
Learning Distributed Controllers for V-Formation
Shouvik Roy

Department of Computer Science
Stony Brook University
Stony Brook NY, USA

shroy@cs.stonybrook.edu

Usama Mehmood
Department of Computer Science

Stony Brook University
Stony Brook NY, USA

umehmood@cs.stonybrook.edu

Radu Grosu
Cyber-Physical Systems Group

Technische Universitat Wien
Wien, Austria

radu.grosu@tuwien.ac.at

Scott A. Smolka
Department of Computer Science

Stony Brook University
Stony Brook NY, USA
sas@cs.stonybrook.edu

Scott D. Stoller
Department of Computer Science

Stony Brook University
Stony Brook NY, USA

stoller@cs.stonybrook.edu

Ashish Tiwari
Microsoft Research

San Francisco CA, USA
ashish.tiwari@microsoft.com

Abstract—We show how a high-performing, fully distributed
and symmetric neural V-formation controller can be synthesized
from a Centralized MPC (Model Predictive Control) controller
using Deep Learning. This result is significant as we also establish
that under very reasonable conditions, it is impossible to achieve
V-formation using a deterministic, distributed, and symmetric
controller. The learning process we use for the neural V-formation
controller is significantly enhanced by CEGkR, a Counterexample-
Guided k-fold Retraining technique we introduce, which extends
prior work in this direction in important ways. Our experimental
results show that our neural V-formation controller generalizes
to a significantly larger number of agents than for which it
was trained (from 7 to 15), and exhibits substantial speedup
over the MPC-based controller. We use a form of statistical
model checking to compute confidence intervals for our neural V-
formation controller’s convergence rate and time to convergence.

Index Terms—V-Formation, Model Predictive Control, Dis-
tributed Neural Controller, Supervised Learning.

I. INTRODUCTION

Designing distributed controllers is a challenging task, as
the associated agents are typically attempting to achieve a
global objective despite only having a local view of the global
configuration. They must therefore take actions based on
incomplete information. Often it is not possible to optimize
for global objectives using locally-optimal actions alone.
High-performing distributed controllers may thus need to
employ information-sharing among non-neighbors using e.g. a
distributed consensus protocol.

This state of affairs raises the following question. Rather
than manually designing distributed controllers, can we au-
tomatically learn them? If so, how would we obtain the
requisite training data without already having a solution for
the distributed control problem in hand?

In this paper, we explore the use of a centralized controller,
with global system knowledge, to generate the training data
needed to learn a fully distributed neural controller. It is

We thank the anonymous reviewers for their helpful comments. This material
is based upon work supported in part by NSF grants CCF191822, and CPS-
1446832 and an FWF-NFN RISE Award.

not obvious that this approach would work, since learning
a high-performing distributed controller would require the
learning process to (implicitly) figure out a way to gather
information from non-neighbors. Moreover, there is nothing in
the training data that suggests how to perform such consensus
tasks. A priori, we do not even know if such information
sharing is possible in the distributed setting without explicit
communication between agents.

To investigate this idea, we consider a particularly chal-
lenging multi-agent flight-formation problem: V-formation, an
emergent behavior of significant interest to the aerospace
industry. The V-formation problem refers to the task of bringing
a collection of agents from an arbitrary initial state to a
state where they are all flying in a V-shape, with one agent
leading the group and the others following on the left and right
branches of the V. V-formation provides numerous benefits.
It is historically known for being energy-efficient due to the
upwash benefit an agent in the configuration enjoys from its
frontal neighbor. It also offers each agent a clear frontal view,
unobstructed by any flock-mate.

The V-formation problem has been shown to be one of
optimal control, which can be solved using model predictive
control (MPC) [1]. Section VI discusses various approaches that
have been proposed to solve this problem. In particular, there
exist centralized [2] and (partially) distributed [3] solutions for
achieving V-formation using MPC. None of these approaches,
however, lead to a truly distributed solution for V-formation,
i.e., without any form of consensus or information-sharing
among non-neighbors. Specifically, the distributed solutions
in prior work have three shortcomings. First, the distributed
controller [3] uses a consensus round at the beginning of every
time step, so that all agents agree on a consistent set of actions.
This augmented controller performs tasks similar to leader
election. Second, the controller uses adaptive neighborhood
resizing to enable agents to increase their neighborhood sizes
to ensure convergence to a V-formation. MPC-based controllers
can be computationally expensive, and increasing the neighbor-
hood size increases the computational cost. Third, each control

step consisted of many ministeps where agents exchanged
information and solved multiple optimization problems leading
to a complicated procedure overall.

In this paper, we present Neural V-formation, a new approach
to the V-formation problem that uses Supervised Learning and
a retraining technique we introduce called Counterexample-
Guided k-fold Retraining to learn a symmetric and fully
distributed controller from a centralized, adaptive-horizon MPC
controller [2]. By doing so, we achieve the best of both worlds:
high performance on par with the MPC controllers, and high
efficiency, which leads to real-time flight controllers. Another
distinguishing feature of our approach is that it does not require
any communication between agents: coordination is achieved
strictly through sensors measuring the motion of nearby agents.

Notably, we also show how our neural V-formation controller
generalizes to a significantly larger number of agents (up to
15) than the number of agents on which it is trained (only
7). This generalization by our neural V-formation controller is
achieved using only local neighborhood information and a local
cost-function value, without any communication with other
agents. Our experiments demonstrate that attempting to use a
distributed MPC controller (without explicit communication or
consensus) to achieve this level of generalization does not yield
satisfactory results and is computationally more expensive.

Figure 1 provides an overview of our approach. A high-
performing, centralized, adaptive-horizon MPC controller
(CAMPC) provides the labeled training data to the learning
agent: a symmetric and fully distributed neural controller (DNC)
in the form of a Deep Neural Network (DNN). The training
data consists of trajectories of state-action pairs, where a state
contains the information known to an agent at a time step
(its position and velocity, the positions and velocities of its
neighbors, and the value of its local cost function), and the
action (the label) is the acceleration assigned to that agent at
that time step by the CAMPC controller.

The key point here is that the CAMPC controller uses
knowledge of the full state (positions and velocities of all
agents) to find the optimal action for each agent, whereas the
DNC controller is trained to compute the same output action
only from information about its local state. The DNC has to
do more than just a table lookup over the training data: it
has to learn a function that uses only locally sensed data to
compute the optimal action such that the same DNC works
for all agents (and their local views) at all times.

The learning process we use for neural V-formation is signif-
icantly enhanced through the introduction of Counterexample-
Guided k-fold Retraining (CEGkR). In this context, a coun-
terexample is a trajectory along which the neural controller
failed to achieve V-formation. CEGkR utilizes the first k states
of such failed trajectories as retraining samples, repeating this
process until the desired performance of the neural controller
is attained. In terms of verification of our neural controller, we
use a form of statistical model checking [4], [5] to compute
confidence intervals for its rate of convergence to a V-formation
and for its time to convergence.

