Neural State Classification for Hybrid Systems*

Dung Phan', Nicola Paoletti!, Timothy Zhang!, Radu Grosu?,
Scott A. Smolka!, and Scott D. Stoller!

1
2

Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
Department of Computer Engineering, Technische Universitat Wien, Vienna, Austria

Abstract. We introduce the State Classification Problem (SCP) for hybrid sys-
tems, and present Neural State Classification (NSC) as an efficient solution tech-
nique. SCP generalizes the model checking problem as it entails classifying each
state s of a hybrid automaton as either positive or negative, depending on whether
or not s satisfies a given time-bounded reachability specification. This is an in-
teresting problem in its own right, which NSC solves using machine-learning
techniques, Deep Neural Networks in particular. State classifiers produced by
NSC tend to be very efficient (run in constant time and space), but may be sub-
ject to classification errors. To quantify and mitigate such errors, our approach
comprises: 1) techniques for certifying, with statistical guarantees, that an NSC
classifier meets given accuracy levels; ii) tuning techniques, including a novel
technique based on adversarial sampling, that can virtually eliminate false neg-
atives (positive states classified as negative), thereby making the classifier more
conservative. We have applied NSC to six nonlinear hybrid system benchmarks,
achieving an accuracy of 99.25% to 99.98%, and a false-negative rate of 0.0033
to 0, which we further reduced to 0.0015 to O after tuning the classifier. We be-
lieve that this level of accuracy is acceptable in many practical applications, and
that these results demonstrate the promise of the NSC approach.

1 Introduction

Model checking of hybrid systems is usually expressed in terms of the following reach-
ability problem for hybrid automata (HA): given an HA M, a set of initial states I,
and a set of unsafe states U, determine whether there exists a trajectory of M start-
ing in an initial state and ending in an unsafe state. The time-bounded version of this
problem considers trajectories that are within a given time bound 7. It has been shown
that reachability problems and time-bounded reachability problems for HA are unde-
cidable [16], except for some fairly restrictive classes of HA [7U16]. HA model checkers
cope with this undecidability by providing approximate answers to reachability [13].
This paper introduces the State Classification Problem (SCP), a generalization of
the model checking problem for hybrid systems. Let B = {0, 1} be the set of Boolean
values. Given an HA M with state space .S, time bound 7', and set of unsafe states
U C S, the SCP problem is to find a function F* : S — B such that for all s € S,
F*(s) = 1if it is possible for M, starting in s, to reach a state in U within time 7';

* This material is based on work supported in part by AFOSR Grant FA9550-14-1-0261, NSF
Grants CPS-1446832, I1S-1447549, CNS-1445770, CNS-1421893, and CCF-1414078, FWF-
NFEN RiSE Award, and ONR Grant N0O0014-15-1-2208.

F*(s) = 0 otherwise. A state s € S is called positive if F*(s) = 1. Otherwise, s is
negative. We call such a function a state classifier.

SCP generalizes the model checking problem. Model checking, in the context of
SCP, is simply the problem of determining whether there exists a positive state in the
set of initial states. Its intent is not to classify all states in S.

Classifying the states of a complex system is an interesting problem in its own right.
State classification is also useful in at least two other contexts. First, due to random
disturbances, a hybrid system may restart in a random state outside the initial region,
and we may wish to check the system’s safety from that state. Secondly, a classifier can
be used for online model checking [27], where in the process of monitoring a system’s
behavior, one would like to determine, in real-time, the fate of the system going forward
from the current (non-initial) state.

This paper shows how deep neural networks (DNNs) can be used for state classifi-
cation, an approach we refer to as Neural State Classification (NSC). An NSC classifier
is subject to false positives (FPs) — a state s is deemed positive when it is actually neg-
ative, and, more importantly, false negatives (FNs) — s is deemed negative when it is
actually positive.

A well-trained NSC classifier offers high accuracy, runs in constant time (approxi-
mately 1 millisecond, in our experiments), and takes constant space (e.g., a DNN with
[hidden layers and n neurons only requires functions of dimension [- n for its encod-
ing). This makes NSC classifiers very appealing for applications such as online model
checking, a type of analysis subject to strict time and space constraints. NSC classifiers
can also be used in runtime verification applications where a low probability of FNs is
acceptable, e.g., performance-related system monitoring.

Our approach can also classify states of parametric HA by simply encoding each
parameter as an additional input to the classifier. This makes NSC more powerful than
state-of-the-art hybrid system reachability tools that have little or no support for para-
metric analysis [12l13]]. In particular, we can train a classifier that classifies states of
any instance of the parameterized HA, even instances with parameter values not seen
during training.

NSC-based classification can be lifted from states to (convex) sets of states by
applying output-range estimation [30]. Such techniques can be used to compute safe
bounds for the given state region.

M(p) l(U, T)

Sampling | _.l Performance I | Statistical I
(s,p) Oracle Test Data evaluation guarantees
Training . . Threshold
Data Classifier(M (p),U,T) (— | Adaptation selection

Fig. 1: Overview of the NSC approach.

The NSC method is summarized in Fig. [} We train the state classifier using su-
pervised learning, where the training examples are derived by sampling the state and

parameter spaces according to some distribution. Reachability values for the examples
are computed by invoking an oracle, i.e., an hybrid system model checker [13] or a
simulator when the system is deterministic.

We consider three sampling strategies: uniform, where every state is equi-probable,
balanced, which seeks to improve accuracy by drawing a balanced number of posi-
tive and negative states, and dynamics-aware, which assigns to each state the estimated
probability that the state is visited in any time-bounded evolution of the system. The
choice of sampling strategy depends on the intended application of NSC. For example,
in the case of online model checking, dynamics-aware sampling may be the most ap-
propriate. For balanced sampling, we introduce a method to generate arbitrarily large
sets of positive samples based on constructing and simulating reverse HAs.

NSC is not limited to DNN-based classifiers. We demonstrate that other machine-
learning models for classification, such as support vector machines (SVMs) and binary
decision trees (BDTs), also provide powerful solution techniques.

