems.

In the development of such CPS, powerful con-
trol techniques such as model-predictive control

and deep reinforcement learning are increasingly
being used instead of traditional controller design
techniques. Such trends exacerbate the safety ver-
ification problem. Additionally, there is increasing
interest in systems that can learn in the field,
changing their behaviors based on observations.
Classical verification strategies are poorly suited
for such designs.

One approach for dynamically providing safety
for systems with complex and unverified compo-
nents is runtime assurance [1], where the state
of the plant is monitored at runtime to mitigate
possible imminent violations of formal properties.

1

Springer Nature 2021 LATEX template

2

Advanced
Controller

Baseline
Controller

Decision
Module

Sensor
Data

Command
Command

Plant
+

Low-Level
Controller

(a) Traditional Simplex Architecture

Advanced
Controller

Lookahead
Baseline
Controller

Command
Command
Sequence

Command

Plant
+

Low-Level
Controller

Decision Module
Stored

Command
Sequence

Sensor
Data

(b) Black-Box Simplex Architecture

Fig. 1: The Black-Box Simplex Architecture guarantees safety despite a black-box advanced controller
and a black-box baseline controller.

A well-known runtime assurance technique is the
Simplex Control Architecture [2, 3], which has
been applied to a wide range of systems [4–6].
In the original Simplex Architecture, shown in
Figure 1(a), the baseline controller (BC) and the
decision module (DM) are part of the trusted com-
puting base. The DM monitors the state of the
system and switches control from the advanced
controller (AC) to the BC if using the former
could result in a safety violation in the near future.
The original Simplex Architecture requires creat-
ing a provably safe BC, which can be difficult. In
this work, we eliminate this requirement through
a greater reliance on runtime verification.

In the proposed Black-Box Simplex Architec-
ture (BSA), shown in Figure 1(b), the BC (now
referred to as the Lookahead Baseline Controller
(LBC), no longer needs to be statically verified,
and can even be incorrect. The tradeoff is that
the DM performs more extensive runtime check-
ing and stores backup command sequences from
previous computation steps. The DM performs
simulation or reachability analysis based on a
known system model. If the DM’s computation
time is too large, BSA keeps the system safe by
switching control to a stored command sequence
generated at an earlier step by the LBC and
checked for safety by the DM. We note that in case
the DM’s computation timeouts are too frequent,
BSA is not well suited for the system, as it causes
performance degradation.

For our method, an initial permanently safe
command sequence is required that keeps the sys-
tem safe from the start state. This should be much
easier to provide than a safety controller typi-
cally used in Simplex which must guarantee safety
from any state the advanced controller is allowed

to reach. The specifics of the approach will be
discussed in Section 2.

We prove two theorems about this architec-
ture: (i) safety is always guaranteed, and (ii) when
the baseline and advanced controllers perform well
(to be formally defined in Section 2), the archi-
tecture is transparent: the advanced controller
appears to have full control of the system. The
practicality of these assumptions and the util-
ity of the BSA architecture itself is demonstrated
through two significant case studies. In the first, a
multi-robot coordination system uses a BC based
on a model-predictive control algorithm with a
potential-field approach for collision avoidance.
Such a setup is difficult to statically verify as
it depends on the online solution of a nonlinear
optimization problem. In the second, a mid-air
collision avoidance system for groups of F-16 air-
craft is created from imperfect logic encoded in
neural networks. A preview of the second case
study is shown in Figure 2, where directly using
the neural networks causes a collision (left), but
the Black-Box Simplex approach safely navigates
the scenario, resulting in an emergent maneuver
similar to a roundabout (right).

Here, we extend an earlier version of these
works [7, 8] in two ways. First, we adapt the
developed theory of Black-Box Simplex to multi-
agent systems, and present command blending as
a technique to safely combine commands from
the advanced and baseline controllers (Section 3).
Second, we implement the command blending
decision module in the multi-robot case study
and demonstrate the improvement to the system’s
performance (Section 4.2).

Springer Nature 2021 LATEX template

3

(a) Original System (unsafe, the two red aircraft collide) (b) Black-Box Simplex (safe, snapshot shown at closest dis-
tance)

Fig. 2: Black-Box Simplex safely navigates complex scenarios. In the 15-aircraft case, all aircraft cross
the circle while maintaining a 1500 ft separation distance.

2 Black-Box Simplex

The traditional Simplex Architecture, shown in
Figure 1(a), preserves the safety of the system
while permitting the use of an unverified AC. It
does this by using the AC in conjunction with a
verified BC and a verified DM. The DM cannot
simply check if the next state is safe, as cyber-
physical systems have inertia and it may be too
late to take corrective action. Rather, the verified
design of a Simplex system usually requires offline
reasoning with respect to a trusted BC and the
system dynamics.

If the system dynamics are linear and the
admissible states are defined with linear con-
straints, a state-feedback BC and a DM can be
synthesized by solving a linear matrix inequal-
ity [2]. If the system dynamics or constraints are
nonlinear, however, there is no direct approach
to create a trusted BC and DM. This prevents
more widespread use of the traditional Simplex
Architecture.

The proposed Black-Box Simplex Architec-
ture removes the requirement that the BC is
statically verified, allowing provable safety with
both an unverified AC and an unverified BC. Its
architecture is shown in Figure 1(b). Apart from
eliminating the need to establish safety of the BC,
BSA differs from the traditional Simplex Archi-
tecture in other important ways. First, the AC
shares its command with the LBC instead of pass-
ing it directly to the DM. Second, the LBC uses

this command as the starting point of a candidate
safe command sequence.

Candidate command sequences may be gen-
erated using state-of-the-art controller designs,
including neural networks trained with reinforce-
ment learning or MPC. Note that a candidate
command sequence is not guaranteed to be safe
until it is verified by the DM through a runtime
check. Specifically, the DM checks safety of the
LBC’s candidate command sequence, rejecting it
if safety is not ensured. The DM checks safety
by running simulations (rollouts) for deterministic
systems; for systems with uncertainty, it performs
online reachability computation [9–11]. BSA is
able to maintain the safety of the system in case
the DM is unable to complete the online verifica-
tion of the proposed command sequence in time.
If the computation takes too long, the DM aborts
and switches to a backup command sequence that
continues to ensure system safety. It can subse-
quently switch back to the AC when the runtime
checks finish in time.

As long as the AC drives the system through
states from which the LBC can recover, it contin-
ues to actuate the system. However, if the LBC
fails to compute a candidate command sequence
that maintains safety—due to a fault of the unver-
ified AC or the unverified BC, or due to excessive
computation time for any of the components—
the DM can still recover the system using the
safe command sequence from the previous step.

Springer Nature 2021 LATEX template

4

Note that the DM does not generate any com-
mand sequences. It only performs runtime checks
and stores command sequences to maintain a safe
backup plan at all times.

The applicability of BSA depends on the feasi-
bility of two system-specific steps: (i) constructing
candidate command sequences and (ii) proving
their safety at runtime. For some systems, a
safe command sequence can simply bring the
system to a stop. An autonomous car, for exam-
ple, could have a safe command sequence that
steers the car to the side of the road and then
stops. A safe sequence for a drone might direct
it to the closest emergency landing location. For
a rapidly-moving autonomous fixed-wing aircraft
swarm, a safe sequence could fly all aircraft in
non-intersecting circles to allow time for human
intervention. Proving safety of a given command
sequence can also be challenging and depends on
the system dynamics. For nondeterministic sys-
tems, this could involve performing reachability
computations at runtime [9–11]. Such techniques
assume an accurate system model is available in
order to compute reachable sets. Notice that tra-
ditional offline control theory also requires this
assumption, so we do not view it as overly bur-
densome.

In BSA, although both controllers are unver-
ified, we do not combine them into a single
unverified controller, even if the AC is MPC-based
and produces command sequences. This allows for
a logical separation of concerns, where the AC
focuses on making progress on the mission, and
the BC focuses on generating safe backup plans.

2.1 Formal Definition of Black-Box
Simplex

We formalize the behavior and requirements for
the components of the Black-Box Simplex Archi-
tecture in order to prove properties about the
system’s behavior.