Fig. 1: Neural V-formation Architecture

The rest of the paper is organized as follows. Section II
describes the model dynamics and the AMPC algorithm,
including its V-formation cost function. Section III presents
impossibility results that illustrate the difficulty of achieving V-
formation through distributed control. Section IV introduces our
distributed neural controller for V-formation, and the associated
learning process, with a focus on Counterexample-Guided
k-fold Retraining. Section V contains experimental results
comparing our neural controller with MPC-based controllers,
along with our statistical model checking results. Section VI
discusses related work. Section VII offers concluding remarks.

II. BACKGROUND

We describe the model for our agents (including their
equations of motion), the Centralized Adaptive-horizon MPC
controller used to generate training data, and the distributed
variant of the MPC controller with which we compare the
performance of our neural V-formation controller.

The state of agent i consists of four variables: a 2-
dimensional vector xi giving the agent’s position in 2D space,
and a 2-dimensional vector vi giving the agent’s velocity. The
state of a collection of n agents is denoted s = {xi, vi}ni=1. The
control input, also called “action”, for agent i is a 2-dimensional
acceleration denoted ai.

Let xi(t), vi(t) and ai(t) be the 2-dimensional positions,
velocities and accelerations, respectively, of agent i at time
step t, i ∈ {1, . . . , n}. The discrete-time equations of motion
for agent i are:

xi(t+ 1) = xi(t) + dt · vi(t) (1)
vi(t+ 1) = vi(t) + dt · ai(t) (2)

where dt is the duration of a time step.
The goal of V-formation is to compute control actions

(accelerations for the n agents) that drive the system from
an initial state (picked arbitrarily from some reasonable set
of initial states) to a desired target state (a V-formation). We
assume the desired final state is specified by a cost function,
J(s), that maps a state s to a real-valued cost such that
J(s) = 0 exactly when s represents the desired target state
(V-formation), and J(s) > 0 otherwise. Further details about
J(s) are given below.

A Centralized Adaptive-horizon Model Predictive Control
(CAMPC) algorithm is proposed in [2]. CAMPC generates
action (acceleration) sequences using an adaptive prediction
horizon h to find the next action to execute towards the global

optimum. CAMPC maintains multiple clones of the current
state, and runs Particle Swarm Optimization (PSO) [6] on each
of them. This allows it to call PSO for each clone with a
different prediction horizon h.

CAMPC performs a system-wide minimization of the global
cost function J (defined in Eq. 5) at each time-step to obtain
an optimal action sequence of length h. The optimization is
subject to the following constraints on the maximum velocities
and accelerations:

∀i ∈ {1, . . . n}, ‖vi(t)‖ ≤ vmax ∧ ‖ai(t)‖ ≤ ρ‖vi(t)‖ (3)

where vmax is a constant and ρ ∈ (0, 1). PSO creates a swarm
of p particles uniformly at random within the given bounds on
their positions and velocities. It then computes the fitness (the
value of the cost function) of each particle. The fittest particle
becomes a global best for the next iteration. This procedure is
repeated until the number of iterations reaches its maximum, a
time limit is reached, or the cost function reaches its minimum
value (i.e., a V-formation is achieved).

The adaptive prediction horizons are chosen such that
the best-performing PSO instances succeed to decrease the
objective cost by at least a pre-defined amount. The adaptive-
horizon feature allows PSO to escape from local minima
by gradually increasing the MPC prediction horizon when
necessary. This provides convergence guarantees that would
otherwise be impossible.

In [3], a distributed version of MPC is used to solve the
V-formation problem, albeit with a reliance on a distributed
consensus algorithm. It deploys adaptive neighborhood resizing
and an adaptive-horizon version of MPC to determine the
optimal action (acceleration) for every agent at every time-step.
Our comparative performance evaluation considers a modified
version of this controller: Distributed Adaptive-Horizon Model
Predictive Control (DAMPC), which uses the adaptive-horizon
feature of [3], but eschews any form of consensus. This
is to ensure a fair comparison with our neural controller,
which is also “consensus-free”. DAMPC does not use the
adaptive-neighborhood feature in [3]; instead, it uses a fixed
neighborhood size of 7 agents, just like our neural controller.
At any time-step, an agent’s neighborhood consists of the 7
nearest agents, including itself. Thus, in DAMPC, each agent
i computes the optimal action sequences for the agents in
its neighborhood, and then uses the first acceleration in the
sequence for itself. The accelerations are computed using PSO,
as in CAMPC, except that the scope of the cost function is
restricted to agents in i’s neighborhood, instead of all agents.

The global cost function J(s), for state s, used in CAMPC
for capturing V-formation, is defined in terms of the following
metrics [7].

Clear View: An agent’s visual field is a cone with angle θ
that can be blocked by the wings of other agents. The clear-
view metric CV(s) is defined as the sum over all agents j of
the percentage of agent j’s visual field that is blocked by other
agents. Let Bij(xi, vi, xj) be the part of the angle subtended
by the wing of agent j on the view of agent i that intersects
with agent i’s visual cone with angle θ. Then, the clear view

(a) CV (b) VM (c) UB

Fig. 2: (a) Agent i’s view is partially blocked by agents j and k.
Hence, its CV = (α+β)/θ. (b) A flock and its unaligned agent
velocities results in a velocity-matching metric VM = 6.2805.
In contrast, VM = 0 when the velocities of all agents are
aligned. (c) Illustration of the upwash benefit agent i receives
from agent j depending on how it is positioned behind agent
j. Note that agent j’s downwash region is directly behind it.

for agent i, CVi(x, v), is defined as | ∪j 6=i Bij(xi, vi, xj)|/θ,
and the total clear view, CV(s), is defined as

∑
i CVi(x, v).

The optimal value in a V-formation is CV∗= 0, as all agents
have a clear view.