Given the impossibility of training machine-learning models with guaranteed accu-
racy w.r.t. the true input distribution, we evaluate a trained state classifier by estimating
its accuracy, false-positive rate, and false-negative rate (together with their confidence
intervals) on a test dataset of fresh samples. This allows us to quantify how well the
classifier extrapolates to unseen states, i.e., the probability that it correctly predicts
reachability for any state.

Inspired by statistical model checking [24], we also provide statistical guarantees
through sequential hypothesis testing to certify (up to some confidence level) that the
classifier meets prescribed accuracy levels on unseen data. Note that the systems we
consider are nonprobabilistic. The statistical guarantees we provide are for the proba-
bility that the classifier makes the correct prediction. In contrast, the aim of probabilistic
model checking [22] and statistical model checking [24]] is to compute the probability
that a probabilistic system satisfies a given correctness property. Relatedly, the focus of
neural network (NN) verification [[L8111121] is on proving properties of an NN’s output
rather than the NN’s accuracy.

We also consider two tuning methods that can reduce and virtually eliminate false
negatives: a new method called falsification-guided adaptation that iteratively re-trains
the classifier with false negatives found through adversarial sampling; and threshold
selection, which adjusts the NN’s classification threshold to favor FPs over FNs.

Our experimental results demonstrate the feasibility and promise of our approach,
evaluated on six nonlinear hybrid system benchmarks. We consider shallow (1 hidden
layer) and deep (3 hidden layers) NNs with sigmoid and ReLU activation functions. Our
techniques achieve a prediction accuracy of 99.25% to 99.98% and a false-negative rate
of 0.0033 to 0, taking into account the best classifier for each of the six models, with
DNNs yielding superior accuracy than shallow NNs, SVMs, and BDTs. We believe that
such a range for the FN rate is acceptable in many practical applications, and we show
how this can be further improved through tuning of the classifiers.

In summary, our main contributions are the following:

— We introduce the State Classification Problem for hybrid systems.

We develop the Neural State Classification method for solving the SCP, including
techniques for sampling, establishing statistical guarantees on a classifier’s accu-
racy, and reducing its FN rate.

We introduce a new technique for constructing the reverse HA of a given HA, for a
general class of HAs, and use reverse HAs to generate balanced training datasets.
We introduce a falsification-guided adaptation algorithm for eliminating FNs, thereby
producing conservative state classifiers.

We provide an extensive evaluation on six nonlinear hybrid system models.

2 Problem Formulation

We introduce the problem of learning a state classifier for a hybrid automaton and a
bounded reachability property. First, we define these terms.

Definition 1 (Hybrid automaton). A hybrid automaton (HA) is a tuple M = (Loc,
Var, Init, Flow, Trans, Inv), where Loc is a finite set of discrete locations (or modes);
Var = {x1,...,2,} is a set of continuous variables, evaluated over a continuous
domain X C R"; Init C S(M) is the set of initial states, where S(M) = Loc x
X is the state space of M; Flow : Loc — (X — X) is the flow function, defining
the continuous dynamics at each location; Trans is the transition relation, consisting
of tuples of the form (1, g,v,l'), where l,I' € Loc are source and target locations,
respectively, g C X is the guard, and v : X — X is the reset; Inv : Loc — 2% is the
invariant at each location.

We also consider parameterized HA in which the flow, guard, reset and invariant may
have parameters whose values are constant throughout an execution. We treat parame-
ters as continuous variables with flow equal to zero and identity reset map.

The behavior of an HA M can be described in terms of its trajectories. A trajectory
may start from any state; it does not need to start from an initial state. For time bound
T € R=91et T = [0,7] € R=° be the time domain.

Definition 2 (Trajectory [3]). For HA M = (Loc, Var, Init, Flow, Trans, Inv), time
domainT = [0,T), let p : T — S(M) be a function mapping time instants into states of
M. Fort €T, let p(t) = (I(t),x(t)) be the state at time t, with [(t) being the location
and x(t) the vector of continuous variables. Let (§;);_q ;. € T*+1 be the ordered
sequence of time points where mode jumps happen, i.e., such that £y = 0, &, =T, and
foralli =0,....k —Landforallt € [&,&+1), L(t) = 1(&). Then, p is a trajectory
of M if it is consistent with the invariants: ¥t € T. x(t) € Inv(l(t)); flows: ¥Vt €
T. x(t) = Flow(l(t))(x(t)); and transition relation: ¥i < k. 3(1(&),9,v,1(&+1)) €
Trans. x(€:1,) € g Ax(Er1) = v(x(Ex3,).

Definition 3 (Time-bounded reachability). Given an HA M, set of states U C S(M),
state s € S(M), and time bound T, decide whether there exists a trajectory p of M
starting from s and t € [0, T] such that p(t) € U, denoted M |= Reach(U, s, T).

Definition 4 (Positive and negative states). Given an HA M, set of states U C S(M),
called unsafe states, and time bound T, a state s € S(M) is called positive if M |=
Reach(U, s, T), i.e., an unsafe state is reachable from s within time T. Otherwise, s is
called negative.

We will use the term positive (negative) region for M’s set of positive (negative) states.

Definition 5 (State classification problem). Given an HA M, set of states U C S(M),
and time bound T, find a function F* : S(M) — B such that F*(s) = M E
Reach(U, s, T) for all s € S(M).

It is easy to see that the model checking problem for hybrid systems can be expressed as
an SCP in which the domain of F'* is the set of initial states Init, instead of the whole
state space. SCP is therefore a generalization of the model checking problem.

Sample sets are used by NSC to learn state classifiers and to evaluate their perfor-
mance. Unsafe states are trivially positive (for any 7'), so we exclude them from the
sampling domain. Each sample consists of a state s and Boolean b which is the answer
to the reachability problem starting from state s. We call (s, 1) a positive sample and
(s,0) a negative sample. Both kinds of samples are generally needed for adequately
learning a classifier.

