
1

Abductive Analysis of Administrative Policies
in Rule-based Access Control

Puneet Gupta, Scott D. Stoller, and Zhongyuan Xu

Abstract—In large organizations, access control policies are managed by multiple users (administrators). An administrative
policy specifies how each user in an enterprise may change the policy. Fully understanding the consequences of an administrative
policy in an enterprise system can be difficult, because of the scale and complexity of the access control policy and the
administrative policy, and because sequences of changes by different users may interact in unexpected ways. Administrative
policy analysis helps by answering questions such as user-permission reachability, which asks whether specified users can
together change the policy in a way that achieves a specified goal, namely, granting a specified permission to a specified user.
This paper presents a rule-based access control policy language, a rule-based administrative policy model that controls addition
and removal of facts and rules, and an abductive analysis algorithm for user-permission reachability. Abductive analysis means
that the algorithm can analyze policy rules even if the facts initially in the policy (e.g., information about users) are unavailable.
The algorithm does this by computing minimal sets of facts that, if present in the initial policy, imply reachability of the goal.

Index Terms—security policy, attribute-based access control, policy administration, rule-based policy, policy verification

F

1 INTRODUCTION

The increasingly complex security policies required by
applications in large organizations are more concise
and easier to administer when expressed in higher-
level policy languages. Recently, frameworks with
rule-based policy languages, which provide flexible
support for high-level attribute-based policies, have
attracted considerable attention.

In large organizations, access control policies are
managed by multiple users (administrators). An ad-
ministrative framework (also called administrative model)
is used to express policies that specify how each
user may change the access control policy. For ex-
ample, several administrative frameworks have been
proposed for role-based access control (RBAC) [1],
starting with the classic ARBAC97 model [2].

Fully understanding the implications of an adminis-
trative policy in an enterprise system can be difficult,
because of the scale and complexity of the access con-
trol policy and the administrative policy, and because
sequences of changes by different users may interact
in unexpected ways. Administrative policy analysis
helps by answering questions such as user-permission
reachability, which asks whether specified users can
together change the policy in a way that achieves a
specified goal, namely, granting a specified permis-
sion to a specified user. Several analysis algorithms
for user-permission reachability for ARBAC97 and
variants thereof have been developed, e.g., [3], [4], [5],

P. Gupta is with Google, Inc., Mountain View, CA. This work was done
while he was with the Department of Computer Science, Stony Brook
University, Stony Brook, NY 11794.
S. Stoller and Z. Xu are with the Department of Computer Sci-
ence, Stony Brook University, Stony Brook, NY 11794. Contact email:
stoller@cs.stonybrook.edu.

[6]. There is some work on administrative frameworks
for rule-based access control and analysis algorithms
for such frameworks [7], [8], [9], but it considers only
addition and removal of facts, not rules. Analysis
algorithms for ARBAC also consider, in effect, only
addition and removal of facts, not rules, because the
administrative operations in ARBAC correspond to
addition and removal of facts.

This paper defines ACAR (“Access Control and
Administration using Rules”), a rule-based access con-
trol policy language with a rule-based administrative
framework that controls addition and removal of facts
and rules. ACAR allows policies to be expressed
concisely and at a desirable level of abstraction. Nev-
ertheless, fully understanding the implications of an
administrative policy in ACAR might be more dif-
ficult, in some ways, than fully understanding the
implications of an ARBAC policy, because in addi-
tion to considering interactions between interleaved
sequences of changes by different administrators, one
must also consider chains of inferences using the facts
and rules in each intermediate policy.

This paper presents a symbolic analysis algorithm
for answering atom-reachability queries for ACAR
policies, i.e., for determining whether changes by
specified administrators can lead to a policy in which
some instance of a specified atom (an atom is like a
fact except that it may contain variables), called the
goal, is derivable. To the best of our knowledge, this
is the first analysis algorithm for a rule-based policy
framework that considers changes to the rules in the
policy as well as changes to the facts in the policy.
Atom reachability can express a variety of interesting
properties, including user-permission reachability.

Our algorithm translates a policy analysis problem

2

that involves changes to rules and facts into a prob-
lem that involves changes only to facts. We consider
this approach to be a contribution of our work; we
have not seen it in prior work. This approach can
be adapted to other settings, but not universally. In
our setting, this approach works well because it is
possible to simulate a rule granting permission to add
rules using one rule granting permission to add facts
and one auxiliary rule, as described in Section 4.1.
This is a consequence of the design of ACAR. With
other administrative frameworks, simulating addition
of rules using addition of facts might be difficult or
inefficient.

It is often desirable to be able to analyze rule-based
policies with incomplete knowledge of the facts in the
initial policy; for example, a database containing those
facts might not exist yet, or it might be unavailable to
the policy engineer. Even if a database of facts exists
and is available, more general analysis results that
hold under limited assumptions about the initial facts
are often preferable to results that hold for only one
given set of initial facts. For example, consider the
policy that a clinician at a given hospital may treat a
patient if he is a member of a hospital workgroup that
is treating that patient. A policy auditor might want
to analyze the rules in the hospital policy to compute
all sequences of administrative actions (or “plans”)
that may allow a user to be a treating clinician for a
patient, independent of data about specific patients,
workgroups, etc. Even if such data exists and is avail-
able, it is transient, and the analysis is more thorough
if it considers more general scenarios.

There are two approaches to solve such an analysis
problem. In the deductive approach, the user specifies
constraints (expressing assumptions) about the initial
facts, and the analysis determines whether the goal
is reachable under those constraints. However, for-
mulating appropriate constraints might be difficult.
We adopt an abductive approach, in which the analysis
determines conditions on the set of facts in the initial
policy under which the goal is reachable. More specif-
ically, our abductive analysis determines minimal set
of atoms that, if present in the initial policy, imply
reachability of the goal. This approach is inspired by
Becker et al.’s abductive policy analysis for rule-based
policy languages [10], [11], and our algorithm builds
on their tabling-based policy evaluation algorithm.

This paper is a revised and extended version of
[12]. The major changes are replacement of the tabling
algorithm in [10] with the tabling algorithm in [11]
in phase 3 of our algorithm, addition of wildcards
to the policy language, extension of the algorithm to
produce plans, and addition of details, examples, and
(in the supplemental material) correctness proofs.

2 THE ACAR FRAMEWORK
This section defines the ACAR (Access Control and
Administration using Rules) framework.

t ::= v | c(t∗)
aex ::= pex (t∗)
ain ::= pin(t∗)
aneg ::= !pex ((t |)∗)

lit ::= aex | aneg | ain
rule ::= ain :- lit∗

fact ::= ground instance
of aex

Fig. 1. Grammar for ACAR policy language.

2.1 Policy Language and Administrative Frame-
work

The policy language is a Prolog-like rule-based lan-
guage with constructors and negation. Predicates are
classified as intensional or extensional. Intensional
predicates are defined by rules. Extensional predi-
cates are defined by facts. Constructors are used to
construct terms representing operations, rules (being
added or removed), parameterized roles, etc. The
language is parameterized by the sets of predicates,
variables, and constructors. The grammar appears in
Figure 1. pin, pex, c, and v range over intensional
predicates, extensional predicates, constructors, and
variables, respectively. t , a , and lit are mnemonic for
term, atom, and literal, respectively. Predicates and
constructors start with a lowercase letter; variables
start with an uppercase letter. Negation is denoted
by “!”. Constants are represented as constructors
with arity zero; the empty parentheses are elided. t∗

denotes a comma-separated sequence of zero or more
instances of non-terminal t. A term or atom is ground
if it does not contain any variables. A policy is a set
of rules and facts.