Velocity Matching: VM(s) is defined as the accumulated
differences between the velocity of each agent and all other
agents, summed up over all agents. Formally. VM(s) =∑
i>j(‖vi − vj‖/(‖vi‖+ ‖vj‖))2. The minimum value is

VM∗ = 0 is attained when all agents have the same velocity.
Upwash Benefit: UB(s) is the sum of (the inverse of) each

agent’s upwash benefit. A trailing upwash effect is generated
near the wingtips of an agent. An upwash measure is defined
using a Gaussian model that peaks at the appropriate upwash
regions. Let hij be the projection of the vector xj − xi along
the wing-span of agent i. Similarly, let gij be the projection
of xj − xi along the direction of vi. Specifically, the upwash
benefit UBij for agent i coming from agent j is given by

UBij =

 αS(|hij |)Gij if |hij | ≥ (4−π)w
8 ∧ gij > 0

S(|hij |)Gij if |hij | < (4−π)w
8 ∧ gij > 0

0 otherwise
(4)

where S(z) = erf(2
√

2(z − (4−π)w
8)) is the error function,

which is a smooth approximation of the sign function, Gij =
G(hij , gij , µ1,Σ1). G(y, z, µ,Σ) = G1([|y|, |z|] − µ,Σ) is a
2D-Gaussian shifted so that the mean is µ, where G1(~z,Σ) =

e(− 1
2 (~zT Σ−1~z)) is a 2D-Gaussian with mean at the origin. The

parameter w is the wing span, and µ1 = [(12 + π)w/16, 1]
is the relative position where upwash benefit is maximized.
The total upwash benefit, UBi, for agent i is

∑
j 6=1 UBij . The

maximum upwash an agent can obtain is upper-bounded by 1.
Since we are working with cost (that we want to minimize),
we define UB(s) =

∑
i(1−min(UBi, 1)). The upwash benefit

in a V-formation is UB∗ = 1, as all agents, except for the
leader, enjoy maximum upwash benefit.

The overall cost function J(s) is be defined as a sum of
squares:

J(s) = (CV(s)− CV∗)2 + (VM(s)− VM∗)2

+ (UB(s)− UB∗)2 (5)

For distributed controllers (DAMPC and the neural con-
troller), we need to define a local cost function Ji(s) for agent
i. It is the same as the global cost function, except that only
agents in i’s neighborhood are considered. This restriction
applies to all aspects of the cost function. For example, CVi(s)
is the sum over agents j in agent i’s neighborhood of the
percentage of agent j’s visual field that is blocked by other
agents in agent i’s neighborhood.

We consider an agent’s neighborhood to consist of a fixed
number l of the nearest agents, including the agent itself. Thus,
agent i’s neighborhood consists of agent i itself and the l− 1
agents closest to it. We take l= 7 in our experiments. State s
is considered to be a V-formation if J(s) ≤ ϕ for a specified
threshold ϕ.1

III. IMPOSSIBILITY RESULTS

Designing controllers that achieve V-formation when the
controllers are distributed, symmetric, and deterministic is
difficult. This further motivates our proposed research on learn-
ing distributed and symmetric controllers for flight formation,
including V-formation, from centralized controllers.

Distributed V-formation is an interesting and challenging
problem. First note that a V-formation implicitly elects a
leader. Hence a correct distributed algorithm will also solve the
distributed leader election problem. It is known that there is
no deterministic distributed leader election algorithm when all
agents are identical [8, chap. 3]. This result, however, does not
directly carry over to V-formation since the state of each agent
consists of its (and its neighbors) spatial location, and two
agents can never be identical (i.e., have the same spatial location
for itself and its neighbors). Nevertheless, most attempts to
design deterministic distributed algorithms for V-formation will
build in some form of spatial symmetry, and it is often possible
to exploit this symmetry to devise initial configurations from
which a proposed algorithm will fail to reach a V-formation.

First, V-formation inherits the issue in distributed systems
that stems from the agents forming a disconnected partition.
For the next two results, we assume that: (A1) if the k agents
in the neighborhood of an agent (including itself) are in a
perfect V-formation, then that agent would set its acceleration
to 0 (that is, it will maintain the formation).

Proposition 1. Under Assumption (A1), if N agents are
spatially separated into two groups of k and N − k agents,
k = bN2 c, such that (1) each group is in a perfect V-formation,
and (2) the k − 1 nearest neighbors of any agent are in its
own group, then a distributed procedure using neighborhood
k will fail to achieve a full V-formation on N agents.

Proof. In the distributed case, the agents have no knowledge
of the existence of the other group, and hence use an
acceleration of 0 to keep their current formation, according to
Assumption (A1).

1The threshold ϕ is a small positive constant chosen to allow for numerical
errors due to floating-point computation, and also to allow for tiny perturbations
that result in formations which are visually indistinguishable from a V.

Agents partitioning into disconnected groups is not the
only issue. Even when the neighborhood graph is connected,
formations can look optimal locally, but remain unoptimal
globally.

Proposition 2. Under Assumption (A1), there exist initial
configurations of N agents such that starting from that
configuration, a distributed procedure using neighborhood size
l = 2 will fail to achieve a full V -formation.

Proof. Consider a perfect V-formation on three agents with
one leader A (at coordinate (0, a)), one agent B on the left
branch (at coordinate (−b, 0)), and one agent C on the right
(at coordinate (b, 0)), where a, b are positive. Now, add the
4-th agent D at the position (0,−a). Note that the position
(0,−a) experiences optimal upwash (coming from B and C).
Assume all agents have velocity (0, 1), and hence all agents are
velocity matched. Agent D, however, does not have optimal
clear view. If l = 2, then every agent sees one other agent that
is nearest to it. Every such pair of agents, however, are in a
local V-formation, so all agents set their acceleration to zero,
by Assumption (A1). Note that agent D would not realize it
doesn’t have clear view unless it looks at at least two other
agents, i.e., unless l is at least 3.

These two propositions highlight two potential issues faced
by a distributed approach: first, agents could get disconnected,
and second, clear view is not a local property. However, what
if the agents are connected and l > 2? We present a scenario
that demonstrates a third difficulty faced by a distributed
procedure, namely the existence of multiple different optimal
V-formations. We need some assumptions. We assume that:
(A2) if the velocity of an agent is aligned with the average
velocity of all neighboring agents, then the controller picks an
acceleration that is also aligned with that direction. In other
words, this assumption implies that if an agent is moving in
the direction that is given by the average of the velocities of
its neighbors, then it does not change its direction – it can still
speed up or slow down, but it keeps the direction of its motion
unchanged. This is a reasonable assumption for a controller
since the controller is trying to achieve velocity matching and
picking the average velocity is a commonly used strategy for
this purpose.

We further assume that: (A3) the controller is invariant
to rotation of the coordinate axes; that is, just changing the
frame of reference does not change the action computed by
the controller for any configuration. Assumption (A3) is also
a reasonable assumption. If a controller uses only the relative
positions of its neighbors (with respect to its own position)
and relative velocities of its neighbors (with respect to its
own velocity), then such a controller can be seen to satisfy
Assumption (A3). If a controller satisfies Assumptions (A2)
and (A3), then we can show that if every agent uses such
a controller in a truly distributed manner to compute its
own acceleration, then there are configurations that will never
converge to a V-formation.

Proposition 3. If every agent’s local controller satisfies
Assumptions (A2)–(A3), then there exists an initial configuration
such that the trajectory of the multi-agent system starting from
that initial configuration will never converge to a V-formation,
even as the neighborhood graph remains connected and the
agents use a neighborhood size greater than 2.