Plant Model. We consider discrete-time
plant dynamics, modeled as a function

f(xi︸︷︷︸
state

, ui︸︷︷︸
input

, wi︸︷︷︸
disturbance

) = xi+1︸︷︷︸
next state

(1)

where i ∈ Z+ is the time step, xi ∈ X is the sys-
tem state, ui ∈ U is a control input command,
and wi ∈ W is an environmental disturbance.

We sometimes also consider deterministic systems
without disturbances.

Admissible States. The system is charac-
terized by a set of operational constraints which
include physical limits and safety properties.
States that satisfy all the operational constraints
are called admissible states.

Candidate Command Sequences. A
single-input command is some u ∈ U , and a
k-length sequence of commands is written as
u ∈ Uk. The length of a sequence can be written
as ulen = k, where we also can take the length of
a single command, ulen = 1. We use Python-like
notation for subsequences, where the first element
in a sequence is u[0], and the rest of the sequence
is u[1:].

Decision Module. The decision module in
Black-Box Simplex stores a command sequence
s, which we sometimes call the decision mod-
ule’s state. The behavior of the DM is defined
through two functions, dmupdate and dmstep. The
dmupdate function attempts to modify the DM’s
stored command sequence:

dmupdate(x︸︷︷︸
state

, s︸︷︷︸
cur seq

, t︸︷︷︸
proposed seq

) = s′︸︷︷︸
new seq

(2)

where if s′ = t then we say that the proposed
command sequence is accepted ; otherwise s′ = s
and we say that it is rejected. Correctness condi-
tions on dmupdate are given in Section 2.2. For the
Multi-robot coordination problem in Section 4.1,
the dmupdate function accepts the safe command
sequence t, if for all states in the state trajectory
obtained by executing t from the current state,
all pairs of agents are a safe distance apart and
the velocities point in non-conflicting directions,
excluding the chance of future collisions.

Note that the DM will accept a safe com-
mand sequence from the LBC even if the previous
command sequence from the LBC was rejected
because it was unsafe. As in [12], we refer to this
as reverse switching, since it switches control back
to the AC.

The dmstep function produces the next com-
mand u to apply to the plant, as well as the next
step’s command sequence s′ for the DM:

dmstep(s̄︸︷︷︸
cur seq

) = (u︸︷︷︸
next input

, s′︸︷︷︸
next seq

) (3)

Springer Nature 2021 LATEX template

5

where u = s[0] and s′ is constructed from s̄
by removing the first command (if the current
sequence s has only one command then it is
repeated):

s′ =

{
s if slen = 1

s[1:] otherwise

Controllers. The AC and LBC are defined
using functions of the system state. In particular,
the AC is defined by a function ac(x) = u, where
u ∈ U is a single command. BSA’s look-ahead
baseline controller is defined by lbc(x) = u, where
u ∈ Uk is a k-length command sequence. The LBC
outputs candidate command sequences that start
with a given command, specifically, the command
proposed by the AC. These can be defined with a
function lbcac(x) = u, with u[0] = ac(x). We note
that the choice of the controller for the remaining
sequence u[1+] is system-dependent. We gener-
ally drop the subscript on lbc, as it is clear from
context.

Execution Semantics. At step i, given sys-
tem state xi and DM state si, the next system
state xi+1 and next DM state si+1 are computed
with the following sequence of steps: (1) zi =
ac(xi); (2) ti = lbc(xi), with ti[0] = zi; (3) s′i =

dmupdate(xi, si, ti); (4) (ui, si+1) = dmstep(s′i);
(5) xi+1 = f(xi, ui, wi), for some disturbance
wi ∈ W.

We note that the functions lbc and dmupdate

are system-specific. For example, in the multi-
robot coordination case study in Section 4.1, the
agents start on the circumference of a circle and
are required to safely reach their target locations
on the opposite side of the circle. The lbc combines
accelerations from MPC based AC and BC to pro-
duce a command sequence. The cost function of
the AC, given in Eq. 6, is designed to attract the
agents toward their goal locations. The cost func-
tion of the BC, given in Eq 7, prioritizes safety
and pushes the agents to move out of the circle.
Similarly, the dmupdate checks for the safety of the
command sequence. First, for all states in the state
trajectory obtained by executing the LBC’s com-
mand sequence, the Euclidean distance between
every pair of distinct agents is greater than a
threshold. Second, in the final state, for all pairs
of distinct agents, the rays extending from their

positions and in the directions of their velocities
do not intersect.

2.2 Safety and Transparency
Theorems

We define several relevant concepts and then state
and prove safety and transparency theorems for
Black-Box Simplex.

Definition 1 (Safe System Execution) A system exe-
cution is called safe if and only if the system state is
admissible at every step.

Safety can be ensured by following a per-
manently safe command sequence from a given
system state.

Definition 2 (Permanently Safe Command Sequence)
Given state xi, a k-length permanently safe com-
mand sequence si ∈ Uk is one where the state xj is
admissible at every step j ≥ i, where (ui, si+1) =
dmstep(si), and xi+1 = f(xi, ui, wi), for every choice
of disturbance wi ∈ W.

That is, the system state will remain admissi-
ble when applying each command in the sequence
si, and then repeatedly using the last command
forever, according to the semantics of dmstep. More
general definitions of permanently safe command
sequences could be considered, such as repeating
a suffix rather than just the last command. For
simplicity we do not explore this here.

We define recoverable commands to be com-
mands that result in states that have permanently
safe command sequences.

Definition 3 (Recoverable Command) Given state
xi, a recoverable command u is one where there exists a
permanently safe command sequence from xi+1, where
xi+1 = f(xi, u, wi), for every choice of disturbance
wi ∈ W.

Optimal decision modules are defined by
requiring the dmupdate function accept all
sequences that can guarantee future safety,
starting from a safe AC command.

Springer Nature 2021 LATEX template

6

Definition 4 (Optimal Decision Module) An optimal
decision module has a dmupdate function that accepts
t at state x if and only if t is a permanently safe
command sequence starting from x.

A correct DM is one which only accepts
sequences that can guarantee future safety. A cor-
rect DM, by this definition, could reject every
command sequence.

Definition 5 (Correct Decision Module) A correct
decision module has a dmupdate function that accepts
t at state x only if t is a permanently safe command
sequence starting from x.

The role of the BC is to try to keep the system
safe. An optimal look-ahead BC can be defined as
one that always produces a permanently safe com-
mand sequence when it exists. This is optimal in
the sense that during system execution, it allows
the DM to override the AC as infrequently as pos-
sible while still guaranteeing safety. This notion of
optimality can be defined with respect to a specific
advanced controller ac.

Definition 6 (Optimal Look-Ahead Baseline Con-
troller) Given state x with u = ac(x), if there exists
a permanently safe command sequence s from x
with s[0] = u, then an optimal look-ahead baseline
controller will always produce a permanently safe
command sequence t, with t[0] = u.

Note that t may differ from s, as there can
be multiple permanently safe command sequences
from the same state.

Theorem 1 (Safety) Given initial state x0 along
with an initial permanently safe command sequence s0,
if the decision module is correct, then the system’s exe-
cution is safe regardless of the outputs of the advanced
controller ac and look-ahead baseline controller lbc.

Proof The command executed at each step comes
from the state of the decision module si, which main-
tains the invariant that si is always a permanently safe
command sequence from the current system state xi.
The dmupdate function can only replace a permanently
safe command sequence with another permanently

safe command sequence. Since initially, s0 is perma-
nently safe, then by induction on the step number,
the decision module’s command sequence at every step
is permanently safe, and so the system’s execution is
safe. □

Although safety is important, achieving only
safety is trivial, as a decision module can sim-
ply reject all new command sequences. A runtime
assurance system must also have a transparency
property, where the advanced controller retains
control in sufficiently well-designed systems.

Theorem 2 (Transparency) If (i) from every state
xi encountered, the output of the advanced controller
ac(xi) = zi is a recoverable command, (ii) the look-
ahead baseline controller is optimal, and (iii) the
decision module is optimal, then the input command
used to actuate the system at every step is the advanced
controller’s command, zi.