Negation and Wildcard: The grammar ensures
that negation is applied only to extensional predicates.
Our experience with case studies suggests that this
restriction is acceptable for many typical policies. For
example, in our healthcare network case study, mem-
bership in workgroups is recorded in an extensional
predicate, and a negative premise involving that pred-
icate ensures that a manager u cannot appoint the
head of a workgroup of which u is a member.

To increase the expressiveness, the language allows
the special symbol “ ”, called wildcard, to be used
as an argument of an extensional predicate (but not
as an argument of a constructor) in a negative lit-
eral. Using a wildcard as an argument in a neg-
ative premise represents a universal quantification
over the value of that argument. For example, in the
policy of the substance abuse facility gcSAF in our
healthcare network case study, a clinician treating a
patient can create a new encounter with a patient
by adding a fact to the encounter predicate. The
predicate encounter(EncID, Pat, Wkgp, Fac,
Type) means there exists a patient encounter with
unique identifier EncID for patient Pat at facility Fac
of type Type and is handled by workgroup Wkgp. The
following rule uses negation and wildcard to ensure
that the identifier for the new encounter is fresh.

3

permit(Cli, addFact(encounter(EncID, Pat,
Wkgp, gcSAF, Type)))

:- memberOf(Cli, trCli(Pat, gcSAF)),
!encounter(EncID, _, _, _, _)

Permissions and Administrative Operations:
The intensional predicate permit(user, operation)
specifies permissions, including permissions for
administrative operations. The administrative
operations are addRule(rule), removeRule(rule),
addFact(aex), and removeFact(aex). Let
AdminOp = {addRule, removeRule, addFact,
removeFact}. addRule and addFact have the
same effect as assert in Prolog. removeRule and
removeFact have the same effect as retract in
Prolog. We use separate administrative operations
for facts and rules to improve readability.

The framework defines how permissions to perform
administrative operations are controlled. These per-
missions are expressed using the permit predicate
but given a special interpretation, as specified below
in the semantics of administrative policies.

For an operation op, an op permission rule is a
rule whose conclusion has the form permit(...,
op(...)). An administrative permission rule is an op
permission rule with op ∈ AdminOp.

2.2 Representation of Role-Based Access Control

Role-based access control (RBAC) can be expressed
in our framework in a straightforward way. This
section describes how some core features of RBAC
are modeled in the running example introduced in
Section 2.3 and in the healthcare network case study
described in Section 5.

Role Membership: Role membership
is represented by the intensional predicate
memberOf(User, Role). The extensional predicate
directMemberOf(User, Role) is the direct (i.e.,
not including inheritance) user-role assignment.
Thus, users are assigned to roles by adding facts to
the directMemberOf predicate. The following rule
expresses that a user u is a member of role R if u is
directly assigned to R.

memberOf(User, Role)
:- directMemberOf(User, Role) (2.1)

Role hierarchy is represented by recursive
rules defining memberOf. For example, the rule
memberOf(User,r1) :- memberOf(User,r2)
expresses that role r1 is senior to role r2.

Role Activation: A member of a role must acti-
vate the role to use the permissions granted to that
role [1]. Activation of role Role for user User is
expressed by adding the fact hasAct(User, Role)
to the extensional relation hasAct. The following
rules express that a user can activate a role of which
he is a member, and that a user can deactivate any of
his activated roles.

permit(User, addFact(hasAct(User, Role)))
:- memberOf(User, Role) (2.2)

permit(User, removeFact(hasAct(User, Role)))
:- hasAct(User, Role) (2.3)

2.3 Running Example
As a running example, we use a fragment of the
healthcare network case study described in Section
5. The running example focuses on the policy for
appointing a user as a treating clinician for a patient
at gwHosp (“get well hospital”), a hospital in the
healthcare network. The policy officer at gwHosp can
add rules that define membership in the trCli role.
We refer to the policy officer at gwHosp as the HPO,
mnemonic for Hospital Policy Officer.

Predicates used in this example include
consentTT(Pat, Cli, Fac), which means
clinician Cli has patient Pat’s consent to treat
him at facility Fac, and encounter(EncID, Pat,
Wkgp, Fac, Type), which means there is a patient
encounter with unique identifier EncID for patient
Pat at facility Fac of type Type and being handled
by workgroup Wkgp.

Roles used in this example include the follow-
ing. Members of trCli(Pat, Fac) are treating
clinicians for patient Pat at facility Fac. Mem-
bers of pOfc(Fac) are policy officers at facility
Fac. Members of cli(Fac, Spcty) are clinicians
at facility Fac under specialty Spcty. Members of
wkgp(W, Fac, Spcty, WT) are members of the
workgroup W, which is of type WT (mnemonic for
“Workgroup Type”), under specialty Spcty at facility
Fac. Members of patient are patients. Members of
agent(Pat) are agents of patient Pat.

The running example policy appears in Figure 2.
It allows HPO to define the trCli role using the
following two kinds of rules: if the user has at least
explicit consent to treatment for a patient, then he
can be a treating clinician for that patient; if the
user is at least a member of a workgroup that is
treating the patient, then that user can be a treating
clinician for that patient. Rules (2.4) and (2.5) allow
the HPO to add these two kinds of rules, respectively.
In this description, “at least” indicates that the stated
requirement is the minimal one; the HPO may im-
pose additional requirements, by including additional
premises in added rules, as discussed in Section 2.4.

Rules (2.6) and (2.8) allow HPO to add rules that
allow patients and their agents, respectively, to grant
consent to treatment. Rules (2.7) and (2.9) allow HPO
to add rules that allow patients and their agents,
respectively, to revoke consent to treatment.

To help express queries, we also include in the
policy a few facts about prototypical users, stating that
cli1 is a surgeon at gwHosp, pat1 is a patient, and
hpo1 is a gwHosp policy officer. These facts appear
at the bottom of Figure 2.

4

permit(User,
addRule(memberOf(Cli, trCli(Pat, gwHosp))

:- consentTT(Pat, Cli, gwHosp)))
:- hasAct(User, pOfc(gwHosp)) (2.4)

permit(User,
addRule(memberOf(Cli, trCli(Pat, gwHosp))
:- hasAct(Cli, cli(gwHosp, Spc)),

memberOf(Cli, wkgp(W, gwHosp, Spc, WT)),
encounter(EncID, Pat, W, gwHosp, Type)))

:- hasAct(User, pOfc(gwHosp)) (2.5)

permit(User,
addRule(permit(Pat, addFact(consentTT(Pat,

Cli, gwHosp)))
:- hasAct(Pat, patient)))

:- hasAct(User, pOfc(gwHosp)) (2.6)

permit(User,
addRule(permit(Pat,removeFact(consentTT(Pat,

Cli, gwHosp)))
:- hasAct(Pat, patient)))

:- hasAct(User, pOfc(gwHosp)) (2.7)

permit(User,
addRule(permit(Ag, addFact(consentTT(Pat,

Cli, gwHosp)))
:- hasAct(Ag, agent(Pat))))

:- hasAct(User, pOfc(gwHosp)) (2.8)

permit(User,
addRule(permit(Ag, removeFact(consentTT(Pat,

Cli, gwHosp)))
:- hasAct(Ag, agent(Pat))))

:- hasAct(User, pOfc(gwHosp)) (2.9)

hasAct(cli1, cli(gwHosp, surgeon))
hasAct(pat1, patient)
hasAct(hpo1, pOfc(gwHosp))

Fig. 2. Running example.