Proof. Consider a total of 8 agents placed on a circle equidis-
tant from each other and moving radially outwards with
equal speed. Let this be the initial configuration. Let the
neighborhood size be 3. In this case, the neighborhood of
each agent will include one neighbor on its left and one on
its right. Note the symmetry in this configuration. The local
configuration (involving 3 agents) that is available to every
agent is equivalent modulo rotation of the coordinate axes.
Hence, by Assumption (A3), if we know the action computed
by any one agent, then we would know the action computed
by all agents (by just rotating it appropriately). Therefore, let
us focus on one agent. Without loss of generality, assume
that this agent, call it A, has position (0, a) and velocity
(0, b), where (0, 0) is the center of the circle of radius a
on which all the 8 agents lie. Let B and C be the two
neighbors of A. Therefore, B has position (a/

√
2, a/
√

2)
and C has position (−a/

√
2, a/
√

2). Furthermore, B has
velocity (b/

√
2, b/
√

2) and C has velocity (−b/
√

2, b/
√

2).
If we compute the average of the velocities of A, B, and C,
we get the velocity (0, (1 +

√
2)b/3). The direction of this

average velocity is aligned with the velocity of A, and hence
by Assumption (A2), the acceleration for A computed by the
controller will be of the form (0, c), for some c, which is
acceleration in the radial direction. By Assumption (A3), the
controller for every agent will pick an acceleration that is
aligned with its current velocity. Consequently, after one time
step, the 8 agents will continue to lie on a circle A with center
(0, 0), and with velocities that are pointing radially outwards
or inwards. We can now apply our argument again, and we can
do so repeatedly to conclude that the 8 agents will continue
to lie on a circle forever. This shows that they will fail to
converge to a V-formation.

The issue highlighted in the above proof is that there are
several optimal configurations, and different agents can decide
to pick a different end configuration. In the above proof, agent
A concludes that it is moving in the “correct” direction and
that its two neighbors B and C should change their direction
to match its own direction. And every agent, including B and
C, come to the same conclusion. This is because there are
eight different V-formations, one heading in each of the eight
different directions. And each agent picks a different final V-
formation to target. One might wonder if fixing the heading
direction (or the target destination) would solve this issue:
any such change in the problem definition surely invalidates
Proposition 3. However, we note that direction is not the only
thing that can vary. The speed with which each agent is moving
in the final V-formation can also change. Different agents can
not only pick different final speeds in their final V , but also
different directions and even different leaders. This suggests

that some coordination/consensus is required so that all agents
work toward the same final V -formation. But building in any
form of coordination and consensus is tedious and error-prone.

IV. NEURAL V-FORMATION

We learn a Distributed Neural Controller (DNC) for V-
formation from trajectories obtained from a Centralized
Adaptive-horizon Model Predictive Controller (CAMPC).
Our learning procedure makes use of a technique we call
Counterexample-Guided k-fold Retraining (CEGkR), which
uses counterexamples generated during testing of the neural
controller as sources of new initial configurations for the
CAMPC to generate additional training data.

A. Training a Distributed V-Formation Controller

We use Deep Learning to synthesize a distributed and
symmetric V-formation controller from the CAMPC controller
(see Section II), which generates the requisite training data in
the form of trajectories leading to V-formation. A trajectory
is a sequence of state-action pairs, where a state contains the
information known to an agent at a time step (e.g., the positions
and velocities of all agents in its neighborhood, including itself),
and the action (the label) is the acceleration assigned to that
agent at that time-step by CAMPC. We employ Supervised
Learning to train our neural controller with the trajectories
obtained from CAMPC.

The input features to the neural network are the 2-
dimensional positions and velocities of all 7 agents in the
agent’s neighborhood and the value of the agent’s local cost
function. Thus, the NN has 29 input features, and the input has
the form [px0 p

y
0 v

x
0 vy0 p

x
1 p

y
1 v

x
1 vy1 · · · · px6 p

y
6 v

x
6 v

y
6 J], where

px0 , py0 and vx0 , vy0 are the position and velocity coordinates,
respectively, of the learning agent (i.e., the agent whose
controller is being learned), pxi , pyi and vxi , vyi are the positions
and velocities of the neighboring agents where i = 1, . . . , 6,
and J is the local cost function of the learning agent.

We use CAMPC to generate trajectories, each with a duration
of 50 time-steps. Let 〈s0,~a0〉, . . . , 〈s49,~a49〉 be a trajectory
generated using CAMPC, where each si is a 28-dimensional
state and ~ai is the 14-dimensional action computed for that
state by CAMPC. For training the DNC controller, we obtain
50 ∗ 7 = 350 data points from each such trajectory, namely
〈Tj(si), Jj(si),~ai[j]〉, where Tj(si) denotes agent j’s view of
state si, and ~ai[j] is j’s 2-dimensional acceleration.

The view Tj(si) is obtained by (a) replacing absolute
positions with positions relative to the position of agent j
(i.e., pxk is replaced by pxk − pxj and pyk is replaced by pyk − p

y
j ,

for every agent k); and (b) permuting the indices of the agents
so that the entries are in order of increasing distance from j.
Hence, agent j is at index 0, the nearest neighbor of j in state
si is at index 1, etc. Note that the relative position of agent j is
always (0, 0), so the first two entries of Tj(si) are zero. Also,
note that during all of the training (but not during the testing)
performed in our experiments, the neighborhood size equals
the total number of agents. Thus, the local cost functions Jj
are equivalent to the global cost function J .

We learn a single neural V-formation controller from the
state-action pairs of all agents. This yields a symmetric
distributed controller, which we use for each agent during
evaluation. Note that the neural controller produces accelera-
tions for only one agent, so it needs to be to run separately
for each agent.

Our neural controller is a fully connected feed-forward deep
neural network (DNN), with 5 hidden layers, 84 neurons per
hidden layer, and with a sigmoid activation function. To perform
optimizations involving the MPC cost function, the Adam
optimizer [9] was used with the following settings: lr= 10−4,
β1 = 0.9, β2 = 0.999, ε= 10−8. The number of trainable DNN
parameters is 31,335, the batch size (number of samples
processed before the model is updated) is 500, and the number
of epochs (number of complete passes through the training
dataset) used for training is 1000,. The mean-squared error
metric is used to measure training loss. To train the neural
networks, we use Keras [10], which is a high-level neural
network API written in Python and capable of running on
top of TensorFlow. We used an iterative approach (based on
the success rate of the neural controllers) for choosing the
appropriate DNN hyperparameters and architecture.