Proof At the initial step, assume that a permanently
safe command sequence exists. The proof proceeds by
stepping through an arbitrary step i of the execu-
tion semantics defined in Section 2.1. Since the output
of the advanced controller ac(xi) = zi is assumed
to be recoverable, there exists a permanently safe
command sequence from xi that starts with zi. By
the definition of an optimal look-ahead baseline con-
troller, since there exists a permanently safe command
sequence, the output lbc(xi) = t must also be a per-
manently safe command sequence, with t[0] = zi
as required by the definition of a look-ahead base-
line controller. In step (3) of the execution semantics,

dmupdate(xi, si, ti) = s′i. Since t is a permanently safe
command sequence and the decision module is opti-
mal, the command sequence will be accepted by the
decision module, and so s′i = t. Step (4) of the execu-
tion semantics produces ui, which is the first command
in the sequence t. As shown before, this command is
equal to zi, which is used in step (5) of the execu-
tion semantics to actuate the system. This reasoning
applies at every step, and so the advanced controller’s
command is always used. □

Discussion. There are several practical consider-
ations with the described approach. For example,
the black-box controllers may not only generate
unsafe commands, but a controller implementa-
tion may fail to generate a command at all, for
example, entering an infinite loop. To account for
such behaviors, a runtime cap can be used with
a default command sequence assumed if the DM

Springer Nature 2021 LATEX template

7

receives no input. For increased protection, the
black-box controllers can be isolated on dedicated
hardware [13] so that they do not, for example,
crash a shared operating system. Also, the DM’s
analysis of the command sequence is nontrivial
and could involve a runtime reachability compu-
tation. If this may take too long, we again could
use a runtime cap. This means that the practical-
ity of the architecture depends on the efficiency
of runtime reachability methods, an active area of
research orthogonal to this work.

Another consideration is the feasibility of com-
ing up with permanently safe command sequences.
For systems where landing or coming to a stop
is considered safe, remaining there forever will
be permanently safe. Other approaches, which we
use the case studies in the next section, rely on
geometric arguments to show permanent safety.
Methods from control theory could also be used for
this, such as computing forward invariant sets [14]
or using a locally stable controller. For example,
using the indirect method of Lyapnuov, a closed-
loop system’s equilibrium point x∗ can be proven
to be stable using linearization, along with con-
servative bounds on its basin of attraction [15].
The BC would then strive to get the system into
the basin of attraction of x∗, and then use the
locally stable controller to ensure indefinite future
safety. Directly using the locally stable controller
as the BC, however, would be overly conserva-
tive, as it would not allow the system to leave the
(potentially small) basin of attraction.

3 Commands Blending for
Multi-Agent Systems

The BSA theory presented in the previous section
applies to any general autonomous cyber-physical
systems. In case of multi-agent systems, we can
sometimes further improve the DM to allow the
system to use the advanced controller commands
more frequently. In the theory presented above,
the DM would either make all the agents use con-
trol commands from the advanced controller or all
agents use the previous permanently safe control
command sequence. The drawback of this strat-
egy is that if only a small subset of the agents are
at risk of a safety violation, all the agents will be
forced to revert their command to the LBC. To
overcome this drawback, we introduce command

blending, in which some agents use the command
from the AC while others use the LBC. In this
section, we adapt the previous formalism to pro-
vide conditions that ensure command blending
does not violate system safety.

Command blending is applicable for multi-
agent systems. We assume there are n agents and
extend the notation to use a superscript to denote
a specific agent’s state, command and disturbance.
The main change for command blending is in the
decision module’s dmupdate function.

Command Blending Decision Module.
The decision module dmupdate function attempts
to modify the DM’s stored command sequence, as
defined before in Equation 2. Recall that decision
module’s state (the stored command sequence)
is denoted by s, the new proposed command
sequence is t and the command sequence after
the safety check is s′, which previously was equal
to either s or t. With command blending, we
construct a new command sequence r that can
alternately be accepted by the decision module.

The proposed command sequence t in the
multi-agent case consists of commands t[i]j for
agent j at time step i. As before, if the state is
admissible at every step when executing the pro-
posed command sequence t, then s′ = t and we say
that the proposed command sequence is accepted.
Otherwise, rather than immediately falling back
to the stored command sequence s′ = s as before,
the decision module attempts to construct a mixed
command sequence. A mixed command sequence
between the stored command sequence s and the
proposed command sequence t is constructed by
starting with t and iteratively replacing the com-
mand sequence for a chosen agent j (for all time
steps) with the commands from the safe backup
sequence s. If agent j is chosen in the first iter-
ation, the new command sequence r has r[i]j =
s[i]j , and for all other agents k ̸= j, r[i]k =
t[i]k. The modified command sequence is then
checked again using dmupdate, and if the command
sequence is not accepted, a second agent is selected
to roll back to s. This process repeats until the
blended command sequence is accepted by the
DM.

The agent which is chosen should be differ-
ent at each iteration, to ensure that eventually all
agents get rolled back if needed. This ensures the
approach eventually terminates, as in the worst
case, after n iterations all the agents will be rolled

Springer Nature 2021 LATEX template

8

back and r will be same as s, which was shown as
admissible at the previous step and will therefore
be accepted by the DM.

Discussion. The safety of this approach follows
directly from the safety theorem in Section 2.2 for
the general BSA. The choice of agent to rollback
can be done arbitrarily without affecting safety,
but in many cases heuristics associated with the
safety check performed by dmupdate can be used
to select the agent, in order to reduce the num-
ber of rolled-back agents. For example, in our case
study we use collision safety properties. When two
agents are detected to be colliding in the future,
we select one of them to rollback, in order to
resolve the conflict. However, at the next itera-
tion of the process to create the blended command
sequence, dmupdate may detect a new set of con-
flicting agents, which will lead to another agent
being selected.

The trade off of the proposed process is that
dmupdate may need to run multiple times, which
increases the computational cost. Note that, as
before, if the computation budget is exceeded it is
always safe to simply use the full backup command
sequence s.

Blended commands may also not be desir-
able for all multi-agent systems, for example if
there are synchronization concerns where we want
either all agents to complete a task or none of
them. However, as we will show in the evaluation,
for motion properties, using blended commands
can help multi-agent systems complete tasks that
cannot be completed using the general BSA.

4 Case Studies

In this section, we apply the approach to two case
studies: a multi-robot coordination system, and a
mid-air collision avoidance system for groups of
F-16 aircraft.

4.1 Multi-Robot Coordination

We consider a multi-agent system (MAS), indexed
by M = {1, ..., n}, of planar robots modeled with
discrete-time dynamics of the form:

pi(k + 1) = pi(k) + dt · vi(k), |vi(k)| < vmax

vi(k + 1) = vi(k) + dt · ai(k), |ai(k)| < amax

(4)

where pi, vi, ai ∈ R2 are the position, veloc-
ity and acceleration of agent i, respectively, at
time step k, and dt ∈ R+ is the time step.
The magnitudes of velocities and accelerations
are bounded by vmax and amax, respectively. The
acceleration ai is the control input for agent i.
The combined state of all agents is denoted as
x = [pT1 , v

T
1 , ..., p

T
n , v

T
n]

T , and their accelerations
are a = [aT1 , ..., a

T
n]

T .
In the initial configuration, the agents are

equally spaced on the boundary of a circle and
are at rest. Agent i’s goal is to reach a tar-
get location ri, located on the opposite side of
the circle. The initial configuration of the MAS
is shown in Figure 3(a), where the agents and
their target locations are represented as red dots
and blue crosses, respectively. The safety prop-
erty is absence of inter-agent collisions. A pair of
agents is considered to collide if the Euclidean dis-
tance between them is less than a non-negative
threshold dmin. Thus, the safety property is that
∥pi − pj∥ > dmin for all pairs of agents i, j ∈ M
with i ̸= j.

Both the AC and the BC are designed using
centralized Model Predictive Control (MPC),
which produces command sequences as part of
the solution of a nonlinear optimization problem.
For collision avoidance, we use a potential field
formulation [16] in both the AC and BC. While
the AC tries to reach the target positions on the
opposite side of the circle, the BC has a sim-
pler goal of having each agent leave the circle.
Note that numerical methods for global nonlinear
optimization, such as MATLAB’s fmincon used
in our implementation, do not provide a guaran-
teed optimal solution. To create unsafe variants
of the controllers, we simply limit the number of
iterations used for optimization.