2.4 Semantics

A rule is safe if it satisfies the following conditions.
(1) Every variable that appears in the conclusion
outside the arguments of addRule and removeRule
also appears in a positive premise. (2) Every variable
that appears in a negative premise also appears in a
positive premise. (3) In every occurrence of permit, the
second argument is a constructor term, not a variable.
(4) Every occurrence of addRule or removeRule is
in the second argument of permit in the conclusion
of a rule. A policy is safe if all rules in the policy
are safe. Note that condition (1) is essentially the con-
ventional notion of safety in logic programs, which,
for languages like ours that do not contain equality
premises, requires that every variable that appears in
the conclusion also appears in a positive premise.

A policy P is well-formed if (1) P is safe, (2)
the argument to each occurrence of addFact and
removeFact in P is an extensional atom (not neces-
sarily ground), and (3) for each extensional predicate
p, if a wildcard is used as an argument to p in any

rule in P , then P does not contain removeFact
permission rules for p (Section 4.4 explains the reason
for this requirement).

Intuitively, the semantics [[P]] of a policy P contains
all atoms deducible from P . Formally, the semantics
[[P]] of a policy P is the least fixed-point of FP , defined
by

FP (I) = {aθ | (a :- a1, . . . , am, !b1, . . . , !bn) ∈ P
∧ (∀i ∈ [1..m] : aiθ ∈ I)
∧ (∀i ∈ [1..n] : biθ 6∈ I)}.

To simplify notation, this definition assumes that
the positive premises appear before the negative
premises; this does not affect the semantics. We some-
times write P ` a (read “P derives a”) to mean a ∈
[[P]]. In the definition of FP , if bi contains wildcards,
bi 6∈ I holds if I contains no terms that match bi, where
a wildcard matches any term.

Fixed Administrative Policy: Our goal in this
work is to analyze a changing access control policy
subject to a fixed administrative policy. Therefore, we
consider policies that satisfy the fixed administrative
policy requirement, which says that administrative per-
mission rules cannot be added or removed, except
that addFact administrative permission rules can be
added. This exception is useful in practice and can be
accommodated easily in the reachability analysis.

We formalize this requirement as follows. A
higher-order administrative permission rule is an ad-
ministrative permission rule whose conclusion has
the form permit(. . . , op(permit(. . . , op′(. . .))) with
op ∈ AdminOp and op′ ∈ AdminOp. A rule satisfies
the fixed administrative policy requirement if either it
is not a higher-order administrative permission rule
or it is an administrative permission rule having the
above form with op = addRule and op′ = addFact.
A policy satisfies the fixed administrative policy re-
quirement if all of the rules in it do.

Even in a policy with no higher-order adminis-
trative permission rules, the available administrative
permissions may vary, because addition and removal
of other rules and facts may change the truth values
of the premises of administrative permission rules.

Administrative Policy Semantics: The above se-
mantics is for a fixed policy. We specify the semantics
of administrative operations and administrative per-
missions by defining a transition relation T between
policies, such that 〈P, u : op, P ′〉 ∈ T iff policy P
permits user u to perform administrative operation op
thereby changing the policy from P to P ′. We refer to
u:op as an administrative action.

Rule R is at least as strict as rule R′ if (1) R and R′

have the same conclusion, and (2) the set of premises
of R is a superset of the set of premises of R′.
Comparison of rules ignores renaming of variables (in
other words, it is based on α-equality).
〈P, u : addRule(R), P ∪ {R}〉 ∈ T if there exists a

rule R′ such that (1) R is at least as strict as R′, (2)

5

P ` permit(u,addRule(R′)), (3) R 6∈ P , (4) R satisfies
the fixed administrative policy requirement, and (5) R
satisfies the safe policy requirement. Note that R′ may
be a partially or completely instantiated version of
the argument of addRule in the addRule permission
rule used to satisfy condition (2); this follows from
the definition of `. Thus, an administrator adding a
rule may specialize the “rule pattern” in the argument
of addRule by instantiating some of the variables
in it and by adding premises to it; the motivation
for this is illustrated below. We call the argument
of addRule or removeRule a “rule pattern”, even
though it is generated by the same grammar as rules,
to emphasize that it can be specialized in these ways.
〈P, u :removeRule(R), P \ {R}〉 ∈ T if there exists

a rule R′ such that R is as least as strict as R′, P `
permit(u,removeRule(R′)), and R ∈ P .
〈(P, u : addFact(a), P ∪ {a}〉 ∈ T if P `

permit(u,addFact(a)) and a 6∈ P .
〈(P, u : removeFact(a), P \ {a}〉 ∈ T if P `

permit(u,removeFact(a)) and a ∈ P .
Discussion of Semantics of addRule: Our se-

mantics for addRule permission rules allows addi-
tion of rules that are stricter than the specified rule
patterns. This greatly increases flexibility for admin-
istrators to customize rules being added, while not
allowing them to add rules that violate desired safety
properties. For example, the healthcare network’s pol-
icy might contain the following rule, which allows
a facility’s policy officer to add rules allowing the
facility’s human resource (HR) manager to appoint
users who have federal certification for medical prac-
tice as clinicians at that facility by making them direct
members of the clinician role.

permit(PO,
addRule(permit(HR,

addFact(directMemberOf(Cli,
cli(Facility, Spcty))))

:- memberOf(HR, hrManager(Facility)),
fedCertCli(Cli)))

:- hasAct(PO, pOfc(Facility))

Using this administrative rule, a gwHosp policy offi-
cer is permitted to add a rule with additional premises
that restrict the Human Resources (HR) manager to
appoint only clinicians who are also certified by the
state. For example, pOfc(gwHosp) might add the
following rule to gwHosp policy:

permit(HR, addFact(directMemberOf(Cli,
cli(Facility, Spcty))))

:- memberOf(HR, hrManager(Facility)),
fedCertCli(Cli), stateCertCli(Cli)

3 ABDUCTIVE REACHABILITY

This section defines abductive atom-reachability
queries, solutions to such queries, and comprehensive
solutions to such queries. A solution describes one
initial state from which the goal in the query is

reachable; a comprehensive solution describes all such
initial states.

Let a and b denote atoms, L denote a literal, and ~L
denote a sequence of literals. An atom a is subsumed by
an atom b, denoted a � b, iff there exists a substitution
θ such that a = bθ. For an atom a and a set A of atoms,
let [[a]] = {a′ | a′ � a} and [[A]] =

⋃
a∈A [[a]].