B. Counterexample-Guided k-fold Retraining

We introduce a new counterexample-based retraining tech-
nique we call CEGkR to further improve the performance of
the distributed neural controller (DNC) we obtain using the
learning approach described in Section IV-A. In the context
of our V-formation investigation, CEGkR works as follows. A
retraining procedure first tests the neural controller by running
it for t = 50 time-steps, starting from 104 randomly generated
initial states. We use a V-formation convergence threshold of
ϕ = 10−3 as the success criterion; i.e., the DNC successfully
achieved V-formation if J(s) ≤ 10−3 at the end of the
trajectory. We refer to the failed trajectories as counterexamples.
Let τ = 〈s0,~a0〉, . . . , 〈s49,~a49〉 be a counterexample. Note that
the neural controller fails to reach a V-formation (by the end
of τ) not only from the initial state s0, but also from the
subsequent states of τ .

We do not know, however, whether states near the end of
a failed trajectory are problematic for the neural controller,
because there are not enough remaining time-steps in the
trajectory to properly evaluate the controller’s performance
starting from those states. Therefore, we pick a cutoff k and
use the first k states in each counterexample as initial states
to generate k new training trajectories. We do this by running
the CAMPC controller for 50 time-steps starting from each
of these states. Note that each counterexample leads to a total
of k · 50 · 7 new training data points for improving the neural
controller.

After updating the controller using this new training data
and using the same learning algorithm as in initial training, we
test the updated controller by running it from a new batch of
104 randomly generated initial states. If the success rate (i.e.,
number of trajectories ending in a V-formation) for this batch
is higher than in the previous round of testing, we perform

another round of retraining. Otherwise, the CEGkR retraining
procedure is terminated.

As noted, CEGkR uses the first k states from each coun-
terexample trajectory to generate new training data. Regarding
the choice of k, we first observe that k should not be too large,
partly for the reason mentioned above, and partly because states
near the end of the trajectory may be uninteresting, in the sense
that they are encountered during testing only as the result of an
accumulation of poor decisions made by the current controller
earlier in the execution. Our final improved controller will
never encounter those states, so there is no benefit of using
them for training. For example, states where the flock has split
into disconnected subflocks are uninteresting in this sense.

Secondly, k should not be too small. It is possible that the
neural controller makes good decisions in the first several states,
but later on, say in s10, it chooses a poor action that leads
to failure. Using data for these later states during retraining
provides the most benefit. Note that these later states might
not occur in a trajectory computed by CAMPC starting from
an earlier state such as s0 or s1. In our experiments, we found
that increasing k (from 10 to 30 to 35) led to a concomitant
increase in the success rate. See Section V-A.

V. EXPERIMENTAL RESULTS

This section contains the results of our performance analysis
of the distributed neural V-formation controller (DNC). It
specifically reports on the performance improvement due to
CEGkR, compares the performance of DNC with DAMPC, and
uses Statistical Model Checking to obtain confidence intervals
for DNC’s correctness/performance.

A. CEGkR Performance Evaluation

Table I demonstrates the DNC’s performance improvement
due to CEGkR. For the initial configurations used to generate
the initial training samples, agent positions and velocities are
uniformly sampled from [0, 5]2 and [0.25, 0.75]2, respectively.
The total number of initial training samples for each experiment
is init · n, where init is the number of unique initial
configurations, and n is the number of agents. An “experiment”
is an instance of using the CEGkR methodology to generate
a DNC. A single training sample (trajectory) is comprised of
m = 50 discrete time-steps. For all experiments, n = 7, and
for Experiment 1, init = 23, 000, and for Experiments 2, 3
and 4, init = 50, 000. As we show below, increasing init,
which thereby increase the total number of training samples,
increases the success rate; i.e., the rate of reaching V-formation.

For Experiment 1, Run 1, we initially train our DNC with
161,000 training samples, and perform no retraining. This
version of DNC achieves a success rate of 85.07% on 104 test
cases, which are generated from the same distribution used for
initial training. For Run 2, we take the first 10 states of all Run 1
failed test cases and use them as initial states for CAMPC to
use to generate new trajectory data, i.e., the guided training
samples. The total number of guided retraining samples is
f n k, where f is the number of failed test cases. For example,
in Run 1, f = 1493 and k = 10, so the number of guided

TABLE I: CEGkR results for V-formation based on 104 test
cases

Retraining # Guided Success Median
Run Id Retraining Samples Rate (%) Final J

Experiment 1 : 161,000 Initial Training Samples
Run 1 0 85.07 0.0002747
Run 2 104,510 89.03 0.0000499
Run 3 76,790 91.12 0.0000299
Run 4 62,160 91.12 0.0000299

Experiment 2 : 350,000 Initial Training Samples
Run 1 0 90.08 0.0000351
Run 2 69,440 91.10 0.0000300
Run 3 62,300 92.22 0.0000231
Run 4 54,600 92.91 0.0000222
Run 5 49,630 93.04 0.0000222
Run 6 48,720 93.04 0.0000222

Experiment 3 : 350,000 Initial Training Samples
Run 1 0 90.08 0.0000351
Run 2 208,320 92.16 0.0000249
Run 3 164,640 93.33 0.0000221
Run 4 140,070 94.01 0.0000200
Run 5 125,790 94.95 0.0000155
Run 6 106,050 94.95 0.0000155

Experiment 4 : 350,000 Initial Training Samples
Run 1 0 90.08 0.0000351
Run 2 243,040 93.02 0.0000235
Run 3 171,010 93.88 0.0000213
Run 4 149,940 94.51 0.0000202
Run 5 134,505 95.16 0.0000153
Run 6 118,335 95.16 0.0000151

retraining samples is 1, 493 · 7 · 10 = 104, 510. Retraining with
these samples leads to a 4% increase in the success rate. As
described in Section IV-B, we repeat this procedure until there
is no improvement in the DNC success rate.

Experiment 2 is similar to Experiment 1. The only difference
is that Experiment 2 has approximately twice the number of
initial training samples as compared to Experiment 1, which
gives it an improved initial success rate. Experiments 3 and 4
use the same set of initial training samples as Experiment 2;
the difference is that they use k = 30 and k = 35, respectively,
instead of k = 10.

Table I demonstrates the benefit of CEGkR, which include
the following. (1) CEGkR always improves the performance of
the learned controller. Specifically, Run 2 in every experiment
shows significant improvement over Run 1. (2) As expected,
CEGkR does not improve the success rate forever; rather the
success rate eventually plateaus. (3) Using higher values for k in
the CEGkR retraining loop improves the quality of the learned
controller: the success rate in Experiment 4 is better than that
in Experiment 3, which is better than that in Experiment 2.
Note that increasing k also increases the size of the training
data and therefore the cost of retraining.