Definition 6 (Sample set). For model M, set of states U C S(M), and time bound T,
a sample set is any finite set {(s,b) € (S(M)\U) x B | b = (M |= Reach(U, s,T))}

The derivation of an NSC classifier reduces to a supervised learning problem, specif-
ically, a binary classification problem. Given a sample set D called the training set, NSC
approximates the exact state classifier F'* in Definition [5| by learning a total function
F:(S(M)\U)— B from D.

Learning F' typically corresponds to finding values of F’s parameters that minimize
some measure of discrepancy between F' and the training set D. We do not require that
the learned function agree with the D on every state that appears in D, because this can
lead to over-fitting to D and hence poor generalization to other states.

To evaluate the performance of F', we use three standard metrics: accuracy Ph, i.e,
the probability that F" produces the correct prediction; the probability of false positives,
Prp; and the probability of false negatives, Pry. In safety-critical applications, achiev-
ing a low FN rate is typically more important than achieving a low FP rate. Precisely
computing these probabilities is, in general, infeasible. We therefore compute an em-
pirical accuracy measure, false-positive rate, and false-negative rate over a test set D’
containing n fresh samples not appearing in the training set as follows:

1

. 1 N - 1
Pa= — Z Lr(s=e , Prp = — Z Lr(sn- Pov = — Z Lopene (D
(s,b)eD’ (s,b)eD’ (s,b)eD’

where 1 is the indicator function. We obtain statistically sound bounds for these proba-
bilities through the Clopper-Pearson method for deriving precise confidence intervals.

3 Neural State Classification

This section introduces the main components of the NSC approach.

3.1 Neural Networks for Classification

NSC uses feedforward neural networks, a type of neural network with one-way con-
nections from input to output layers [23]]. NSC uses both shallow NNs, with one hidden
layer and one output layer, and deep NN, with multiple hidden layers. Additional back-
ground on NN is provided in an extended version of this paper [26].

An NN defines a real-valued function F'(x). When using an NN for classification,
a classification threshold 6 is specified, and an input vector x is classified as positive if
F(x) > 0, and as negative otherwise.

The theoretical justification for using NN to solve the SCP is the following. In [[17],
it is shown that shallow feedforward NNs are universal approximators; i.e., with appro-
priate parameters, they can approximate any Borel-measurable function arbitrarily well
with a finite number of neurons (and just one hidden layer). Under mild assumptions,
this also applies to the true state classifier F* of the SCP (Definition[5). A proof of this
claim is given in [26]] . Arbitrarily high precision might not be achievable in practice, as
it would require significantly large training sets and numbers of neurons, and a precise
learning algorithm. Nevertheless, NNs are extremely powerful.

3.2 Oracles

Given a state (sample) s of an HA M, an NSC oracle is a procedure for labeling s; i.e.,
for deciding whether M = Reach(U, s, T'). NSC utilizes the following oracles.

Reachability checker. For nonlinear HA, NSC uses dReal [[13], an SMT solver that
supports bounded model checking of such HA. dReal provides sound unsatisfiability
proofs, but satisfiability is approximated up to a user-defined precision (J-satisfiability).
The oracle first attempts to verify that s is negative by checking M |= Reach(U, s, T)
for unsatisfiability. If this instance is instead J-sat, the oracle attempts to prove the
unsatisfiability of M = —Reach(U, s, T'), which would imply that s is positive. The
latter instance can also be d-sat, meaning that this oracle cannot make a decision about s.
This situation never occurred in our evaluation and can be made less likely by choosing
a small . If it did occur, our plan would be to conservatively mark the state as positive.
The oracle requires an upper bound on the number of discrete jumps to be considered.
It supports HAs with Lipschitz continuous dynamics and hyperrectangular continuous
domains (i.e., defined as the product of closed intervals), and allows trigonometric and
other non-polynomial functions in the initial conditions, guards, invariants, and resets.

Simulator. For deterministic systems, we implemented a simulator based on MATLAB’s
ode45 variable-step ODE solver. To check reachability, we employ the solver’s event-
detection method to catch relevant zero-crossing events (i.e., reaching U).

Backwards simulator. The backwards simulator is not an oracle per se, but, as described
in Section[3.3] is central to one of our sampling methods. We first construct the reverse
HA according to Definition [/| which is more general than the one for rectangular HAs
given in [16]. We use dot-notation to indicate members of a tuple, and lift resets v to
sets of states; i.e., v(X') = {v(x) | x € X'}.

Definition 7 (Reverse HA). Given an HA M, its reverse HA M is an HA such that
the modes, continuous variables, and invariants are the same as for M, the flows are

reversed, i.e., V(l,x) € S(M), H.Flow(l)(x) = —M.Flow(l)(x), and for each tran-

sition (1, g,v,1') € M.Trans, the corresponding transition (I',%g % 1) € M. Trans
must be such that ? = v(g) and S0 is the inverse ofvifuvis m]ectzve otherWlse N up-
dates the continuous state x to any value in the set ‘v (x) = {x' | x' € g Av(X) = = x}f]

Although every HA admits a reverse counterpart according to Definition [/} it is
clearly impractical to find a reverse reset function <F(x) if v is a one-way function. For
an example of reversible HA with non-injective reset functions, see the HA and reverse
HA in [26, Appendix D.4].

Note that a deterministic HA may admit a nondetermlmstlc reverse HA. Since we
classify all states in the state space, we assume that M and M can be initialized to any
state. We next define the notion of a reverse trajectory p , which intuitively is obtained
by running p backwards, starting from p’s last state and ending with its first state.

Definition 8 (Reverse trajectory). For HA M, time domain T = [0,T), trajectory
p with its correspondmg sequence of switching time points (§;),_ 0.k € TF+L, the
reverse trajectory p = (I(t),x(t)) of p and its corresponding sequence of switching

time points (E Z) ‘ € Tk are such that fori =0, ...k, € ; =T — 4y, and

[RRRE

Vi <k TACES) = pl(Enir) AVEE [E4, Einn), TA() = FUE) AT x(t) =
px(T —t).