A specification of abducible atoms is a pair A =
〈Ab,nAb〉, where Ab and nAb are sets of extensional
atoms. Instances of atoms in Ab are abducible, except
instances of atoms in nAb are not abducible. More for-
mally, an atom a is abducible with respect to 〈Ab,nAb〉
if a ∈ [[〈Ab,nAb〉]], where [[〈Ab,nAb〉]] = [[Ab]] \ [[nAb]].

Given an initial policy P0, a set U0 of users (the
active administrators), and a transition relation τ on
policies, the state graph for P0, U0, and τ , denoted
SG(P0, U0, τ), contains policies reachable from P0 by
actions of users in U0 according to transition relation
τ . Specifically, SG(P0, U0) is the least graph 〈N,E〉
such that (1) P0 ∈ N and (2) 〈P, u :op, P ′〉 ∈ E and
P ′ ∈ N if P ∈ N ∧u ∈ U0∧〈P, u:op, P ′〉 ∈ τ . Note that
the parameter τ in this definition may be instantiated
with the transition relation T defined in Section 2.4 or
restricted versions of T defined later.

An abductive atom-reachability query is a tuple
〈P0, U0, A,G0〉, where P0 is a policy (the initial policy),
U0 is a set of users (the users trying to reach the goal),
A is a specification of abducible atoms, and G0 is an
atom called the goal. Informally, P0 contains rules and
facts that are definitely present in the initial state,
and [[A]] contains facts that might be present in the
initial state. Other facts are definitely not present in
the initial state and, since we make the closed world
assumption, are considered to be false.

A ground solution to an abductive atom-reachability
query 〈P0, U0, A,G0〉 is a tuple 〈G,∆, π〉 such that G is
a ground instance of G0, ∆ is a ground subset of [[A]]
called the residue, and π is a path in SG(P0∪∆, U0, T)
from P0 to a policy P such that P ` G. Informally, a
ground solution 〈∆, G, π〉 indicates that a policy P in
which G holds is reachable from P0 ∪∆ through the
sequence of administrative actions by users in U0 that
appears on the edges of π. We sometimes refer to π
as a plan.

A minimal-residue ground solution to a query is a
ground solution 〈G,∆, π〉 such that, for all ∆′ ⊂ ∆,
there does not exist π′ such that 〈G,∆′, π′〉 is a ground
solution to the query.

Let GndSoln(Q) and MinGndSoln(Q) denote the
set of ground solutions and minimal-residue ground
solutions, respectively, for an abductive reachability
query Q.

A tuple disequality has the form 〈t1 . . . , tn〉 6=
〈t′1, . . . , t′n〉, where the ti and t′i are terms.

A substitution θ is ground, denoted ground(θ), if it
maps variables to ground terms. Let GndSubst denote
the set of ground substitutions.

A comprehensive solution to an abductive atom-

6

reachability query Q = 〈P0, U0, A,G0〉 is a set S of
tuples of the form 〈G,∆, π,D〉, where G is an atom
(not necessarily ground), ∆ is a set of atoms (not
necessarily ground), π is a path (i.e., an alternating
sequence of policies and administrative actions, not
necessarily ground, starting and ending with a pol-
icy), and D is a set (interpreted as a conjunction) of
tuple disequalities over the variables in ∆ and G, such
that

Soundness: S represents only ground solutions
to the query, i.e., ∀〈G,∆, π,D〉 ∈ S. ∀θ ∈
GndSubst . Dθ = true ⇒ 〈Gθ,∆θ, πθ〉 ∈
GndSoln(Q).
Comprehensiveness: S represents all minimal-
residue ground solutions to the query, i.e.,
∀〈G′,∆′, π′〉 ∈ MinGndSoln(Q). ∃〈G,∆, π,D〉 ∈
S. ∃θ ∈ GndSubst . Dθ = true∧G′ = Gθ∧∆′ = ∆θ.

A variety of interesting properties can be expressed
as atom reachability. User-permission reachability can
be expressed as atom reachability, by taking the goal
to be an appropriate instance of permit. For role-
based policies, user-role reachability can be expressed
as atom reachability, by taking the goal to be an
appropriate instance of memberOf. Atom reachability
queries can specify that a permission or role should
be reachable only under certain conditions, e.g., that
a role is reachable only if a user associated with
that role has granted consent, as in the running
example below. Separation of duty properties can be
expressed as atom reachability. For example, atom
reachability can be used to check whether a user
can be the purchasing agent and accounting agent
for a transaction, by adding a rule such as goal()
:- memberOf(U, PurchasingAgent(Trans)),
memberOf(U, AccountingAgent(Trans)).

3.1 Running Example
We illustrate abductive atom-reachability queries us-
ing the running example in Section 2.3. Our sample
query asks whether a clinician may be a treating clini-
cian without having the patient’s consent to treatment.
To express this, we add the following rule to the initial
policy:

treatingWithoutConsent(Pat, Cli)
:- memberOf(Cli, trClin(Pat, gwHosp)),

!consentToTreatment(Pat, Cli, gwHosp)

The initial policy P0 contains the rules and facts
in Section 2.3 and this rule. The set U0 of active
administrators is {hpo1, pat1}. The specification of
abducible atoms is 〈{memberOf(User, wkgp(W,
gwHosp, Spcty, WT)), encounter(EncID,
Pat, W, gwHosp, Type)}, ∅〉. The goal G0 is
treatingWithoutConsent(pat1, cli1).

3.2 Undecidability
The abductive atom-reachability problem is unde-
cidable. We prove this by reduction from the user-

role reachability problem for PARBAC without role
hierarchy, which is known to be undecidable [6].
The reduction is straightforward and is described in
Section 8 in the supplemental material.

4 ANALYSIS ALGORITHM

The algorithm has four phases. Phase 1 transforms
the policy to simulate addRule and removeRule (in
other words, the effects of adding and removing rules
are simulated without actually adding and remov-
ing rules). Phase 2 transforms the policy to simulate
addFact and removeFact. Phase 3 is a modified
version of Becker et al.’s algorithm for tabled evalua-
tion with abduction; it produces candidate solutions.
The policy transformations and algorithm modifica-
tions are necessary because the original version of
the algorithm is designed to derive a goal from a
fixed policy. The transformations and modifications
together enable the modified algorithm to compute
sets of policy updates (i.e., administrative operations)
needed to derive the goal. However, Phase 3 does
not consider the order in which these administrative
operations should be performed. Phase 4 checks all
conditions that depend on the order in which admin-
istrative operations are performed. These conditions
relate to negation, because in the absence of negation,
removals are unnecessary, and additions can be done
in any order consistent with the logical dependencies
that the tabling algorithm already takes into account.