The AC only outputs the first command of
the command sequence, whereas the BC produces
the full command sequence. Both the AC and the
BC are high-level controllers that produce accel-
erations. In our simulations, we do not model
the low-level controller; the plant dynamics work
directly with the accelerations. When implement-
ing our approach on physical robots, a trusted
low-level controller will map the desired accelera-
tion commands to actuator inputs. A centralized
MPC controller produces a command sequence s
of length T , where T is the prediction horizon, and

Springer Nature 2021 LATEX template

9

-8 -4 0 4 8

-8

-4

0

4

8

(a) Initial configuration, k = 1

-8 -4 0 4 8

-8

-4

0

4

8

(b) k = 10

-8 -4 0 4

-8

-4

0

4

8

(c) BC fails, k = 11

-12 -8 -4 0 4 8 12

-12

-8

-4

0

4

8

(d) Final configuration, k = 32

Fig. 3: Simulation of the MAS with 7 robots. The DM performs system recovery after the BC produces
an unsafe command sequence. The BC’s proposed path is shown in part (c) at k = 11, where the two
dotted red lines intersect, indicating the future paths of the agents cross. We represent current positions
as red dots, future positions corresponding to the safe/unsafe command sequences as green/blue dots,
velocities as blue lines, and agent trajectories as grey curves.

each command s[i] contains the accelerations for
all agents to use at step i.

The centralized MPC controller solves the fol-
lowing optimization problem at each time step k:

argmin
a(k|k),...,a(k+T−1|k)

T−1∑
t=0

J(k + t | k)

+ λ ·
T−1∑
t=0

∥a(k + t | k)∥2 (5)

where a(k + t | k) and J(k + t | k) are the
predictions made at time step k for the values at
time step k + t of the accelerations and the cen-
tralized (global) cost function J , respectively. The
first term is the sum of the centralized cost func-
tion, evaluated for T time steps, starting at time
step k. It encodes the control objective. The sec-
ond term, scaled by a weight λ > 0, penalizes large
control inputs.

Advanced controller. The centralized cost
function Jac for the AC contains two terms:
(1) a separation term based on the inverse of
the squared distance between each pair of agents
(potential field term for collision avoidance); and
(2) a target seeking term based on the distance
between the agent and its target location.

Jac = ωs

∑
i>j

1

∥pi − pj∥2
+ ωt

∑
i

∥pi − ri∥2 (6)

where ωs, ωt ∈ R are the weights of the separation
term and target seeking terms. The separation
term promotes inter-agent spacing but does not
guarantee collision avoidance. The AC generates
a command sequence by solving the optimization
problem in Eq. 5, with J replaced by Jac. The first
command in that sequence is the AC’s command;
it is passed to the LBC.

Baseline controller. The centralized cost
function Jbc for the BC contains two terms. As in
Eq. 6, the first term is the separation term (col-
lision avoidance based on potential fields). The
second term is a divergence term which forces the
agents to move out of the circle by aligning their
velocities with rays radially pointing out of the
center of the circle.

Jbc = ωs

∑
i>j

1

∥pi − pj∥2
+ωd

∑
i

(
1− (pi − c) · vi

∥pi − c∥ ∥vi∥

)
(7)

where ωs, ωd ∈ R are the weights of the sepa-
ration term and the divergence term, and c is the
center of the circle containing the initial configura-
tion of the robots and their target locations. The
control law for the BC is Eq. 5, with J replaced
by Jbc. A zero acceleration is appended to the end
of the BC’s command sequence to help establish
collision freedom for all future time steps.

Decision module. The LBC combines accel-
erations from the AC and the BC, producing the
command sequence t = [ac(x), bc(x′), 0⃗], where x′

is the next state after executing ac(x) in state x.

Springer Nature 2021 LATEX template

10

The function dmupdate(x, s, t) accepts the proposed
command sequence t if and only if t is a perma-
nently safe command sequence. For this system,
a command sequence t is considered permanently
safe in a state x if it satisfies the following two con-
ditions. First, for all states in the state trajectory
obtained by executing t from x, the Euclidean dis-
tance between every pair of distinct agents is at
least dmin. Second, in the final state, for all pairs
of distinct agents, the rays extending from their
positions and in the directions of their velocities
do not intersect. Any pair of agents that satis-
fies the second condition will not collide in the
future, since the last command in the sequence t
has zero acceleration. The initial permanently safe
command sequence is a zero acceleration for all
agents, as the agents start at rest.

MPC Parameters. In our case study, we
use the following MPC parameters: dt = 0.3 sec,
dmin = 1.7, amax = 1.5, and vmax = 2.
The length of the prediction horizon for MPC is
Tac = Tbc = 10.

Successful Recovery After Failure. We
first consider seven robotic agents initialized on
a circle centered at the origin, with a radius
of 10. The initial state of the system is shown
in Figure 3(a). At k = 11, the BC produces an
unsafe command sequence. The state trajectory
corresponding to the unsafe sequence is shown in
blue. As shown in Figure 3(c), the final paths of
the two agents corresponding to the larger red
dots cross after simulating the current state for-
ward with the unsafe sequence. Hence, at k = 11,
the DM rejects the proposed command sequence
and shifts control to the previous safe command
sequence, which safely recovers the system. Here,
we purposefully did not return control to the AC
to demonstrate how the stored command sequence
keeps the agents safe 1.

Reverse Switching Scenario. We stress-
tested the multi-robot system by initializing 12
agents on a circle of radius 10. The path of
the agents is shown in Figure 4. There are 10
instances where the DM rejects the AC’s proposed
command sequence and instead uses the stored
command sequence. Nonetheless, all agents reach

1A video of the simulation is available at https://youtu.be/
bcVJBkGgnxA.

-8 -4 0 4 8

-8

-4

0

4

8

Fig. 4: Stress test of robotic MAS with 12 robots
reaching their targets. Trajectory segments where
stored command sequences are used are shown in
blue.

their target locations without colliding, maintain-
ing a minimum separation of 1.724 between any
pair of agents2.

Handling Uncertainty. We next investigate
the DM’s runtime overhead when there is uncer-
tainty in the robot’s state or the dynamics. The
former case arises when the sensors used to deter-
mine the positions and velocities are subject to
sensor noise. The latter case could be used to
account for modeling errors, through disturbances
on the positions and velocities at each step.

We continue to use the same MPC strat-
egy as before; thus, the controllers ignore the
uncertainty when generating proposed command
sequences. Only the logic used by the DM to
accept or reject command sequences is modified
to account for uncertainty. We examine the sce-
nario shown before in Figure 3(b). To account for
the uncertainty, we perform an online reachability
computation. To do this, we use efficient methods
for reachability for linear systems based on zono-
topes [17], which we implement in Python. Briefly,
a zonotope is a set of states represented as an affine
transformation of a unit box. The unit box is asso-
ciated with a number of generator vectors, where
each generator vector corresponds to one dimen-
sion of the box. The computational efficiency of
propagating sets over time using zonotopes relates
to the number of generators. Each agent has four

2A video of the simulation is available at https://youtu.be/
qmk31jS6B2Y.

https://youtu.be/bcVJBkGgnxA
https://youtu.be/bcVJBkGgnxA
https://youtu.be/qmk31jS6B2Y
https://youtu.be/qmk31jS6B2Y

Springer Nature 2021 LATEX template

11

state variables, two for position and two for veloc-
ity. The composed system with seven agents has
28 state variables.

In the situation shown in Figure 5(a), the
current state is assumed to have uncertainty inde-
pendently in both position and velocity with an
L2 norm of 0.1. We use a 16-sided polygon to
bound this uncertainty. In the plot, the determin-
istic simulation is given, along with black polygons
for each agent that show the states that might be
reachable at each step due to the sensor uncer-
tainty. The uncertainty in the velocity causes the
set to expand over time, since the open-loop com-
mand sequence does not attempt to compensate
for the uncertainty. The zonotope representation
of the composed system needs 112 generator vec-
tors to represent the initial states, which remains
constant at every time step.

In the situation shown in Figure 5(b), the ini-
tial state has very little error, but the dynamics
is modified to have disturbances at each step. For
each component of each agent’s position and veloc-
ity, we allow an external disturbance value to be
added in the range [−0.02, 0.02]. Since each agent
has four independent disturbances, the zonotope
representation of the composition will have 28 new
generators added at each step. After 12 steps, the
final zonotope will have a total of 364 generators.