F
Theorem 1. For an HA M that admits a reverse HA M, every trajectory p of M is
reverszble i.e., the reverse trajectory p of p is a trajectory of M, and every trajectory
of ./\/l is forward-feasible, i.e., the reverse trajectory p of p is a trajectory of M.

Proof. See [26, Appendix A.2].

<-
Given an unsafe state u € U of an HA M that admits a reverse HA M, Theoreml
allows one to find a positive state s € S(M) \ U from which u can be reached within

time 7'. The method works by simulating multiple trajectories of M starting in » and up
to time 7'. In particular, we explore the reverse trajectories from u through an isotropic
random walk, i.e., by choosing uniformly at random, at each step of the simulation, the
next transition from those available.

3.3 Generation of Training Data and Test Data

We present three sampling methods for generation of training data and test data. Let X
denote the continuous component of S(M) \ U, i.e., without the automaton’s location.
Recall that model parameters, when present, are expressed as (constant) continuous
state variables. They can be sampled independently from the other state variables using
appropriate distributions, possibly different from those described below.

Uniform Sampling. When the union of mode invariants covers X, the algorithm first
uniformly samples a continuous state = from X and then samples a mode m whose
invariant is consistent with (i.e, * € Inv(m)). When the union of mode invariants

3 Technically, for v non-injective, % isin general a nondeterministic reset: X 2%,

does not cover X, we first uniformly sample the mode m and then a continuous state
x € Inv(m). For simplicity, we restrict attention to cases where the region to be sam-
pled is rectangular, although we could use algorithms for uniform sampling of convex
polytopes [20]. We use the reachability checker or the simulator (for deterministic sys-
tems) to label the sampled states.

Balanced Sampling. In systems where the unsafe states U are a small part of the overall
state space, a uniform sampling strategy produces imbalanced datasets with insufficient
positive samples, causing the learned classifier to have relatively low accuracy. For
such systems, we generate balanced datasets with equal numbers of negative and pos-
itive samples as follows. Negative samples are obtained by uniformly sampling states
from S(M) \ U and invoking the reachability checker on those states. In this case,
the oracle only needs to verify that the sampled state is negative, i.e., to check that
M = Reach(U, s, T) is unsatisfiable. For deterministic systems, the simulator is used
instead. Positive samples are obtained by uniformly sampling unsafe states u from U
and invoking the backwards simulator from w.

Dynamics-Aware Sampling. This technique generates datasets according to a state dis-
tribution expected in a deployed system. It does this by estimating the probability that a
state is visited in a trajectory starting from the initial region Init within time 7", where
T’ > T. This is accomplished by uniformly sampling states from Init and performing
a random exploration of the trajectories from those states up to time 7. The resulting
distribution, called dynamics-aware state distribution, is estimated from the multiset
of states encountered in those trajectories. In our experiments, we estimate a discrete
distribution, but other kinds of distributions (e.g., smooth kernel or piecewise-linear)
are also supported. The reachability checker or simulator is used to label states sampled
from the resulting distribution. This method typically yields highly unbalanced datasets,
and thus should not be applied on its own to generate training data.

3.4 Statistical Guarantees with Sequential Hypothesis Testing

Given the infeasibility of training machine-learning models with guaranteed accuracy
on unseen dateﬂ we provide statistical guarantees a posteriori, i.e., after training. In-
spired by statistical approaches to model checking [24], we employ hypothesis testing
to certify that our classifiers meet prescribed levels of accuracy, and FN/FP rates.

We provide guarantees of the form Pa > 64 (i.e., the true accuracy value is above
0a), Pen < Opn and Prp < Ofp (i.e., the true rate of FNs and FPs are below Oy and
Orp, respectively). Being based on hypothesis testing, such guarantees are precise up to
arbitrary error bounds «, 8 € (0, 1), such that the probability of Type-I errors (i.e., of
accepting P, < 6, when P, > 0., where z € {A,FN, FP}) is bounded by «, and the
probability of Type-II errors (i.e., of accepting P, > 6, when P, < 0,) is bounded by
B. The pair (v, 5) is known as the strength of the test.

To ensure both error bounds simultaneously, the original test P, > 6, vs P, < 6,
is relaxed by introducing a small indifference region, i.e., we test the hypothesis Hy :

* Statistical learning theory [29] provides statistical bounds on the generalization error of learn
models, but these bounds are very conservative and thus of little use in practice. We use these
bounds, however, in the proof of Theorem 2}

P, > 0, + 0 against H; : P, < 6, — 6 for some § > 0. We use Wald’s sequential
probability ratio test (SPRT) to provide the above guarantees. SPRT has the important
advantage that it does not require a prescribed number of samples to accept one of the
two hypotheses, but the decision is made if the available samples provide sufficient
evidence. Details of the SPRT can be found in [26, Appendix B].

Note that in statistical model checking, SPRT is used to verify that a probabilistic
system satisfies a given property with probability above/below a given threshold. In
contrast, in NSC, SPRT is used to verify that the probability of the classifier producing
the correct prediction meets a given threshold.

3.5 Reducing the False Negative Rate

We discuss strategies to reduce the rate of FNs, the most serious errors from a safety-
critical perspective. Threshold selection is a simple, yet effective method, which is
based on tuning the classification threshold 6 of the NN classifier (see Section [3.1)).
Decreasing 6 reduces the number of FNs but may increase the number of FPs and
thereby reduce overall accuracy. We evaluate the trade-off between accuracy and FNs
in Section 4.2

Another way to reduce the FN rate is to re-train the classifier with unseen FN sam-
ples found in the test stage. For this purpose, we devised a whitebox falsification-guided
adaptation algorithm that, at each iteration, systematically searches for FNs using ad-
versarial sampling; i.e., by solving an optimization problem that seeks to maximize the
disagreement between predicted and true reachability values. The optimization prob-
lem exploits the knowledge it possesses of the function computed by the NN classifier
(whitebox approach). FNs found in this way are used to retrain the classifier. The algo-
rithm iterates until the falsifier cannot find any more FNs.