4.1 Phase 1: Simulate addRule transitions, elimi-
nate removeRule transitions
This phase transforms the given policy P0 into
a policy simAddRule(P0) that is used instead of
P0 in subsequent phases of the algorithm. P0 and
simAddRule(P0) are not equivalent. Informally, the
relationship between them is that simAddRule(P0)
contains additional rules that simulate the effects
of addRule transitions using addFact transitions;
adding rules to simulate removeRule transitions is
unnecessary, as discussed below. This relationship be-
tween P0 and simAddRule(P0) is captured by the sim-
ilarity relation. Policies P and P ′ are similar, denoted
P ' P ′, if P and P ′ contain the same rules and facts
with two exceptions: (1) P contains no rules involving
auxiliary predicates, and the set of rules in P ′ that
involve auxiliary predicates is exactly the set of rules
obtained by transforming the addRule permission
rules in P using the simAddRule transformation; and
(2) P contains no facts involving auxiliary predicates,
and the set of facts in P ’ that involve auxiliary pred-
icates are exactly those needed to simulate rules that
have been added to P using addRule permission
rules (a precise definition appears in Section 9 in
the supplemental material). Similarity implies that
policies are equivalent with respect to derivability of
atoms: if P and P ′ are similar, then for each atom a for

7

a predicate other than an auxiliary predicate, a ∈ [[P]]
iff a ∈ [[P ′]].

The no-addRule, no-removeRule transition rela-
tion T−aR,−rR is defined the same way as the tran-
sition relation T in Section 2.4 except addRule
transitions and removeRule transitions are elimi-
nated. An atom is reachable in a state graph iff the
state graph contains a policy in which that atom
is derivable. The policy simAddRule(P0) produced
by this phase is designed so that, for every policy
P in the state graph SG(P0, U0, T), the state graph
SG(simAddRule(P0), U0, T−aR,−rR) contains a policy
similar to P . This implies the same atoms are reach-
able in these state graphs.

Eliminate removeRule transitions: To see why
it is safe to simply eliminate removeRule transitions,
without including rules that simulate them in P ′,
note that such transitions remove only rules defining
intensional predicates, and hence the effect of such
transitions is to make intensional predicates smaller.
Since negation cannot be applied to intensional pred-
icates, making intensional predicates smaller never
makes more facts (including instances of the goal)
derivable. Therefore, every instance of the goal that is
derivable in some policy in SG(P0, U0, T) is derivable
in some policy in SG(P0, U0, T↓aR,−rR), where the no-
removeRule transition relation T↓aR,−rR is defined
the same way as the transition relation T in Section
2.4 except removeRule transitions are eliminated.
Conversely, since SG(P0, U0, T↓aR,−rR) is a subgraph
of SG(P0, U0, T), every instance of the goal that is
derivable in some policy in SG(P0, U0, T↓aR,−rR), is
derivable in some policy in SG(P0, U0, T). Therefore,
elimination of removeRule transitions does not affect
the answer to abductive atom-reachability queries.

Simulate addRule transitions: We add rules
that use addFact to simulate the effect of addRule.
Specifically, the policy simAddRule(P) is obtained
from P as follows. Let R be an addRule permis-
sion rule permit(U,addRule (L :- ~L1)) :- ~L2 in
P . Two rules are added to simulate R. One rule
is the rule pattern in the argument of addRule,
extended with an additional premise using a fresh
extensional predicate auxR that is unique to the rule:
L :- ~L1,auxR(~X), where the vector of variables ~X
is ~X = vars(L :- ~L1) ∩ (vars({U}) ∪ vars(~L2)). The
other is an addFact permission rule that allows the
user to add facts to this new predicate: permit(U,
addFact(auxR(~X))) :- ~L2. The auxiliary predicate
auxR keeps track of which instances of the rule
pattern have been added. Recall from Section 2.1 that
users are permitted to instantiate variables in the rule
pattern when adding a rule. Note that users must
instantiate variables that appear in the rest of the
addRule permission rule, i.e., in vars({U})∪vars(~L2),
because if those variables are not grounded, the
permit fact necessary to add the rule will not be

derivable using rule R. Therefore, each fact in auxR
records the values of those variables. In other words,
an addRule transition t in SG(P0, U0, T) in which
the user adds an instance of the rule pattern in the
argument of addRule in R with ~X instantiated with
~c is “simulated” in SG(simAddRule(P0), U0, T−aR,−rR)
by an addFact transition t that adds auxR(~c).

SG(P0, U0, T) also contains transitions t′ that are
similar to t except that the user performs additional
specialization of the rule pattern by instantiating ad-
ditional variables in the rule pattern or by adding
premises to it. Those transitions are eliminated by
this transformation, i.e., there are no corresponding
transitions in SG(simAddRule(P0), U0, T−aR,−rR). This
is sound, because those transitions lead to policies
in which the intensional predicate p that appears in
literal L (i.e., L is p(. . .)) is smaller, and as argued
above, since negation cannot be applied to intensional
predicates, eliminating transitions that lead to smaller
intensional predicates does not affect the answer to
abductive atom-reachability queries. This is the tech-
nical meaning of the informal statement in Section 2
that allowing administrators to add stricter rules does
not enable them to violate safety requirements.

Example: Figure 3 presents the rules added to
P0 by the simAddRule transformation for the running
example introduced in Sections 2.3 and 3.1. Recall
that the initial policy P0 consists of all the rules and
facts presented in those sections. Note that a nullary
predicate may be empty (i.e., contain no facts) or it
may contain a single fact represented by a 0-tuple.

4.2 Phase 2: Simulate addFact transitions and
removeFact transitions

The transformation in this phase adds rules that
use ordinary inference to simulate the effects of
addFact and removeFact transitions. For example,
an addFact permission rule that allows addition of a
fact a is simulated by a rule that makes a derivable in
the current policy. Similarly, an removeFact permis-
sion rule that allows removal of a fact a is simulated
by a rule that makes !a derivable in the current policy.

Specifically, for each addFact permission rule
permit(U,addFact(a)) :- ~L, the transformation
adds the rule a :- ~L,u0(U). The transformation also
introduces a new extensional predicate u0 and, for
each u ∈ U0, the fact u0(u) is added to the policy.
For example, to simulate rule (4.1) in Figure 3, the
transformation adds the rule:

consentTT(Pat, Cli, gwHosp)
:- hasAct(Pat, patient), aux2.6(), u0(Pat)

The set of active administrators U0 =
{hpo1, pat1} is represented as facts
u0(hpo1), u0(pat1) in the transformed policy.
Similarly, for each removeFact permission
rule permit(U,removeFact(a)) :- ~L, the

8

memberOf(Cli, trCli(Pat, gwHosp))
:- consentTT(Pat, Cli, gwHosp), aux2.4()

permit(User,addFact(aux2.4()))
:- hasAct(User,pOfc(gwHosp))

memberOf(Cli, trCli(Pat, gwHosp))
:- hasAct(Cli, cli(gwHosp, Spcty)),

memberOf(Cli, wkgp(W, gwHosp,
Spcty, WT)),

encounter(EncID, Pat, W, gwHosp, Type),
aux2.5()

permit(User,addFact(aux2.5()))
:- hasAct(User,pOfc(gwHosp))

permit(Pat, addFact(consentTT(Pat, Cli,
gwHosp)))

:- hasAct(Pat, patient), aux2.6() (4.1)

permit(User,addFact(aux2.6()))
:- hasAct(User,pOfc(gwHosp))

permit(Pat, removeFact(consentTT(Pat,
Cli, gwHosp)))

:- hasAct(Pat, patient), aux2.7()

permit(User,addFact(aux2.7()))
:- hasAct(User,pOfc(gwHosp))

permit(Ag, addFact(consentTT(Pat, Cli,
gwHosp)))

:- hasAct(Ag, agent(Pat)), aux2.8()

permit(User,addFact(aux2.8()))
:- hasAct(User,pOfc(gwHosp))

permit(Ag, removeFact(consentTT(Pat, Cli,
gwHosp)))

:- hasAct(Ag, agent(Pat)), aux2.9()

permit(User,addFact(aux2.9()))
:- hasAct(User,pOfc(gwHosp))

Fig. 3. Rules added to P0 by the simAddRule transfor-
mation for the running example.

transformation adds the rule !a :- ~L,u0(U).
Let simAddRmFact(P,U0) denote the policy obtained
by transforming policy P as described above, with
set U0 of active administrators.