Runtime. To measure runtime, we used a
standard laptop with a 2.70 GHz Intel Xeon E-
2176M CPU and 32 GB RAM. The method is fast.
For the case of sensor uncertainty, computing the
box bounds of the reachable set at all the steps
takes about 1.5 milliseconds. With uncertainty,
even though the number of generators grows over
time, it is not large enough to significantly affect
the runtime. The computation with disturbances
requires about 2 milliseconds to complete. We
believe such execution times are sufficiently fast
for use in the decision module.

4.2 Multi-Robot Coordination with
Command Blending

To evaluate the command blending strategy, we
consider scenarios with large numbers of agents. In
such difficult scenarios, the AC is not able to eas-
ily generate recoverable commands for all robots.

This creates an opportunity for command blend-
ing to improve performance. The code is available
online 3.

Table 1 shows the system performance for dif-
ferent numbers of agents. Our experiments show
that when the number of agents is small both
strategies perform well with high success rate and
low distance. On the other hand, when the num-
ber of agents is large, the success rate decreases
and the average distance increases. However, the
command blending strategy alleviates this perfor-
mance degradation. For all scenarios the mean
of distances is lower and the success rate is
much higher when applying the command blend-
ing strategy. In fact for more than 12 agents the
success rate is zero with the original switching
strategy. Without command blending, the final
distances of the robots from the target location
are high as the safety controller pushes the agents
out of the circle.

Figure 6 shows a simulation of the MAS with
13 robots that illustrates why command blending
performs better. The gray or red line segments
represents the trajectory of an agent. Without
command blending there are more rollbacks and
hence more red segments, while with command
blending agents use a mixture of proposed and safe
backup command sequences and as a result there
are combinations of gray and red segments.

In Fig. 6(a), the DM performed a complete
switch for all agents to the backup sequence and
redirected them to move out of the circle to avoid
collisions. At a certain point, reverse switching
can switch back to the advanced controller’s com-
mand, for a time, but then after a few steps the
system again switches to the backup command
sequence and this process repeats over and over,
similar to a livelock. We noticed this often happens
in more difficult scenarios when there are many
agents.

Fig. 6(b) shows the system with the command
blending strategy where the DM is able to pre-
vent collisions while some agents continue to make
progress toward their destinations.

3https://github.com/sanazsheikhi/
BlackBox-Simplex-Extension

https://github.com/sanazsheikhi/BlackBox-Simplex-Extension
https://github.com/sanazsheikhi/BlackBox-Simplex-Extension

Springer Nature 2021 LATEX template

12

(a) Reachable States with Sensor Error (b) Reachable States with Disturbances

Fig. 5: Zonotope reachability computes future states with uncertainty.

Table 1: Command blending performance evaluation. The Distance columns represent the average final
distance of all agents from their destinations. The Success columns indicate the percentage of agents who
either reached to their destinations or to the vicinity of their destinations (e.g. less than 1.25% of the
initial distance) by the end of the simulation. Each simulation is 200 time steps. Each experiment was
repeated 20 times to average over the the effects of the randomness in MPC; the means and standard
deviations over the 20 executions are reported.

Agents

Without Command Blending

Distance Success(%)

With Command Blending

Distance Success(%)

11 19.77± 20.83 41.67± 51.49 0.10± 0.01 100

12 22.86± 8.21 8.33± 28.87 0.12± 0.07 99.17± 3.73

13 31.78± 3.66 00.00 1.79± 6.12 93.85± 16.10

14 29.00± 4.69 00.00 2.58± 3.68 87.50± 14.82

15 25.15± 3.04 00.00 4.12± 5.49 80.00± 22.06

16 24.29± 2.47 00.00 9.96± 8.68 59.06± 19.39

4.3 Multi-Aircraft Collision
Avoidance

Our second evaluation system guarantees collision
avoidance for groups of aircraft. We use a full
six-degrees-of-freedom F-16 simulation model [18],
based on dynamics taken from an Aerospace Engi-
neering textbook [19]. Each aircraft is modeled
with 16 state variables, including positional states,

positional velocities, rotational states, rotational
velocities, an engine thrust lag term, and inte-
grator states for the low-level controllers. These
controllers actuate the system using the typical
aircraft control surfaces—the ailerons, elevators,
and rudder—as well as by setting the engine
thrust. The system evolves continuously with
piece-wise nonlinear differential equations, where
the function that computes the derivative given

Springer Nature 2021 LATEX template

13

(a) Without command blending strategy (b) With command blending strategy

Fig. 6: Simulation of the MAS with 13 robots with and without command blending. Green points are
start position. Red points are final positions at the end of 200 time steps. Gray and red segments indicate
when advanced commands and backup commands, respectively, are used.

the state is provided as Python code. In order
to match the discrete-time plant model in Defi-
nition 1, we periodically select a control strategy
with a frequency of once every two seconds. The
model further includes high-level autopilot logic
for waypoint following, which we reuse in the
advanced controller.

For the collision-avoidance baseline controller,
our controller is based on the ACAS Xu system
designed for collision avoidance in unmanned air-
craft [20]. While the original system was designed
using a partially observable Markov decision
process (POMDP), the resultant controller was
encoded in a large look-up table that used hun-
dreds of gigabytes of storage [21]. To make the
system more practical, one early approach consid-
ered a downsampling process followed by a lossy
compression using neural networks [21, 22]. We
use these downsampled neural networks as the BC
and refer to this as the original system.

The system issues horizontal turn advisories
based on the relative positions of two aircraft,
an ownship and an intruder. The system is sim-
ilar to Simplex, where the output can be either
clear-of-conflict, where any command is allowed,
or an override command that is one of weak-left,
weak-right, strong-left or strong-right. We adapt
this system to the multi-aircraft case by hav-
ing each aircraft run an instance of the system
against every other aircraft, using the closest turn
advisory as the output.

To create command sequences, the BC repeat-
edly advances the plant model and re-runs the
collision avoidance system in a closed-loop fash-
ion until the generated command sequence is
permanently safe. To check whether a generated
command sequence is permanently safe, the DM
checks that (i) each aircraft’s state stays within
the model limits (e.g., no aircraft enters a stall),
(ii) all aircraft obey the safety distance constraint
at all times, and (iii) the execution ends in a state
where the roll angle of each aircraft has been small
(less than 15 degrees) and the distances between
all pairs of aircraft has been increasing consecu-
tively for several seconds. If all aircraft continue
to fly straight and level from such a configuration,
their distance would increase and no collisions
would occur in the future.

As with the multi-robot scenario, we exam-
ine cases where the initial aircraft state x0 has
all aircraft starting evenly-spaced, facing towards
the center of a circle with a given initial diameter.
Each aircraft has an initial velocity of 807 ft/sec
and an initial altitude of 1000 ft, both of which
are maintained throughout the maneuver by the
lower-level controllers. The AC commands each
aircraft to fly towards a waypoint past the oppo-
site side of the circle, which would cause a collision
at the center. The safety property requires main-
taining horizontal separation. The near mid-air
collision cylinder (NMAC) uses a safe horizontal
separation of 500 ft [23], although we will vary this

Springer Nature 2021 LATEX template

14

in our evaluation. For the initial permanently safe
command sequence s0, we have each aircraft fly in
clockwise circles forever, which avoids collisions.

In addition to the AC being unsafe, the base-
line controller should not be fully trusted for many
reasons. The original POMDP formulation was
not proven formally correct, not to mention the
downsampling and lossy neural network compres-
sion. While some research has examined proving
open-loop properties for the neural network com-
pression [22, 24, 25], these do not imply closed-loop
collision avoidance. Further, we use a multi-
aircraft adaptation of the system, which could
also lead to problems. Although aspirationally, the
system should handle up to 30 intruders [21], in
practice most analysis has been performed on two
aircraft scenarios. Finally, the intended physical
system response to the collision-avoidance com-
mands is that weak-left and weak-right should
cause turning at 1.5 degrees per second, whereas
strong-left and strong-right turn at 3.0 degrees per
second [21]. However, turning an aircraft in the
F-16 model (as well as in the real world) is not
an instantaneous process, and requires first per-
forming a roll maneuver before the heading angle
begins to change. For these reasons, the BC in this
scenario is also an unverified component, and we
will show scenarios where it misbehaves. Nonethe-
less, we will compose the incorrect AC with the
incorrect BC to create a safe collision-avoidance
system by using BSA.