This approach can be viewed as the dual of counterexample-guided abstraction re-
finement [9]. CEGAR starts from an abstract model that represents an over-approxima-
tion of the system dynamics, and uses counterexamples (FPs) to refine the model,
thereby reducing the FP rate. Our approach starts from an under-approximation of the
positive region (i.e., the set of states leading to a violation) and uses counterexamples
(FNs) to make this region more conservative, reducing the FN rate.

We show that under some assumptions about the performance of the classifier and
the falsifier, our algorithm converges to an empty set of FNs. Although it may be dif-
ficult in practice to guarantee that these assumptions are satisfied, we also show in
Section that our algorithm performs reasonably well in practice.

For a state s, let F'(s) € [0,1] and b(s) € {0,1} be the NN prediction and true
reachability value, respectively. Let F'Nj, denote the true set of false negatives (i.e.,
all states s such that b(s) = 1 and F(s) < 0) at the k-th iteration of the adaptation
algorithm, and let FN r denote the finite subset of F'N; found by the falsifier. The
cumulative set of training samples at the k-th iteration of the algorithm is denoted Dy, =
Du Ule FN ., where D is the set of samples for the initial training of the classifier.

Assumption 1 Az each iteration k, the classifier correctly predicts positive training
samples, i.e., Vs € Dy.b(s) =1 = F(s) > 0, and is such that the FP rate w.r.t.
training samples is no larger than the FP rate w.r.t. unseen samples.

Assumption 2 At each iteration k, the falsifier can always find an FN when it exists,
ie., FNk#Q) <= FNy #@

Theorem 2. Under Assumptions the adaptation algorithm converges to an empty
set of FNs with high probability, i.e., for alln € (0,1), Pr(limg_oo FNi =0) > 1—n.

Proof. See [26, Appendix A.3].

We developed a falsifier that uses a genetic algorithm (GA) [23], a nonlinear opti-
mization method for finding multiple global (sub-)optima. In our case, we indeed have
multiple solutions because FN samples are found at the decision boundaries of the clas-
sifier, separating the predicted positive and negative regions. Due to the real-valued state
space, each set F'N, is either empty or infinite.

FN states have F(s) — b(s) < —#, while FPs are such that F(s) — b(s) > 6.
By maximizing the absolute discrepancy |F(s) — b(s)|, we can identify both FNs and
FPs, where only the former are kept for retraining. Specifically, the GA minimizes the
objective function o(s) = 1/(8 - (F'(s) — b(s))?) which, for default threshold § = 0.5,
gives a proportionally higher penalty to correctly predicted states (0.5 < o(s) < o0)
than wrong predictions (0.125 < o(s) < 0.5). We retrain the network with all FN
candidates found by the GA, not just the optima.

4 Experimental Evaluation

We evaluated our NSC approach on six hybrid-system case studies: a model of the spik-
ing neuron action potential [8], the classic inverted pendulum on a cart, a quadcopter
system [15]], a cruise controller 8], a powertrain model [[19], and a helicopter model [2]].
These case studies represent a broad spectrum of hybrid systems and varying degrees
of complexity (deterministic, nondeterministic, nonlinear dynamics including trig func-
tions, 2-29 variables, 1-6 modes, 1-11 transitions). Detailed descriptions of the case
studies are given in [26, Appendix A.3].

For all case studies, NSC neural networks were learned using MATLAB’s train
function, with the Levenberg-Marquardt backpropagation algorithm optimizing the mean
square error loss function, and the Nguyen-Widrow initialization method for the NN
layers. With this setup, we achieved better performance than more standard approaches
such as minimizing binary cross entropy using stochastic gradient methods. Training is
very fast, taking 2 to 19 seconds for a training dataset with 20,000 samples.

We evaluated the following types of classifiers: sigmoid DNNs (DNN-S) with 3
hidden layers of 10 neurons each, with the Tan-Sigmoid activation function for the hid-
den layers and the Log-Sigmoid activation function for the output layer; shallow NNs
(SNN), with the same activation functions as DNN-S but with one hidden layer of 20
neurons; ReLU DNNs (DNN-R), with 3 hidden layers of 10 neurons each, the rectified
linear unit (ReLLU) activation function for the hidden layers, and the softmax function
for the output layer; support vector machines with radial kernel (SVM); binary decision
trees (BDT); and a simple classifier that returns the label of the nearest neighbor in the
training set (NBOR). We also obtained results for DNN ensembles that combine the
predictions of multiple DNNs through majority voting. As expected, ensembles outper-
formed all of the other classifiers. Due to space limitations, these results are omitted.

10

We learned the classifiers from relatively small datasets, using training sets of 20K
samples and test sets of 10K samples, except where noted otherwise. Larger training
sets significantly improved classifier performance for only two of the case studies; see
Figure [2] Unless otherwise specified, training and test sets are drawn from the same
distribution. The NN architecture (numbers of layers and neurons) was chosen empiri-
cally. To avoid overfitting, we did not tune the architecture to optimize the performance
for our data. We systematically evaluated other architectures (see [26, Appendix E]),
but found no alternatives with consistently better performance than our default configu-
ration of 3 layers and 10 neurons. We also experimented with 1D Convolutional Neural
Networks (CNNs), but they performed worse than the DNN architectures.

In the following, when clear from the context, we omit the modifier “empirical”
when referring to accuracy, FN, and FP rates over a test dataset (as opposed to the true
accuracy over the state distribution).

4.1 Performance Evaluation

Table|l|shows empirical accuracy and FN rate for all classifiers and case studies, using
uniform and balanced sampling. We obtain very high classification accuracy for neuron,
pendulum, quadcopter and cruise. For these case studies, DNN-based classifiers regis-
tered the best performance, with accuracy values ranging between 99.48 % and 99.98
% and FN rates between 0.24% and 0%. Only a minor performance degradation is ob-
served for the shallow neural network SNN, with accuracy in the range 98.89-99.85%.