The intention underlying the design of this transfor-
mation is that the set of atoms reachable in state graph
SG(simAddRule(P0), U0, T−aR,−rR) equals the set of
atoms reachable in state graph SG(simAddRmFact(
simAddRule(P0), U0), U0, T−aR,−rR,−aF,−rF), where
T−aR,−rR,−aF,−rF is the transition relation
without addRule, removeRule, addFact, or
removeFact transitions. But then all transitions
have been removed, so this is equivalent to the
intention that the set of atoms reachable in the
state graph SG(simAddRule(P0), U0, T−aR,−rR)
equals the set of atoms derivable in the policy
simAddRmFact(simAddRule(P0), U0). However,

the transformation does not quite achieve this
goal—in other words, this equality does not
quite hold—because the meaning of the original
administrative permission rules differ from the
meaning of the inference rules used to simulate them.
For addFact, the original addFact permission
rule means that a might (or might not) be added
by an administrator when ~L holds, while the
added rule means that a necessarily holds (in the
transformed policy) when ~L holds. Similarly, for
removeFact, the original removeFact permission
rule means that a might (or might not) be removed
by an administrator—causing !a to hold—when ~L
holds, while the transformed rule means that !a
necessarily holds when ~L holds. This change in the
meaning of the rules affects the results of the tabling
algorithm in phase 3, which is used to compute
the atoms derivable from the transformed policy
simAddRmFact(simAddRule(P0), U0). Specifically,
because phase 3 does not attempt to detect conflicts
between negative subgoals and added facts or
conflicts between positive subgoals and removed
facts, it may produce derivations of atoms that are
not actually derivable due to such conflicts (and are
not reachable in SG(simAddRule(P0), U0, T−aR,−rR)).
The overall algorithm is still sound, because phase
4 detects such conflicts in derivations of atoms and
discards candidate solutions that involve those atoms.

Example: Figure 4 presents rules added to policy
simAddRule(P0) by simAddRmFact transformation.

4.3 Phase 3: Tabled Policy Evaluation
Phase 3 is a modified version of Becker et al.’s algo-
rithm for tabled evaluation with abduction [11] with
the extension for proof graph construction [10]. We
first present the original version of the algorithm and
then describe our modifications.

4.3.1 Becker et al.’s Algorithm
Becker et al.’s algorithm appears in Figure 5. It uses

resolution, extended to perform abduction. During
resolution, when an attempt to prove a subgoal fails, if
the subgoal is abducible, then it is assumed to be true,
in which case it is said to be abduced, and the proof of
the parent goal continues. The algorithm keeps track
of abductions: each goal is associated with a set of
abduced atoms on which it depends. The algorithm
constructs a forest of proof trees, each consisting of a
root node, intermediate goal nodes, and answer nodes as
leaf nodes, defined as follows.

A node is either a root node 〈G〉, where G is an atom,
or a tuple of the form 〈G; ~Q;S;~c;R; ∆〉, where G is
an atom called the index (the goal whose derivation
this node is part of), ~Q is a list of subgoals that
remain to be solved in the derivation of the goal, S
is the partial answer (the instance of G that can be
derived using the derivation that this node is part

9

memberOf(Cli, trCli(Pat, gwHosp))
:- consentTT(Pat, Cli, gwHosp), aux2.4()

aux2.4() :- u0(User),hasAct(User,pOfc(gwHosp))

memberOf(Cli, trCli(Pat, gwHosp))
:- hasAct(Cli, cli(gwHosp, Spcty)),

memberOf(Cli, wkgp(W, gwHosp, Spcty, WT)),
encounter(EncID, Pat, W, gwHosp, Type),
aux2.5()

aux2.5() :- u0(User),hasAct(User,pOfc(gwHosp))

consentTT(hpo1, Cli, gwHosp)
:- u0(Pat), hasAct(Pat, patient), aux2.6()

aux2.6() :- u0(User),hasAct(User,pOfc(gwHosp))

!consentTT(hpo1, Cli, gwHosp)
:- u0(Pat), hasAct(Pat, patient), aux2.7()

aux2.7() :- u0(User),hasAct(User,pOfc(gwHosp))

consentTT(Pat, Cli, gwHosp)
:- u0(Ag), hasAct(Ag, agent(Pat)), aux2.8()

aux2.8() :- u0(User),hasAct(User,pOfc(gwHosp))

!consentTT(Pat, Cli, gwHosp)
:- u0(Ag), hasAct(Ag, agent(Pat)), aux2.9()

aux2.9() :- u0(User),hasAct(User,pOfc(gwHosp))

u0(hpo1)
u0(pat1)

Fig. 4. Rules added to the policy simAddRule(P0)
by the simAddRmFact transformation for the running
example.

of), ~c is the list of child nodes of this node, R is
the rule used to derive this node from its children
in the derivation of S, and ∆ is the residue (the set
of atoms abduced in this derivation). Note that, in
the definition of resolveClause in Figure 5, we use
“abduction” as the name of the rule used to derive
an abduced fact. If the list Q of subgoals is empty,
the node is called an answer node with answer S.
Otherwise, it is called a goal node, and the first atom
in Q is its current subgoal. Each answer node is the
root of a proof tree; goal nodes (representing queries)
are not in proof trees. Selectors for components of
nodes are: for n = 〈G; ~Q;S;~c;R; ∆〉, index(n) = G,
subgoals(n) = ~Q, pAns(n) = S, children(n) = ~c,
rule(n) = R, and residue(n) = ∆.