We now elaborate on four scenarios: (i) a three
aircraft case, which shows the safety of the system
despite unsafe outputs, (ii) a four aircraft case,
which shows the increased transparency of BSA,
(iii) a seven aircraft case, which shows the safety
condition can be easily customized and (iv) a 15
aircraft case, which shows safe navigation of a
complex scenario.

In all the plots in this section, we show snap-
shots at the time when the distance between the
two closest aircraft is smallest. The two red air-
craft are the closest pair, and their distance is
printed in the bottom right of each figure. The
solid line shows the historic path of each aircraft,
and the dotted line is the future trajectory.

Three Aircraft Scenario. The original col-
lision avoidance system was designed with two
aircraft in mind, an ownship and an intruder. We
adapted it to the multi-aircraft case, but this mis-
match between the system design assumptions and

usage scenario can lead to problems. In Figure 7,
we show such a scenario, where the initial circle
diameter is 90,000 ft. In Figure 7(a), the mini-
mum distance between the top two aircraft is 175
ft, violating the near mid-air collision safety dis-
tance. The other two subplots show the system
using BSA with a safety distance of 1500 ft; the
minimum separation is 1602 ft, which satisfies the
constraint.

Four Aircraft Scenario. Figure 9 shows a
four-aircraft scenario using an initial circle diame-
ter of 70,000 ft. In this case, both designs have safe
executions. Using the original system leads to a
minimum separation of 5342 ft, whereas the min-
imum separation with Black-Box Simplex is 1600
ft, much closer to the 1500 ft safety-distance con-
straint used in the DM. Although both systems
are safe, from the plots it is clear that the Black-
Box Simplex version is more transparent, in the
sense that it produces smaller modifications to the
direct-line trajectories commanded by the AC.

Seven Aircraft Scenario. We investigated
a seven aircraft scenario with an initial circle
diameter of 70,000 ft. Here, the original system
violates the horizontal separation constraint, and
the minimum separation distance is 277 ft. We run
Black-Box Simplex on this system using three dif-
ferent safety distances, 1500 ft, 1000 ft, and 500
ft. All avoid collisions, and as the safety distance
is decreased, the observed minimum distance also
decreases. This shows that Black-Box Simplex can
be easily customized to a change in the safety
requirement. Doing this for the original system
would require significant effort in recomputing the
POMDPs and retraining the neural networks to
perform a compression of the action tables. Plots
of the seven aircraft trajectories are provided in
Figure 8. Video of the 1000 ft case is available
online 4.

Fifteen Aircraft Scenario. Finally, we
demonstrate the system’s ability to safely nav-
igate complex scenarios. For this, we use a 15
aircraft scenario, with an initial circle diameter of
90,000 ft. With 15 aircraft, the composed system
has 240 real-valued state variables, each of which
evolves according to piece-wise nonlinear differen-
tial equations. The plot for this system was shown
in the introduction in Figure 2. While the original

4https://youtu.be/6ZXjk8k-Xqs

https://youtu.be/6ZXjk8k-Xqs

Springer Nature 2021 LATEX template

15

(a) Original System (b) Black-Box Simplex (c) Black-Box Simplex (Zoomed In)

Fig. 7: Black-Box Simplex is safe. In the three-aircraft case, the original system fails, whereas BSA
maintains the 1500 ft separation.

(a) Original System (failure) (b) Black-Box Simplex with Safety Distance 1500 ft

(c) Black-Box Simplex with Safety Distance 1000 ft (d) Black-Box Simplex with Safety Distance 500 ft

Fig. 8: Black-Box Simplex is easily customizable. In the seven aircraft case, adjusting the safety distance
in the decision module results in different system behaviors. In each case, the advanced controller com-
mand is overridden only enough to guarantee the corresponding safety constraint.

system is unsafe, Black-Box Simplex has a mini-
mum separation of 1500.5 ft, just above the 1500 ft
safety constraint used in the DM. Another surpris-
ing observation is that in some of the cases, such
as this 15-aircraft case and the seven-aircraft case,

the aircraft perform something similar to a round-
about maneuver. This is an emergent behavior,

Springer Nature 2021 LATEX template

16

not something explicitly hardcoded or anticipated.
A video of this case is also available online5.

Runtime. The existing implementation uses
numerical integration for the dynamics with an
adaptive-step explicit Runge-Kutta scheme of
order 5(4) from Python’s scipy package. On our
laptop platform with default accuracy parameters,
this runs at about 55 times faster than real-time
per aircraft.

5 Related Work

Reachability-based verification methods for black-
box systems for waypoint following with uncer-
tainty have been recently investigated in the
ReachFlow framework [9]. ReachFlow builds upon
the Flow* reachability tool [26], which is unlikely
to scale to systems like the 240-variable 15-aircraft
scenario.

A framework for safe trajectory planning using
MILP for piecewise-linear vehicle models is pre-
sented in [27, 28]. The method relies on the
ability of an MPC controller to produce command
sequences where the terminal state in the predic-
tion horizon is constrained to lie within a safe
invariant set. This provides a safe back-up com-
mand sequence for the next step in case the system
fails to find a safe sequence. The scope of this
work is limited to MPC, and it is not clear how to
extend it to other types of controllers. Moreover,
the conditions for switching back from the stored
return trajectory are not formalized.

In the Contingency Model Predictive Control
framework [29], an MPC controller maintains a
contingency plan in addition to the nominal or
desired plan to ensure safety during an identified
potential emergency. Like BSA, the initial com-
mand is common to both plans. In this framework,
both plans must be generated using their cus-
tom version of MPC, whereas Black-Box Simplex
works with independent baseline and advanced
controllers of any design.

Similar frameworks have been considered for
autonomous vehicles, using fail-safe backup plans
and reachability analysis [30]. In this case, the tar-
get was planning for autonomous vehicles where
most likely trajectories are used for other vehi-
cles but safety can still be provided if emer-
gency maneuvers are performed instead. Other

5https://youtu.be/Bhn0uqKCj7Q

ideas such as Safety Net Control [31] extend the
approach to use backreachability and underap-
proximations of nonlinear reachable sets while
taking computation time into account.

Designing safe switching logic for a given
baseline controller is related to the concept of
computing viability kernels [32] (closed controlled-
invariant subsets) in control theory. This often
requires set operations which can be inefficient
in high-dimensional spaces with nonlinear dynam-
ics, although there has been some progress on
this [33, 34].

Simplex designs have also been considered
that use a combination of offline analysis with
online reachability [10]. Again, though, reachabil-
ity computation is currently intractable for large
nonlinear systems, and requires symbolic differ-
ential equations. Other work has used Simplex
to provide safety guarantees for neural network
controllers with online retraining [35]. In these
approaches, the baseline controller must be veri-
fied ahead of time.

Online simulation-based methods have also
been investigated to secure power grids from
insider attacks [36]. As with this work, fast online
simulation is critical, although the goal there is
system security not safe high-level control design.

The design of the MPC controllers for our
multi-robot case study is similar to Control Bar-
rier Function (CBF) methods [37, 38] and Implicit
Active Set Invariance Filtering [39]. There, a run-
time assurance system was used to provide min-
imally perturbed advanced controller commands,
computed using a constrained-optimization prob-
lem. However, the optimization problem might
become infeasible or global nonlinear optimiza-
tion could perform poorly at one of the steps at
runtime, causing this method to be unsafe. With
Black-Box Simplex, failure of the baseline con-
troller does not compromise safety. Also, in gen-
eral CBFs are not easy to construct. More recently
sum-of-squares programming [40] and data-driven
techniques [41] have been used for the synthesis
of CBFs. Other methods of synthesizing CBFs are
surveyed in [42].

Distributed simplex architecture [43] is run-
time assurance technique for multi-agent systems
where each agent has two controllers and the abil-
ity to independently shift the control between
them. The AC is mission critical and the BC
is safety critical. The design of the BC and the

https://youtu.be/Bhn0uqKCj7Q

Springer Nature 2021 LATEX template

17

(a) Original System (b) Black-Box Simplex

Fig. 9: Black-Box Simplex is more transparent. For the four aircraft case, the original system is signifi-
cantly more intrusive than Black-Box Simplex, which overrides commands just enough to guarantee the
1500 ft separation requirement.

decision module’s logic relies on the existence
of a CBF. In contrast, our method is generally
applicable and does not rely on CBFs.