Table II presents a comparative evaluation of the performance
of neural controllers obtained with and without CEGkR. The
same number of training samples are used to train both
controllers. We use the DNC obtained from Experiment 4
in Table I as our neural controller with CEGkR. For the
non-CEGkR controller, we trained it using 1,116,830 training
samples, which is equal to the total number of training samples
(initial training samples + guided retraining samples) used for
training the DNC with CEGkR. The results show that using
CEGkR offers a clear advantage, as the CEGkR controller

TABLE II: Performance comparison for DNC with and without
CEGkR on 104 runs

Number of CEGkR Non-CEGkR
Agents Success Rate(%) Success Rate(%)

7 95.16 90.51
8 94.57 89.03
9 93.78 87.66
10 93.05 85.25
11 93.05 84.10
12 92.67 81.98
13 91.38 80.24
14 87.35 78.47
15 84.25 74.72
16 73.40 65.39

TABLE III: Performance Comparison: DNC vs DAMPC on
104 runs

DAMPC DNC
Number of Success Avg. Conv. Success Avg. Conv.

Agents Rate(%) Time Rate(%) Time
7 89.84 20.11 95.16 19.69
8 85.16 21.73 94.57 20.05
9 79.04 24.27 93.78 20.58
10 75.37 24.52 93.05 22.16
11 70.91 26.03 92.67 23.89
12 66.82 27.86 91.38 25.23
13 61.58 32.23 89.97 27.77
14 52.49 34.87 87.35 29.24
15 41.75 39.71 84.25 34.31
16 34.03 39.84 73.40 39.05

has a consistently higher success rate as the number of agents
generalizes beyond 7.

B. Comparing the Performance of DNC vs DAMPC

The experiments in this section compare the performance
of DNC with the distributed adaptive-horizon MPC controller
(DAMPC). We focus on DAMPC and DNC because unlike
CAMPC, they both rely on sensing only and not communication.
The DNC we use from here onwards is the one obtained from
Experiment 4 in Table I. For determining DNC’s success rate,
we modify the convergence threshold and number of time
steps that the controller runs to be proportional to the number
of agents n. Specifically, we use a convergence threshold of
(n/7)ϕ and a number of time-steps of (n/7)m, where ϕ =
10−3 and m = 50. We observed experimentally (visually) that
this proportional increase in the threshold is justified. The
rationale for increasing the number of time-steps is that with
an increasing n, the DNC will take longer to converge.

The DAMPC controller is presented in Section II; recall that
it is a variant of the one presented in [3]. The adaptive-horizon
feature is used with the prediction horizon h restricted to the
interval [1, 3].

Table III demonstrates the generalization capabilities of DNC
(from 7 to 16 agents), and compares its performance with that of
DAMPC. While increasing the number of agents from 7 to 16,
the neighborhood size is fixed at 7. The main observations from
Table III are the following. (1) DNC consistently outperforms
DAMPC, thus demonstrating that our approach for learning
distributed controllers from training data generated by a central-
ized controller produces a very effective distributed controller,
one that outperforms a distributed controller designed following
the well-established MPC-based approach. (2) DNC’s average

TABLE IV: Robustness Performance for DNC on 104 runs

Config. Space # Agents Success Rate (%) Avg. Convergence Time
Pos: [0, 6]2 7 94.28 19.88
Vel: [0.4, 0.8]2 15 82.19 39.12
Pos: [0, 8]2 7 91.84 20.54
Vel: [0.35, 0.95]2 15 78.33 40.01
Pos: [0, 10]2 7 87.63 20.93
Vel: [0.1, 0.9]2 15 75.46 39.43

convergence time is considerably smaller than that for DAMPC.
Note that the convergence time is the time when the global cost
function first drops below the success threshold ϕ. Since the
calculation of average convergence time only uses successful
runs (ignoring the failed runs), it follows that not only does
DNC achieve success more often, it does so in fewer steps. This
means it is better than DAMPC at avoiding wrong decisions
that lead to local minima.

An important advantage of the neural controller over
CAMPC and DAMPC is that it is much faster at generating
the action at every time-step for each agent. Executing a DNC
requires a modest number of arithmetic operations, whereas
executing an MPC controller requires simulation of a model
and a controller over the prediction horizon.

In our experiments, on average, CAMPC and DAMPC take
1,730 msec and 524 msec of CPU time, respectively, whereas
the DNC only takes 1.5 msec. These results are averages over
104 runs with 7 agents. Although multiple instances of DNC
are needed (one per agent), they all run in parallel, so it is
reasonable to compare the CPU time of CAMPC with that for
one instance of DNC. Even if we consider the total CPU time
for all instances of DNC, it is much less than CAMPC.

C. Evaluating Robustness of Distributed Neural Controller

We also demonstrate that our DNC is robust to variations in
the initial conditions: it performs well even from initial states
well beyond the range of initial states on which it was trained.
Recall that during training, the positions and velocities are
uniformly sampled from [0, 5]2 and [0.25, 0.75]2, respectively.
We test the controller on initial states selected from three other
configuration spaces (i.e., ranges of initial states), which are
defined in Table IV. The initial positions and velocities are
uniformly sampled from these ranges. The table also shows
the number of agents, the percentage of successful executions,
and the average convergence time. The results in each row are
averages over 104 runs.

When we move from the configuration space used during
initial training to the third configuration space, the size of
the set of possible initial positions expands by a factor of
(10/5)2, and the size of the set of possible initial velocities
expands by a factor of (0.8/0.5)2; hence there is an overall
expansion factor of ∼10 in the initial state space. This means
that the probability that an initial state picked randomly from
the third configuration space also lies inside the initial training
configuration space is approximately 0.1. Thus, among the 104

runs, there are only around 103 runs on which we definitely
expect a high rate of success.

0 10 20 30 40 50 60 70

-5

0

5

10

15

20

25

30

 t = 1 t = 10

 t = 25

 t = 50

Fig. 3: Snapshots of V-formation with 7 agents using DNC

The actual success rate is much better than this argument
suggests. The success rate decreases from 95% (in Table III)
to 87% for 7 agents, and from 84% to 75% for 15 agents. This
is roughly a 10% decrease, much less than the 90% drop that
would occur if the NN controller did not generalize its training
in order to perform well from initial states beyond those used
during training.

Figure 3 shows the progression of seven agents starting from
initial positions randomly selected from the range [0, 5] till
until they successfully converge to a V-formation. At t = 25,
we can observe that the agents have reached a V-formation,
and thus the convergence time is 25.

D. Statistical Model Checking Results

We use Monte Carlo (MC) approximation as a form of
Statistical Model Checking [4], [5] to compute confidence
intervals for the DNC’s success rate for convergence to V-
formation and for the (normalized) convergence time. The
main idea of MC is to use N random variables, Z1, . . . , ZN ,
also called samples, IID distributed according to a random
variable Z with mean µZ , and to take the sum µ̃Z = (Z1 +
. . .+ ZN)/N as the value approximating the mean µZ . Since
an exact computation of µZ is almost always intractable, an
MC approach is used to compute an (ε, δ)-approximation of
this quantity.