Variable Ans contains the answer table, which is a
partial function from atoms to sets of answer nodes.
Ans(G) contains all answer nodes for goal G found
so far. Variable Wait contains the wait table, which is
a partial function from atoms to sets of goal nodes.
Wait(G) contains all those nodes whose current sub-
goal is waiting for answers from 〈G〉. Whenever a
new answer for 〈G〉 is produced, the computation

resolveClause(〈P 〉)
1 Ans(P) = ∅
2 for (Q← ~Q) in Pol

3 nd1 = 〈P ;Q :: ~Q;Q; [];Q← ~Q; ∅〉
4 if nd = resolve(nd1, 〈P ; [];P ; []; ; ∅〉) exists
5 processNode(nd)
6 if P is abducible
7 processAnswer(〈P ; [];P ; []; abduction; [P]〉)

processAnswer(nd)

11 match nd with 〈P ; []; ; ; ; 〉 in
2 if there is no nd0 ∈ Ans(P) such that nd � nd0

3 Ans(P) = Ans(P) ∪ {nd}
4 for nd ′ in Wait(P)
5 if nd ′′ = resolve(nd ′,nd) exists
6 processNode(nd ′′)

processNode(nd)

11 match nd with 〈P ; ~Q; ; ; ; 〉 in
2 if ~Q = []
3 processAnswer(nd)

4 else match ~Q with Q0 :: in
5 if there exists Q′0 ∈ dom(Ans) such that
6 Q0 is an instance of Q′0
7 Wait(Q′0) = Wait(Q′0) ∪ {nd}
8 for nd ′ in Ans(Q′0)
9 if nd ′′ = resolve(nd ,nd ′) exists

10 processNode(nd ′′)
11 else
12 Wait(Q0) = {nd}
13 resolveClause(〈Q0〉)

Auxiliary Definitions:

〈G; [];S;~c;R; ∆〉 � 〈G; [];S′;~c′;R′; ∆′〉
iff |∆| ≥ |∆′| ∧ (∃θ . S = S′θ ∧∆ ⊇ ∆′θ)

for an answer node n = 〈 ; [];Q′; ; ; ∆′〉,
and Q′′ and ∆′′ fresh renamings of Q′ and ∆′,
resolve(〈G;Q :: ~Q;S;~c;R; ∆〉, n) =

n′ if unifiable(Q,Q′′)
where θ = mostGeneralUnifier(Q,Q′′)

n′=〈G; ~Qθ;Sθ; [~c;n];R; ∆θ ∪∆′′θ〉
undefined otherwise

Fig. 5. Becker et al.’s algorithm for tabled policy eval-
uation with abduction and proof construction. [] is the
empty list. x :: y is the list obtained by prepending an
item x to list y. match exp with pat matches the value
of expression exp with pattern pat and binds variables
in pat accordingly.

involving these waiting nodes is resumed.
The auxiliary definitions in the lower part of Figure

5 define the subsumption relation � on nodes and
the resolve function. Intuitively, if n � n′ (read “n is
subsumed by n′”), then the answer node n provides

10

no more information about possible solutions than
n′, so n can be discarded. resolve(n, n′) takes a goal
node n and an answer node n′ and combines the
current subgoal of n with the answer provided by n′

to produce a new node with fewer subgoals.
Constructors are not considered in [10], [11], but the

algorithm can handle them, when the functions for
matching and unification are extended appropriately.

The algorithm takes as input a query G, which is
an atom, and the input policy Pol. The entry point is a
call to resolveClause(〈G〉). The resolveClause function
resolves clauses (i.e., rules) in the policy with the
atom in a root node passed as argument. Starting
from a root node 〈P 〉, resolution with policy clauses
produces goal nodes with index P . As the subgoals ~Q
are processed one by one, new P -indexed goal nodes
are created with the remaining subgoals and with in-
creasingly instantiated variants of P as partial answer.
A proof branch ends when no subgoals remain, i.e.,
an answer node is generated.

4.3.2 Algorithm for Phase 3
This section describes our modified version of Becker
et al.’s algorithm.

The algorithm considers three ways to satisfy a
positive subgoal: through a fact or rule in the pol-
icy, through addition of a fact using a transformed
addFact permission rule (this does not require a
separate case in the algorithm, because these rules are
handled in the same way as other rules), and through
abduction (i.e., by assumption that the subgoal holds
in the initial policy and still holds when the rule
containing it as a premise is evaluated). The algo-
rithm considers two ways to satisfy a negative sub-
goal: through removal of a fact using a transformed
removeFact permission rule (again, this does not
require a separate case in the algorithm) and through
abduction (i.e., by assumption that the negative sub-
goal holds in the initial policy and still holds when
the rule containing it as a premise is evaluated).

The algorithm can abduce a negative extensional
literal !a when this is consistent with the initial policy,
in other words, when a is not in P0. To enable this,
in the definition of resolveClause, we replace “P is
abducible” with “P ∈ [[A]] ∨ (∃a ∈ Atomex . a 6∈
P0 ∧ P is !a)”, where Atomex is the set of extensional
atoms. If a is not ground, disequalities in dinit in phase
4 will ensure that the solution includes only instances
of a that are not in P0.

The tabling algorithm treats the negation symbol “!”
as part of the predicate name; in other words, it treats
p and !p as unrelated predicates. Phase 4 interprets
“!” as negation and checks appropriate consistency
conditions relating positive and negative facts.

Wildcards do not need special treatment in this
phase. To establish through abduction a negative
premise that contains wildcards, the negative literal
is simply abduced (with wildcards in it) into the

residue. Recall from Section 2.1 that wildcards can
be used in a negative literal !p(. . .) only if there are
no removeFact permission rules for p. This implies
we do not need to consider how to establish negative
literals containing wildcards using removals of facts.

The definition of resolve in Figure 5 checks whether
unifiable(Q,Q′′) holds and, if so, computes the residue
of the resolve node n′ to be ∆θ ∪ ∆′′θ. Since we,
unlike Becker et al., allow specification of a set nAb
of not-abducible terms (which might overlap with
the set Ab), instantiating a term in the residue can
move it from [[Ab]] to [[nAb]], causing it not to be
abducible. Therefore, in the definition of resolve, we
replace the condition unifiable(Q,Q′′) with the condi-
tion unifiable(Q,Q′′) ∧ (∆θ ∪ ∆′′θ ⊆ [[A]]). It suffices
to consider only instantiation with the most general
unifier, because nAb is closed under instantiation.

Becker et al.’s algorithm explores all derivations for
a goal except that the subsumption check in proces-
sAnswer in Figure 5 prevents use of the derivation
represented by answer node n from being added to
the answer table and thereby used as a sub-derivation
of a larger derivation if the partial answer in n is
subsumed by the partial answer in an answer node
n′ that is already in the answer table. However, the
larger derivation that uses n′ as a derivation of a
subgoal might turn out to be infeasible (i.e., have
unsatisfiable ordering constraints) in phase 4, while
the larger derivation that uses n as a derivation of
that subgoal might turn out to be feasible. We adopt
the simplest approach to overcome this problem: we
replace the subsumption relation � in processAnswer
method with the α-equality relation =α, causing the
tabling algorithm to explore all derivations of goals.
α-equality is equality modulo renaming of variables
that do not appear in the query’s top-level goal G0.

An undesired side-effect of this change is that the
algorithm may get stuck in a cycle in which it re-
peatedly uses some derivation of a goal as a sub-
derivation of a larger derivation of the same goal.
Exploring such derivations is unnecessary, because
the algorithm is not required to find a representation
of all sequences of administrative actions that reach
the goal. Specifically, if the algorithm has already
constructed a node n, then it is unnecessary for
the algorithm to construct a node n′ that has the
same index, partial answer, and residue as n and a
proof graph that contains n. Therefore, we modify
the definition of resolve as follows, so that the algo-
rithm does not generate a node n′ corresponding to
the latter derivation: we replace unifiable(Q,Q′′) with
unifiable(Q,Q′′) ∧ noCyclicDeriv(n′), where

noCyclicDeriv(n′) =6 ∃d ∈ proof(n′). isAns(d)
∧ 〈index(d),pAns(d), residue(d)〉 =α

〈index(n′),pAns(n′), residue(n′)〉

where the proof of a node n, denoted proof(n), is
the set of nodes in the proof graph rooted at node

11

n, i.e., proof(n) = {n} ∪
⋃
n′∈children(n) proof(n′),

and where isAns(n) holds iff n is an answer node.
noCyclicDeriv(n′) does not check whether rule(n′) =
rule(d) or subgoals(n′) = subgoals(d), because explo-
ration of n′ is unnecessary, by the above argument,
regardless of the values of rule(n′) and subgoals(n′).