A decentralized shield-based technique for run-
time verification of multi-agent systems is pre-
sented in [44]. In this approach, every agent has a
shield consisting of two components: a pathfinder
that corrects the agent’s behavior and an ordering
approach that dynamically modifies the agent’s
priority. In contrast to BSA, the work assumes
that the agents know the intended behavior of
other agents.

RV4JaCa [45] is proposed to integrate runtime
verification in the multi-agent System domain.
It brings a layer of security to the multi-agent
system, capable of controlling events during the
execution of the system without needing a specific
implementation in the behavior of each agent to
recognize the events by monitoring Agent Interac-
tion Protocols.

Runtime assurance is close to the runtime
enforcement. A fundamental work [46], proposes a
security automaton that interposes itself between
the program and the host machine and examines
the sequence of security-relevant program actions
one at a time. If the automaton recognizes an
action that will violate its policy, it terminates
the program. In an extension of this work, an
automata with more powerful transformational
abilities, including the ability to insert a sequence
of actions into the event stream and to suppress
actions in the event stream without terminating

the program [47] is proposed. In another exten-
sion [48], a generic notion of enforcement monitors
based on a memory device, finite sets of control
states, and enforcement operations are introduced.
Also, a systematic technique to produce a moni-
tor from the automaton recognizing a given safety,
guarantee, obligation, or response property is pro-
posed [49]. In all these works, the monitor is
usually modeled as an automaton (finite state
machine), which dictates its behavior according to
the input action and current state. Care must be
taken to ensure that this finite state machine cor-
rectly enforces the policy and complies with the
limitations imposed on the monitor’s capabilities.

A technique based on a new model of
enforcement monitors, allowing the comparison
between multiple alternative corrective enforce-
ment actions and the selection of the optimal
one concerning an objective user-defined grada-
tion separate from the security policy is proposed
[50].

6 Conclusions

We have presented the Black-Box Simplex Archi-
tecture, a methodology for constructing safe CPS
from unverified black-box high-level controllers.
Unlike the classical Simplex design, the baseline
controller does not need to be statically verified
and can even be incorrect. The tradeoff is that the
decision module performs more extensive runtime
checking and stores backup command sequences

Springer Nature 2021 LATEX template

18

produced by the black-box baseline controller at
previous time steps. The complexity of runtime
checking depends on the nature of the system
model. For deterministic models, simulation suf-
fices. However, if the model has uncertainty then
we need to perform online reachability analysis. In
the case of multi-agent systems, we further showed
how to use command blending to safely reduce
how often backup command sequences need to be
used.

BSA reduces the difficult problem of prov-
ing high-level safety to a simpler problem of
performance optimization: ensuring that the run-
time checking completes before a decision is
needed. The practicality of the approach was
demonstrated through two significant case stud-
ies, including a mid-air collision avoidance system
for groups of F-16 aircraft created from imper-
fect logic encoded in neural networks. This case
study involves a highly complex nonlinear sys-
tem with over a hundred dimensional variables
and a neural-network-based controller. Black-Box
Simplex provides a feasible path for runtime veri-
fication of systems that are otherwise unverifiable
in practice.

Acknowledgement. This material is based upon
work supported by National Science Foundation
(NSF) under grant numbers ITE-2134840, OIA-
2040599, CCF-1918225, CCF-1954837 and CPS-
1446832, the Office of Naval Research (ONR)
under grants N000142112719 and N000142212156,
and the Air Force Office of Scientific Research
(AFOSR) under award numbers FA9550-19-1-
0288, FA9550-21-1-0121, FA9550-22-1-0450. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the
author(s) and do not necessarily reflect the views
of the NSF, United States Air Force or the United
States Navy.

Statements and Declarations

The authors have no competing interests to
declare that are relevant to the content of this
article.

References

[1] Clark, M., Koutsoukos, X., Porter, J.,
Kumar, R., Pappas, G., Sokolsky, O., Lee,

I., Pike, L.: A study on run time assurance
for complex cyber physical systems. Techni-
cal report, Air Force Research Laboratory,
Aerospace Systems Directorate (2013)

[2] Seto, D., Krogh, B., Sha, L., Chutinan, A.:
The simplex architecture for safe online con-
trol system upgrades. In: Proceedings of the
1998 American Control Conference. ACC
(IEEE Cat. No. 98CH36207), vol. 6 (1998).
IEEE

[3] Sha, L.: Using simplicity to control com-
plexity. IEEE Software 18(4), 20–28 (2001).
https://doi.org/10.1109/MS.2001.936213

[4] Desai, A., Ghosh, S., Seshia, S.A., Shankar,
N., Tiwari, A.: SOTER: A runtime assurance
framework for programming safe robotics
systems. In: 49th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems
and Networks, DSN 2019, Portland, OR,
USA, June 24-27, 2019 (2019)

[5] Phan, D., Yang, J., Grosu, R., Smolka,
S.A., Stoller, S.D.: Collision avoidance for
mobile robots with limited sensing and lim-
ited information about moving obstacles. For-
mal Methods in System Design 51(1), 62–86
(2017)

[6] Schierman, J., DeVore, M.D., Richards, N.,
Gandhi, N., Cooper, J., Horneman, K.R.,
Stoller, S., Smolka, S.: Runtime assurance
framework development for highly adaptive
flight control systems. Report AD1010277,
Defense Technical Information Center (2015)

[7] Mehmood, U., Bak, S., Smolka, S.A.,
Stoller, S.D.: Safe cps from unsafe con-
trollers. In: Proceedings of the Workshop on
Computation-Aware Algorithmic Design for
Cyber-Physical Systems, pp. 26–28 (2021)

[8] Mehmood, U., Sheikhi, S., Bak, S., Smolka,
S., Stoller, S.: The black-box simplex archi-
tecture for runtime assurance of autonomous
cps. In: NASA Formal Methods Symposium
(2022)

[9] Lin, Q., Chen, X., Khurana, A., Dolan, J.:

https://doi.org/10.1109/MS.2001.936213

Springer Nature 2021 LATEX template

19

Reachflow: An online safety assurance frame-
work for waypoint-following of self-driving
cars. In: 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems
(IROS) (2020)

[10] Bak, S., Johnson, T.T., Caccamo, M., Sha,
L.: Real-time reachability for verified simplex
design. In: 35th IEEE Real-Time Systems
Symposium (RTSS 2014). IEEE Computer
Society, Rome, Italy (2014)

[11] Althoff, M., Dolan, J.M.: Online verification
of automated road vehicles using reachabil-
ity analysis. IEEE Transactions on Robotics
30(4) (2014)

[12] Phan, D., Grosu, R., Jansen, N., Paoletti,
N., Smolka, S.A., Stoller, S.D.: Neural sim-
plex architecture. In: NASA Formal Methods
Symposium (NFM 2020) (2020)

[13] Bak, S., Chivukula, D.K., Adekunle, O., Sun,
M., Caccamo, M., Sha, L.: The system-level
simplex architecture for improved real-time
embedded system safety. In: 2009 15th IEEE
Real-Time and Embedded Technology and
Applications Symposium, pp. 99–107 (2009).
IEEE

[14] Kapinski, J., Deshmukh, J.: Discovering for-
ward invariant sets for nonlinear dynami-
cal systems. In: Interdisciplinary Topics in
Applied Mathematics, Modeling and Compu-
tational Science, pp. 259–264 (2015)

[15] Murray, R.M., Li, Z., Sastry, S.S., Sas-
try, S.S.: A Mathematical Introduction to
Robotic Manipulation, (1994)

[16] Khatib, O.: Real-time obstacle avoidance
for manipulators and mobile robots. In:
Autonomous Robot Vehicles, pp. 396–404
(1986)

[17] Girard, A.: Reachability of uncertain linear
systems using zonotopes. In: International
Workshop on Hybrid Systems: Computation
and Control (2005). Springer

[18] Heidlauf, P., Collins, A., Bolender, M., Bak,
S.: Verification challenges in f-16 ground

collision avoidance and other automated
maneuvers. In: 5th International Workshop
on Applied Verification of Continuous and
Hybrid Systems. EPiC Series in Computing,
vol. 54 (2018)

[19] Stevens, B.L., Lewis, F.L., Johnson, E.N.:
Aircraft Control and Simulation, (2015)