In contrast, the accuracy for the heli-

—— Heli Acc =% Powertrain Acc = = Heli FN —6— Powertrain FN |« 10
T 20

copter and powertrain models is poor if 100 PE—————-

we use only 20K training samples. These
models are indeed particularly challeng-
ing, owing to their high dimensional-
ity (helicopter) and highly nonlinear dy-
namics (powertrain). Larger training sets

provide considerable improvement in ac- Number of samples %108
curacy and FN rate, as shown in Fig- Fig. 2: Performance of DNN-S classifier on heli-
b

copter and powertrain models with varying num-

©
©
3
@

Accuracy
&8
5

FN Rate

©
o
3

o

©
@©
o

ure For helicopter, accuracy jumps A . .
from 98.49% (20K samples) to 99.92% bers of training samples (uniform sampling).
(1M samples), and the FN rate decreases from 0.84% (20K) to 0.04% (1M). For power-
train, accuracy increases from 96.68% (20K) to 99.25% (1M), and the FN rate decreases
from 1.28% (20K) to 0.33% (1M).

In general, we found that the NN-based classifiers have superior accuracy compared
to support vector machines and binary decision trees. As expected, the nearest-neighbor
method demonstrated poor prediction capabilities. No single sampling method provides
a clear advantage over the others in terms of accuracy, most likely because training and
test sets are drawn from the same distribution.

Dynamics-aware state distribution. To evaluate the behavior of the classifiers with the
dynamics-aware state distribution (introduced in Section[3.3), we generate training data
with a combination of dynamics-aware sampling and either uniform or balanced sam-
pling, because dynamics-aware sampling alone yields unbalanced datasets unsuitable
for training. Test data consists exclusively of dynamics-aware samples.

11

Neuron Pendulum Quadcopter Cruise Powertrain Helicopter

Acc FN | Acc FN | Acc FN | Acc FN | Acc FN | Acc FN
DNN-S{99.81 0.1 {9998 0 |99.83 0.1 [99.95 0.01 |96.68 1.28 |98.49 0.84
DNN-R[99.52 0.29199.93 0.04 (99.89 0.06 [99.98 0 [96.21 1.08 | 98 0.96
SNN|[99.17 0.43(99.81 0 [99.85 0.08 [99.84 0.15(96.02 1.37 |97.69 1.25
SVM|98.73 0.75(99.84 0 [97.33 0.69 {99.88 0.1 {92.26 3.48 [95.58 2.42
BDT|99.3 0.37|99.6 0.17({99.52 0.2 |99.84 0.08 {95.59 2.19 |80.07 9.8
NBOR|97.03 1.22199.69 0.14 {99.53 0.25 [99.49 0.33 |71.44 14.51|67.39 16.98

Acc FN [Acc FN | Acc FN | Acc FN | Acc FN | Acc FN
DNN-S{99.83 0.12(99.89 0 [99.82 0.04 (99.94 0 |97.2 0.86 |98.24 0.79
DNN-R|[99.48 0.24 199.63 0.01 |{99.67 0.09 [99.95 0 |96.07 1.24 |97.91 1.2
SNN|[98.89 0.69/99.2 0 [99.49 0.01 |99.6 0 [95.21 1.79 |97.58 1.16
SVM |98.63 0.78199.37 0 |96.93 0.2 [99.61 0 [91.84 3.3 |95.36 1.85
BDT|99.07 0.45]99.46 0.0599.36 0.22 | 99.9 0.03 {95.86 2.4 [79.03 10.26
NBOR|96.95 1.62(99.51 0.04 [99.11 0.56 [99.47 0.11(71.33 13.99|65.18 17.48

wLoyrun)

paduepeyg

Table 1: Empirical accuracy (Acc) and FN rate of the state classifiers for each case study, classifier
type, and sampling method. Values are in percentages. For each measure and sampling method,
the best result is highlighted in bold. False positives and confidence intervals are reported in
Tables 5 and 6 of the Appendix provided in [26].

Table [2 shows that the classifiers yield accuracy values comparable to those of Ta-
ble E] (compiled with balanced and uniform distributions) for all case studies. We see
that the powertrain model attains 100% accuracy, indicating that its dynamics-aware
distribution favors states that are easy enough for the DNN to classify correctly.

Neuron Pendulum Quadcopter Cruise Helicopter Powertrain
Unif+Dyn-aware 99.91 (+0.1) 99.93 (-0.05) 99.84 (+0.01) 99.14 (-0.81) 98.77 (+0.28) 100 (+3.32)
Bal+Dyn-aware 99.8 (-0.03) 99.88 (-0.01) 99.79 (-0.03) 99.35 (-0.59) 98.46 (+0.22) 100 (+2.8)

Table 2: Empirical accuracy of DNN-S classifiers tested on 10K dynamics-aware samples and
trained with 20K samples. Each row corresponds to a different training distribution. Unif+Dyn-
aware and Bal+Dyn-aware were obtained by combining 10K uniform/balanced samples with
10K dynamics-aware samples. In parenthesis is the accuracy difference with the corresponding
classifier from Table T}

Num. of parameters
Parametric analysis. We show that NSC works effec- 1 2 3 4 5
tively for parametric systems, being able to classify Pa 99.8 99.7 97.9 98.1 97.8
states in models with parameter values not seen during Pry 02 02 1.6 1.3 1.5
training. We dérive parametric versions of the neuron Table 3: Empirical accuracy (Pa)
model by turning constants a, b, c,d, I (see [26, Ap- | 1 EN rate (Ppy) for DNN-S
pendix D.1]) into parameters uniformly distributed in .jsgifier for neuron model with
the + 50% interval around their default value. increasing number of parameters.

Table [3] shows the accuracy and FN rates for DNN-S, trained with 110K samples
for models with increasing numbers of parameters, which are increasingly long prefixes
of the sequence a, b, c,d, I. We achieve very high accuracy (> 99.7%) for up to two
parameters. For three to five parameters, the accuracy decreases but stays relatively
high (around 98%), suggesting that larger training sets are required for these cases.