Additive Approximation [11] is an (ε, δ)-approximation
scheme where the mean µZ of an RV Z is approximated
with absolute error ε and probability 1− δ:

Pr[µZ − ε ≤ µ̃Z ≤ µZ + ε] ≥ 1− δ (6)

where µ̃Z is an approximation of µZ . An important issue is to
determine the number of samples N needed to ensure that µ̃Z
is an (ε, δ)-approximation of µZ . If Z is a Bernoulli variable
expected to be large, one can use the Chernoff-Hoeffding
instantiation of the Bernstein inequality and take N to be
N = 4 ln(2/δ)/ε2, as in [11]. This results in the following
additive approximation algorithm [5]:

We use this algorithm to obtain a joint (ε, δ)-approximation
of the mean success rate and mean normalized convergence
time for the DNC trained using CEGkR. Each sample Zi is
based on the result of an execution obtained by simulating

Algorithm 1: Additive Approximation Algorithm
Input: (ε, δ) with 0 < ε < 1 and 0 < δ < 1
Input: Random variables Zi, IID
Output: µ̃Z approximation of µZ
N = 4 ln(2/δ)/ε2;
for (i=0; i ≤ N ; i++) do

S = S + Zi;
µ̃Z = S/N ; return µ̃Z ;

TABLE V: SMC results for DNC success rate/convergence
time; ε = 0.01, δ = 0.0001

Agents µ̃SR µ̃CT

7 0.9511 0.3942
8 0.9453 0.4024
9 0.9382 0.4128

10 0.9305 0.4426
11 0.9262 0.4770
12 0.9141 0.5058
13 0.8994 0.5560
14 0.8727 0.5852
15 0.8419 0.6874
16 0.7338 0.7822

the system starting from a random initial state, and we take
Z = (B,R), where B is a Boolean variable indicating whether
the agents converged to a V-formation during the execution,
and R is a real value denoting the normalized convergence time
in the execution. The normalized convergence time is the time
when the global cost function first drops below the success
threshold and remains below it for the rest of the execution,
measured as a fraction of the total duration of the simulation.
The assumptions about Z required for validity of the additive
approximation hold, because RV B is a Bernoulli variable, the
success rate is expected to be large (i.e., closer to 1 than to 0),
and the proportionality constraint of the Bernstein inequality
is also satisfied for RV R.

In these experiments, the initial states are sampled from
the same uniform random distributions as in Section V-A, and
we set ε = 0.01 and δ = 0.0001, to obtain N = 396,140.
We perform the required set of N simulations for different
numbers of agents, ranging from 7 to 16.

Table V presents the results, specifically, the (ε, δ)-
approximations µ̃SR and µ̃CT of the mean success rate and
mean normalized convergence time, respectively. While the
results for the success rate are (as expected) numerically similar
to the results in Table II, the results in Table V are much
stronger, because they come with the guarantee that they are
(ε, δ)-approximations of the actual mean values.

VI. RELATED WORK

Distributed control/coordination has been used extensively
in multi-agent systems. Distributed controllers are typically
designed by hand for specific objectives, and they are often very
clever about what information is exchanged between agents and
how that information is used to update local state [12], [13].
Informally, coordination is required when the cost function is

non-separable. A cost function is separable if it does not contain
terms that couple the states of two different neighbors [14],
[15], [16]. Here we take the novel view of learning distributed
controllers from data generated using a centralized controller,
while avoiding coordination. We apply it to a problem whose
cost is clearly not separable and involves tight coupling of
state vectors of all pairs of agents.

Previous work on V-formation, including approaches based
on centralized and distributed model-predictive control, have
been considered in [7], [2], [3]. Other related work, includ-
ing [17], [18], [19], focuses on distributed controllers for
flight formation (of moving-wing aircraft) that operate in an
environment where the multi-agent system is already in the
desired formation and the distributed controller’s objective
is to maintain formation in the presence of disturbances. A
distinguishing feature of these approaches is the particular
formation they are seeking to maintain, including half-V [18],
ring and torus [17], and a leader-follower formation [19].
In [20], MPC-inspired approaches to system self-adaptation are
considered, including the Proactive Latency-aware Approach
(PLA) [21]. The PLA problem is designed as a Markov decision
process, where a sequence of actions is computed from the
current state for the length of the prediction horizon.

In terms of related work on counter-example-guided retrain-
ing, Dreossi et al. [22] propose an approach called counter-
example guided data augmentation to improve the performance
of machine learning models. They use synthetically generated
data items that are misclassified by the ML model to augment
the training data sets. In [23], the authors use counter-example
guided retraining as part of their strategy for synthesizing
partially observable Markov decision processes (POMDPs).
Claviere et al. [24] use counter-example guided training for
trajectory-tracking control of robotic vehicles.

The CEGkR retraining approach shares the same high-level
philosophy underlying these approaches, but there are subtle
differences in the way counter-examples are generated. In [24],
counter-examples are generated using falsification of desired
temporal properties about a closed-loop system, whereas in
our approach, safety constraints, if any, are included in the
cost function and multiple retraining data points are generated
from one counterexample. Further, our goal for retraining is to
learn a distributed controller, rather than an NN representation
of an existing controller.

In terms of deep-learning methodologies for synthesizing
distributed controllers, deep reinforcement learning is used
in [25] for designing controllers for UAVs that reach time-
varying formations. They also use a DNN to estimate how
good a state is, so the agent can choose actions accordingly.
Deep reinforcement learning is also used in [26] to generate a
controller for UAVs in uncertain environments. As the multi-
agent learning efficiency is constrained by the high-dimensional
and continuous action spaces, a methodology is presented
in [26] to slice the action spaces into a number of tractable
fractions to achieve efficient convergences of optimal policies
in continuous domains. Graph neural networks are deployed
in [27] to learn a distributed controller for a drone swarm

capable of achieving flocking formation. The learned controller,
which is synthesized by imitating the policy of a centralized
controller, exploits information from distant teammates using
only local communication interchanges.

VII. CONCLUSION

We have presented a new learning-based approach for design-
ing distributed controllers that uses centralized controllers to
generate the training data, in a teacher-learner fashion. The data
generated by a centralized controller undergoes a transformation
to yield the requisite training data, a transformation defined
by the information available to an agent in the distributed
setting. During training, we use counterexample-guided k-
fold retraining to generate additional data points to train
the distributed controller. We demonstrated the power of this
approach by developing a distributed neural controller for the
V-formation problem, and used Statistical Model Checking to
reason about the controller’s correctness.