[20] Kochenderfer, M.J., Chryssanthacopou-
los, J.: Robust airborne collision avoidance
through dynamic programming. Mas-
sachusetts Institute of Technology, Lincoln
Laboratory, Project Report ATC-371 130
(2011)

[21] Julian, K.D., Kochenderfer, M.J., Owen,
M.P.: Deep neural network compression for
aircraft collision avoidance systems. Journal
of Guidance, Control, and Dynamics 42(3),
598–608 (2019)

[22] Katz, G., Barrett, C., Dill, D.L., Julian, K.,
Kochenderfer, M.J.: Reluplex: An efficient
SMT solver for verifying deep neural net-
works. In: International Conference on Com-
puter Aided Verification, pp. 97–117 (2017).
Springer

[23] Marston, M., Baca, G.: ACAS-Xu initial
self-separation flight tests. Technical report,
NASA (2015)

[24] Bak, S., Liu, C., Johnson, T.: The second
international verification of neural networks
competition (vnn-comp 2021): Summary
and results. arXiv preprint arXiv:2109.00498
(2021)

[25] Bak, S., Tran, H.-D., Hobbs, K., Johnson,
T.T.: Improved geometric path enumeration
for verifying relu neural networks. In: Pro-
ceedings of the 32nd International Conference
on Computer Aided Verification (2020)

[26] Chen, X., Ábrahám, E., Sankaranarayanan,
S.: Flow*: An analyzer for non-linear hybrid
systems. In: International Conference on
Computer Aided Verification, pp. 258–263
(2013). Springer

[27] Schouwenaars, T., Valenti, M., Feron, E.,

Springer Nature 2021 LATEX template

20

How, J.: Implementation and flight test
results of MILP-based UAV guidance. 2005
IEEE Aerospace Conference, 1–13 (2005)

[28] Schouwenaars, T.: Safe trajectory planning
of autonomous vehicles. PhD thesis, Mas-
sachusetts Institute of Technology (2006)

[29] Alsterda, J.P., Brown, M., Gerdes, J.C.:
Contingency model predictive control for
automated vehicles. In: 2019 American
Control Conference (ACC), pp. 717–722
(2019). https://doi.org/10.23919/ACC.2019.
8815260

[30] Magdici, S., Althoff, M.: Fail-safe motion
planning of autonomous vehicles. In: 2016
IEEE 19th International Conference on Intel-
ligent Transportation Systems (ITSC), pp.
452–458 (2016). IEEE

[31] Schurmann, B., Klischat, M., Kochdumper,
N., Althoff, M.: Formal safety net control
using backward reachability analysis. IEEE
Transactions on Automatic Control (2021)

[32] Saint-Pierre, P.: Approximation of the via-
bility kernel. Applied Mathematics and Opti-
mization 29(2), 187–209 (1994)

[33] Kaynama, S., Maidens, J., Oishi, M.,
Mitchell, I.M., Dumont, G.A.: Computing
the viability kernel using maximal reach-
able sets. In: Proceedings of the 15th ACM
International Conference on Hybrid Systems:
Computation and Control, pp. 55–64 (2012)

[34] Maidens, J.N., Kaynama, S., Mitchell, I.M.,
Oishi, M.M., Dumont, G.A.: Lagrangian
methods for approximating the viability ker-
nel in high-dimensional systems. Automatica
49(7), 2017–2029 (2013)

[35] Phan, D., Grosu, R., Jansen, N., Paoletti,
N., Smolka, S.A., Stoller, S.D.: Neural sim-
plex architecture. In: NASA Formal Methods
Symposium (NFM 2020), pp. 97–114 (2020).
Springer

[36] Mashima, D., Chen, B., Zhou, T., Rajen-
dran, R., Sikdar, B.: Securing substations

through command authentication using on-
the-fly simulation of power system dynam-
ics. In: IEEE International Conference on
Communications, Control, and Computing
Technologies for Smart Grids (2018)

[37] Borrmann, U., Wang, L., Ames, A.D., Egerst-
edt, M.: Control barrier certificates for safe
swarm behavior. In: Egerstedt, M., Wardi, Y.
(eds.) ADHS. IFAC-PapersOnLine, vol. 48,
pp. 68–73 (2015)

[38] Gurriet, T., Mote, M., Ames, A.D., Feron,
E.: An online approach to active set invari-
ance. In: Conference on Decision and Control
(2018). IEEE

[39] Gurriet, T., Mote, M., Singletary, A., Feron,
E., Ames, A.D.: A scalable controlled set
invariance framework with practical safety
guarantees. In: 2019 IEEE 58th Conference
on Decision and Control (CDC), pp. 2046–
2053 (2019). IEEE

[40] Wang, L., Han, D., Egerstedt, M.: Permissive
barrier certificates for safe stabilization using
sum-of-squares. In: 2018 Annual American
Control Conference, ACC 2018, pp. 585–590.
IEEE, ??? (2018)

[41] Zhao, H., Zeng, X., Chen, T., Liu, Z.:
Synthesizing barrier certificates using neu-
ral networks. In: Proceedings of the 23rd
International Conference on Hybrid Systems:
Computation and Control. HSCC ’20. Asso-
ciation for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/
3365365.3382222

[42] Ames, A.D., Coogan, S., Egerstedt, M.,
Notomista, G., Sreenath, K., Tabuada, P.:
Control barrier functions: Theory and appli-
cations. In: 18th European Control Confer-
ence, ECC 2019, Naples, Italy, pp. 3420–3431.
IEEE, ??? (2019)

[43] Mehmood, U., Roy, S., Damare, A., Grosu,
R., Smolka, S.A., Stoller, S.D.: A dis-
tributed simplex architecture for multi-agent
systems. Journal of Systems Architecture
134, 102784 (2023). https://doi.org/10.1016/
j.sysarc.2022.102784

https://doi.org/10.23919/ACC.2019.8815260
https://doi.org/10.23919/ACC.2019.8815260
https://doi.org/10.1145/3365365.3382222
https://doi.org/10.1145/3365365.3382222
https://doi.org/10.1016/j.sysarc.2022.102784
https://doi.org/10.1016/j.sysarc.2022.102784

Springer Nature 2021 LATEX template

21

[44] Raju, D., Bharadwaj, S., Djeumou, F.,
Topcu, U.: Online synthesis for runtime
enforcement of safety in multiagent systems.
IEEE Transactions on Control of Network
Systems 8(2), 621–632 (2021). https://doi.
org/10.1109/TCNS.2021.3061900

[45] Engelmann, D.C., Ferrando, A., Panisson,
A.R., Ancona, D., Bordini, R.H., Mascardi,
V.: RV4jaca – runtime verification for multi-
agent systems. Electronic Proceedings in
Theoretical Computer Science 362, 23–36
(2022). https://doi.org/10.4204/eptcs.362.5

[46] Schneider, F.B.: Enforceable security policies
3(1), 30–50 (2000). https://doi.org/10.1145/
353323.353382

[47] Bauer, L., Ligatti, J., Walker, D.: More
enforceable security policies (2002)

[48] Falcone, Y., Mounier, L., Fernandez, J.-C.,
Richier, J.-L.: Runtime enforcement mon-
itors: composition, synthesis, and enforce-
ment abilities. Formal Methods in System
Design 38 (2011). https://doi.org/10.1007/
s10703-011-0114-4

[49] Pinisetty, S., Preoteasa, V., Tri-
pakis, S., Jéron, T., Falcone, Y.,
Marchand, H.: Predictive runtime
enforcement, pp. 1628–1633 (2016).
https://doi.org/10.1145/2851613.2851827

[50] Rania Taleb, R.K. Sylvain Hallé: A modu-
lar runtime enforcement model using multi-
traces. Foundations and Practice of Security
Lecture Notes in Computer Science, 283–302
(2022)

https://doi.org/10.1109/TCNS.2021.3061900
https://doi.org/10.1109/TCNS.2021.3061900
https://doi.org/10.4204/eptcs.362.5
https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/353323.353382
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1145/2851613.2851827

	Introduction
	Black-Box Simplex
	Formal Definition of Black-Box Simplex
	Safety and Transparency Theorems

	Commands Blending for Multi-Agent Systems
	Case Studies
	Multi-Robot Coordination
	Multi-Robot Coordination with Command Blending
	Multi-Aircraft Collision Avoidance

	Related Work
	Conclusions