12

Indeed the input space grows exponentially in the number of parameters, while we kept
the size of the training set constant.

Statistical guarantees. We use SPRT (Section [3.4) to provide statistical guarantees for
four case studies, each trained with 20K balanced samples. See Table E} We assess two
properties certifying that the frue (not empirical) accuracy and FNs meet given perfor-
mance levels: Py > 99.7%, and Pry < 0.2%. We omit the helicopter and powertrain
models from this assessment, because performance results for these models are clearly
outside the desired levels when only 20K samples are used for training.

The only classifier that guarantees these performance levels for all case studies is
the sigmoid DNN. We also observe that a small number of samples suffices to obtain
statistical guarantees with the given strength: only 3 out of 48 tests needed more than
10K samples to reach a decision.

Neuron Pendulum Quadcopter Cruise
Pa > 0p Pen < Opn|Pa > 0a Pen < 0pn|Pa > 0 Pen < Opn | Pa > 04 Pen < Opn
DNN-S|V 800 v 2900 Vo0 V@300 V@) V@300 V@) v 2300
DNN-R|X Geooy X (s600) v oasso0) v 4000y Xawo v @300 v oGoony v @300y
SNN|X (700 X (1000) X 2900) V' (@300 X (1500 V' (3400) X (3600) V' (@300

SVM| X o0y X (600) X (6600) V' (2300) X 00) X (5300 X (3400) V' (2300)
BDT|X a0 X 300 X (6300) V' (15000) X (800) X (1100) Voo V@00
NBOR | X 00 X o0y X ss00) v (2900 X aooy X azo0 X Gaooy X @300

Table 4: Statistical guarantees based on the SPRT. Samples were generated using balanced sam-
pling. In parenthesis are the number of samples required to reach the decision. Parameters of the
test are « = 3 = 0.01 and § = 0.001. Thresholds are 0o = 99.7% and Oy = 0.2%.

4.2 Reducing the False Negative Rate

Falsification-guided adaptation. We evaluate the benefits of adaptation by incremen-
tally adapting the trained NNs with false negative samples (see Section [3.3). At each
iteration, we run our GA-based falsifier to find FN samples, which are then used to
adapt the DNN. The adaptation loop terminates when the falsifier cannot find a FN.

We employ MATLAB’s adapt function with gradient descent learning algorithm
and learning rates of 0.0005 for neuron and 0.003 for quadcopter, helicopter, and power-
train. For neuron and quadcopter, we use DNN-S classifiers trained with 20K balanced
samples. We use DNN-S trained with 1M balanced samples for helicopter, and DNN-S
trained with 1M uniform samples for powertrain, because these classifiers have the best
accuracy before adaptation. To measure adaptation performances, we test the DNNs on
10K samples after each iteration of adaptation. Fig. [3] shows how accuracy, FNs and
FPs of the classifier evolve at each adaptation step. For the neuron, quadcopter, and he-
licopter case studies, our falsification-guided adaptation algorithm works well to elimi-
nate the FN rate at the cost of a slight increase in the FP rate after only 5-10 iterations.
In these case studies, the number of FNs found by the falsifier decreases quickly from
hundreds or thousands to zero. For powertrain, the number of FNs found by the falsifier
stays almost constant at about 70 on average at each iteration. After 150 iterations, FN
rate of the powertrain DNN decreases slowly from 0.33% to 0.15%.

13

Figure [visualizes the effects of adaptation on the DNN-S classifier for the neuron
case study. Fig.[4] (a) shows the prediction of the DNN after training with 20K samples.
Fig.] (b) shows the prediction of the DNN after adaptation. We see that adaptation
expands the predicted positive region to enclose all previous FN samples, i.e., they are
correctly re-classified as positive. The enlarged positive region also means the adapted
DNN is more conservative, producing more FPs as shown in Fig.] (b).

Accuracy

Neuron

Quadcopter

Helicopter

FP, FN

Accuracy

FP,FN

Accuracy

Iteration

Iteration

Iteration

FP,FN

Accuracy

Powertrain

100
Iteration

%10
4

Fig. 3: Impact of incremental adaptation on empirical accuracy, FN and FP rates. FP-rate curve
for powertrain is omitted to allow using a scale that shows the decreasing trend of the FN rate.
The FP rate for powertrain increases from 0.48% to 2.89%.

20 b’ ¥t
: iE N -
+ 1 +
L L
Il) > 20| + i ¥ f
+ - + o+ F
| g] i
. 5 3 i t *
. + -0 .
0 5 10 15 20 25 0 5 10 18 20 25
u u
(a) Before adaptation (b) After adaptation

Fig. 4: Effects of adaptation on the DNN-S for the neuron case study. The white region is the
predicted negative region. The yellow region is the predicted positive region. Red dots are FN
samples. Crosses are FP samples.

Threshold selection. We show that threshold selection can considerably reduce the FN
rate. Figure [5|shows the effect of threshold selection on accuracy, FN rate, and FP rate
for classifier DNN-S trained with uniform sampling (20K samples for neuron and quad-
copter, 1M samples for helicoper and powertrain). Pendulum and cruise control case
studies are excluded as they have low FN rate (< 0.01%) prior to threshold selection.

Neuron

—Acc - - FN—FP,

1 0.01

Accuracy
o
©
8
&

0.99 0
0.020.2 0.4 0.6 0.80.98

Threshold

z
i

0.005 -

%
o

Accuracy
o o
© ©
8 8
3 &

0.99:

Quadcopter

——Acc - - FN —FP
x10°
6

’
,

4 0
0.02 02 04 06 0.8 0.98

Threshold

4

2

Helicopter

—Acc- - FN—FP| 4
510

0.9995

FPFN

0.99¢

Accuracy

0.99¢

9

-

0.9985 1

I

8 0
0.020.2 0.4 0.6 0.80.98

Threshold

Powertrain
——Acc - - FN—FP
0.995 0.02
> 0.99
o
©
5 0.985 0.01
3
3
< 0.98

0.975

Threshold

Fig. 5: Impact of classification threshold on empirical accuracy, FN rate, and FP rate.