The V-formation problem is particularly challenging. We
showed that a symmetric deterministic distributed controller
does not exist under certain reasonable assumptions. This
motivates the use of a data-driven approach to automatically
synthesize such controllers. The general idea of learning dis-
tributed controllers from training data generated by centralized
controllers is promising. We believe that our approach will
generalize to any distributed control synthesis problem whose
objective is specified by a state-based cost function. Investi-
gating its performance on other applications, and exploring
enhancements to our learning-based approach to distributed
controller design are directions for future work.

REFERENCES

[1] E. F. Camacho and C. Bordons Alba, Model Predictive Control. Springer,
2007.

[2] A. Lukina, L. Esterle, C. Hirsch, E. Bartocci, J. Yang, A. Tiwari, S. A.
Smolka, and R. Grosu, “ARES: Adaptive receding-horizon synthesis
of optimal plans,” in Proceedings, Part II, of the 23rd International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems - Volume 10206, (Berlin, Heidelberg), pp. 286–302, Springer-
Verlag, 2017.

[3] A. Lukina, A. Tiwari, S. A. Smolka, and R. Grosu, “Distributed
adaptive-neighborhood control for stochastic reachability in multi-agent
systems,” in Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, SAC ’19, (Limassol, Cyprus), pp. 914–921, ACM,
2019.

[4] K. G. Larsen and A. Legay, “Statistical model checking: Past, present, and
future,” in 6th International Symposium, ISoLA 2014, (Corfu, Greece),
Oct. 2014.

[5] R. Grosu, D. Peled, C. R. Ramakrishnan, S. A. Smolka, S. D. Stoller,
and J. Yang, “Using statistical model checking for measuring systems,”
in 6th International Symposium, ISoLA 2014, (Corfu, Greece), Oct. 2014.

[6] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
(Perth, Australia), pp. 1942–1948, IEEE, 1995.

[7] J. Yang, R. Grosu, S. A. Smolka, and A. Tiwari, “Love thy neighbor:
V-formation as a problem of model predictive control (Invited Paper),” in
27th International Conference on Concurrency Theory (CONCUR 2016),
vol. 59 of Leibniz International Proceedings in Informatics (LIPIcs),
(Dagstuhl, Germany), pp. 4:1–4:5, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016.

[8] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simula-
tions and Advanced Topics. Wiley, 2004.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[10] F. Chollet et al., “Keras.” https://keras.io, 2015.
[11] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet, “Approximate

probabilistic model checking,” in Verification, Model Checking, and
Abstract Interpretation (B. Steffen and G. Levi, eds.), (Berlin, Heidelberg),
pp. 73–84, Springer Berlin Heidelberg, 2004.

[12] F. Bullo, J. Cortes, and S. Martinez, “Distributed algorithms for robotic
networks,” in Encyclopedia of Complexity and Systems Science, Springer,
2009.

[13] J. W. Durham, A. Franchi, and F. Bullo, “Distributed pursuit-evasion
without global localization via local frontiers,” Autonomous Robots,
vol. 32, no. 1, pp. 81–95, 2012.

[14] W. B. Dunbar and R. M. Murray, “Distributed receding horizon control
for multi-vehicle formation stabilization,” Automatica, vol. 42, no. 4,
pp. 549–558, 2006.

[15] W. B. Dunbar, Distributed receding horizon control of multiagent systems.
PhD thesis, California Institute of Technology, 2004.

[16] T. Keviczky, F. Borrelli, and G. J. Balas, “Decentralized receding horizon
control for large scale dynamically decoupled systems,” Automatica,
vol. 42, pp. 2105–2115, 2006.

[17] R. D’Andrea and G. E. Dullerud, “Distributed control design for spatially
interconnected systems,” IEEE Transactions on Automatic Control,
vol. 48, pp. 1478–1495, Sep. 2003.

[18] J. M. Fowler and R. D’Andrea, “Distributed control of close formation
flight,” in Proceedings of the 41st IEEE Conference on Decision and
Control, 2002., vol. 3, (Las Vegas, USA), pp. 2972–2977, IEEE, Dec
2002.

[19] D. Ye, J. Zhang, and Z. Sun, “Extended state observer–based finite-
time controller design for coupled spacecraft formation with actuator
saturation,” Advances in Mechanical Engineering, vol. 9, no. 4, 2017.

[20] G. A. Moreno, A. V. Papadopoulos, K. Angelopoulos, J. Cámara, and
B. Schmerl, “Comparing model-based predictive approaches to self-
adaptation: Cobra and pla,” in 2017 IEEE/ACM 12th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), (Buenos Aires, Argentina), pp. 42–53, IEEE, May
2017.

[21] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive self-
adaptation under uncertainty: A probabilistic model checking approach,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, (New York, NY, USA), pp. 1–12, ACM,
2015.

[22] T. Dreossi, S. Ghosh, X. Yue, K. Keutzer, A. Sangiovanni-Vincentelli,
and S. A. Seshia, “Counterexample-guided data augmentation,” in
Proceedings of the 27th International Joint Conference on Artificial
Intelligence, IJCAI’18, (Stockholm, Sweden), pp. 2071–2078, AAAI
Press, 2018.

[23] S. Carr, N. Jansen, R. Wimmer, A. C. Serban, B. Becker, and U. Topcu,
“Counterexample-guided strategy improvement for pomdps using recurrent
neural networks,” in Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence, IJCAI’19, (Macao, China), pp. 5532–5539,
AAAI Press, 2019.

[24] A. Claviere, S. Dutta, and S. Sankaranarayanan, “Trajectory tracking
control for robotic vehicles using counterexample guided training of
neural networks,” International Conference on Automated Planning and
Scheduling (ICAPS), pp. 680–688, Jan 2019.

[25] R. Conde, J. R. Llata, and C. Torre-Ferrero, “Time-varying formation
controllers for unmanned aerial vehicles using deep reinforcement
learning,” CoRR, vol. 1706.01384, 2017.

[26] B. Yang and M. Liu, “Keeping in touch with collaborative UAVs: A
deep reinforcement learning approach,” in Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-
18, pp. 562–568, International Joint Conferences on Artificial Intelligence
Organization, 7 2018.

[27] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro,
“Learning decentralized controllers for robot swarms with graph neural
networks,” 2019.

https://keras.io

	Introduction
	Background
	Impossibility Results
	Neural V-formation
	Training a Distributed V-Formation Controller
	Counterexample-Guided k-fold Retraining

	Experimental Results
	CEGkR Performance Evaluation
	Comparing the Performance of DNC vs DAMPC
	Evaluating Robustness of Distributed Neural Controller
	Statistical Model Checking Results

	Related Work
	Conclusion
	References