14

0
0.020.2 0.4 0.6 0.80.98

For the neuron case study, selecting # = 0.32 reduces the FN rate from 1073 to
5-10~%, with an accuracy loss of only 0.02%. With # = 0.06, we obtain a zero FN rate

FP.EN

and a minor accuracy loss of 0.37%. For quadcopter, selecting § = 0.28 decreases the
FN rate from 4 - 10~ to 10~*, with an accuracy loss of just 0.02%. Selecting # = 0.16
yields zero FN rate and accuracy loss of just 0.12%. For helicopter, selecting § = 0.33
reduces the FN rate from 3 - 1074 to 2 - 10™%, with an accuracy gain of 0.01%. For
powertrain, § = 0.34 yields a good trade-off between FN rate reduction (from 3.3-1073
to 2.1 - 10™?) and accuracy loss (0.1%).

5 Related Work

Related work includes techniques for simulation-based verification, which enables rig-
orous system analysis from finitely many executions. Statistical model checking [24]]
for the verification of probabilistic systems with statistical guarantees is an example of
this form of verification. Simulation is also used for falsification and reachability analy-
sis of hybrid systems [112]. Our NSC approach also simulates system executions (when
the system is deterministic), but for the purpose of learning a state classifier.

Other applications of machine learning in verification include parameter synthesis
of stochastic systems [S]], techniques for inferring temporal logic specifications from
examples [4], synthesis of invariants for program verification [28l/14], and reachability
checking of Markov decision processes [6]].

For safety-critical applications, verification of NNs has become a very active area,
with a focus on the derivation of adversarial inputs (i.e., those that induce incorrect
predictions). Most such approaches rely on SMT-based techniques [[18121111], while
sampling-based methods are used in [[10] for the analysis of NN components “in the
loop” with cyber-physical system models. Similarly, our adaptation method systemat-
ically searches for adversarial inputs (FNs) to render the classifier more conservative.
A related problem is that of range estimation [30], i.e., computing safe and tight enclo-
sures for the predictions of an NN over a (convex) input region. Such methods could be
used to extend NSC classification to sets of states.

6 Conclusions

We have introduced the state classification problem for hybrid systems and offered a
highly efficient solution based on neural state classification. NSC features high accu-
racy and low false-negative rates, while including techniques for virtually eliminating
such errors and for certifying an NSC classifier’s performance with statistical guaran-
tees. Plans for future work include considering more expressive temporal properties and
extending our approach to stochastic hybrid systems.

References

1. Annpureddy, Y., et al.: S-TaLiRo: A tool for temporal logic falsification for hybrid systems.
In: TACAS. vol. 6605, pp. 254-257. Springer (2011)

2. Bak, S., Duggirala, P.S.: Rigorous simulation-based analysis of linear hybrid systems. In:
TACAS. pp. 555-572. Springer (2017)

3. Bak, S., et al.: Hybrid automata: From verification to implementation. International Journal
on Software Tools for Technology Transfer pp. 1-18 (2017)

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.

217.

28.

29.
30.

. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic

properties. In: FORMATS. pp. 23-37. Springer (2014)

. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear temporal prop-

erties of stochastic models. In: TACAS. pp. 396413 (2018)

. Brazdil, T., et al.: Verification of Markov decision processes using learning algorithms. In:

ATVA. pp. 98-114. Springer (2014)

. Brihaye, T., et al.: On reachability for hybrid automata over bounded time. In: ICALP. pp.

416-427. Springer (2011)

. Chen, X., et al.: A benchmark suite for hybrid systems reachability analysis. In: NFM. pp.

408—414. Springer (2015)

. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-

finement. In: CAV. pp. 154-169. Springer (2000)

Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems
with machine learning components. In: NFM. pp. 357-372. Springer (2017)

Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: ATVA.
pp- 269-286 (2017)

Frehse, G., et al.: SpaceEx: Scalable verification of hybrid systems. In: CAV. pp. 379-395.
Springer (2011)

Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals.
In: International Conference on Automated Deduction. pp. 208-214. Springer (2013)

Garg, P, et al.: Learning invariants using decision trees and implication counterexamples.
ACM Sigplan Notices 51(1), 499-512 (2016)

Gibiansky, A.: Quadcopter dynamics and simulation (2012), http://andrew.
gibiansky.com/blog/physics/quadcopter—dynamics/

Henzinger, T.A., et al.: What’s decidable about hybrid automata? In: STOC. pp. 373-382
(1995)

Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal ap-
proximators. Neural networks 2(5), 359-366 (1989)

Huang, X., et al.: Safety verification of deep neural networks. In: CAV. pp. 3-29 (2017)

Jin, X., et al.: Powertrain control verification benchmark. In: HSCC. pp. 253-262 (2014)
Kannan, R., Lovész, L., Simonovits, M.: Random walks and an 0*(n°) volume algorithm
for convex bodies. Random structures and algorithms 11(1), 1-50 (1997)

Katz, G., et al.: Reluplex: An efficient SMT solver for verifying deep neural networks. In:
CAV. pp. 97-117 (2017)

Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: SEM. pp. 220-
270. Springer (2007)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In: RV. pp.
122-135. Springer (2010)

Mitchell, M.: An introduction to genetic algorithms. MIT press (1998)

Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural state classi-
fication for hybrid systems. arXiv:1807.09901 (2018)

Sen, K., Rosu, G., Agha, G.: Online efficient predictive safety analysis of multithreaded
programs. In: TACAS. vol. 2988, pp. 123—-138. Springer (2004)

Sharma, R., et al.: A data driven approach for algebraic loop invariants. In: ESOP. pp. 574—
592. Springer (2013)

Vapnik, V.: The nature of statistical learning theory. Springer (2013)

Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and verification for
multi-layer neural networks. arXiv:1708.03322 (2017)

16

http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/
http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/

	Neural State Classification for Hybrid Systems