The partial answer substitution for a node n, de-
noted θpa(n), is the substitution that, when applied to
index(n), produces pAns(n). We extend the algorithm
to store θpa(n) in each node n, as follows. In the
resolveClause method, the θpa component in both
nodes passed to resolve is the empty substitution. In
the resolve function, θpa(n′) is θ ◦ θfr ◦ θpa(n1), where
θfr is the substitution that performs the fresh renaming
of Q′ and ∆′, n1 denotes the first argument to resolve,
and ◦ denotes composition of substitutions.

In summary, for an abductive atom-reachability
query of the form in Section 3, phase 3 applies the
algorithm for tabled policy evaluation with abduction
and proof construction, modified as described above,
to the policy simAddRmFact(simAddRule(P0), U0)
with the given goal G0 and specification A of ab-
ducible atoms.

Example: Figures 6 and 7 in Section 10 in the
supplemental material present proofs ψ1 and ψ2 gen-
erated for the example query in Section 3.1.

4.4 Phase 4: Ordering Constraints

Phase 4 considers constraints on the execution order
of administrative operations. An administrative node is
a node n such that rule(n) is a transformed addFact
or removeFact permission rule. The ordering must
ensure that, for each administrative node or goal node
n, (1) each administrative operation n′ used to derive
n occurs before n (this is a dependence constraint) and
its effect is not undone by a conflicting operation that
occurs between n′ and n (this is an interference-freedom
constraint), and (2) each assumption about the initial
policy on which n relies is not undone by an operation
that occurs before n (this is also an interference-freedom
constraint). When generating the ordering constraints
in item (1) for node n, administrative operations used
to derive n′ are not considered, because the derivation
of n does not (directly) depend on the effects of those
operations; n depends on those operations only via
the fact that they permit n′, and ordering constraints
that ensure they permit n′ are generated when item
(1) is considered for node n′. The concept of interfer-
ence freedom originated in work on Hoare logics for
concurrent programs, and dependence constraints are
analogous to condition synchronization [13].

A straightforward but inefficient algorithm would
enumerate each permutation of the set of administra-
tive operations (corresponding to the administrative
nodes) in each proof graph from phase 3 and check
whether it satisfies the ordering constraints. We adopt
a more efficient approach in which the ordering con-

straints for each proof graph are represented symboli-
cally and tested for satisfiability. The overall ordering
constraint is represented as a Boolean combination of
labeled ordering edges. A labeled ordering edge is a
tuple 〈n, n′, D〉, where the label D is a conjunction of
tuple disequalities or false, with the interpretation: n
must precede n′, unless D holds. If D holds, then n
and n′ operate on distinct atoms, so they commute,
so the relative order of n and n′ is unimportant.

Phase 4 iterates over the answer nodes from Phase
3. For each answer node, it generates a conjunction
of dependence constraints and interference-freedom
constraints, puts the resulting Boolean expression in
DNF, and then checks, for each disjunct c, whether
the ordering constraints in c can be satisfied, i.e.,
whether they are acyclic. If so, the disequalities la-
beling the ordering constraints do not need to be
included in the solution. However, if the generated
ordering constraints are cyclic, then the algorithm
removes a minimal set of ordering constraints to
make the remaining ordering constraints acyclic (by
computing the set of all cycles in the ordering con-
straints in c and removing one edge from each cycle),
and includes the disequalities that label the removed
ordering constraints in the solution. After satisfiability
of the constraints has been checked (including the
consistency constraint that each abduced negative
literal holds initially and still holds when the rule
containing it as a premise is evaluated), negative lit-
erals are removed from the residue; this is acceptable,
because the problem definition asks for a represen-
tation of only minimal-residue ground solutions, not
all ground solutions (negative literals provide infor-
mation about which sets of positive literals that are
supersets of the set of positive literals in the residue
are also solutions to the query. Pseudocode for Phase
4 and example ordering constraints are in Section 11
in the supplemental material.

Repeated Administrative Operations: The
tabling algorithm in phase 3 re-uses nodes, including
administrative nodes. This makes the analysis
more efficient and avoids unnecessary repetition
of administrative operations in plans. However,
in some cases, administrative operations need to
be repeated; for example, it might be necessary to
add a fact, remove it, and then add it again, in
order to reach a goal. The version of our algorithm
described above cannot generate plans with repeated
administrative operations, but it does identify when
repeated operations might be necessary, using
the function mightNeedRepeatedOp, and returns a
message indicating this. mightNeedRepeatedOp(ng, c)
returns true iff some node n in c is a child of
multiple nodes in proof(ng); in such cases, it might
be necessary to “split” n—i.e., replace n with
multiple nodes, one for each parent—in order to
satisfy ordering constraints. We sketch here how
to extend the algorithm to generate plans with

12

repeated administrative operations (the extension
is not needed for the running example or the case
study in Section 5). A new variable Split stores the
set of nodes that need to be split. A node n in Split
is identified by the contents of the nodes on the
path from the node to the root node ng (including
the contents of n and ng). Split is initialized to ∅. If
mightNeedRepeatedOp(ng, c) returns true, for each
node n in c that is a child of multiple nodes in
proof(ng), each path from n to ng is added to Split ,
and phase 3 is re-run. The tabling algorithm in Phase
3 is modified so that nodes in Split are not re-used;
specifically, in function processAnswer(nd) in Figure
5, if the path from nd to the root is in Split , then nd
is not added to the answer table in line 3. After phase
3 is re-run, the algorithm continues as usual to phase
4. Phases 3 and 4 might be iterated multiple times,
until all nodes that caused mightNeedRepeatedOp to
return true have been split into multiple nodes.

4.5 Termination and Running Time
We consider the termination and running time of each
phase. Phases 1 and 2 are fast linear-time transforma-
tions of the input. Phase 3 can diverge. The possibility
of non-termination is inherited from Becker et al.’s
algorithm. It is intrinsic to the problem, in the sense
that there are abductive queries involving recursive
rules such that every comprehensive solution is an
infinite set [10]. In the context of access control, such
recursive rules might arise in policies that allow un-
bounded delegation chains. Becker et al. give a static
condition—absence of recursive rules with a certain
structure—that ensures termination. For policies not
satisfying this condition, they give some pragmatic
strategies for ensuring termination, e.g., modifying
the algorithm to return only solutions containing at
most a specified number of abduced atoms.

Phase 4 has two potentially expensive steps: putting
the ordering constraint in DNF, and computing the set
of all cycles in the ordering constraints in a disjunct.
Putting a formula in DNF takes exponential time in
the worst case. In practice, the formulas involved are
typically not large, because typically most pairs of
nodes in a proof graph do not conflict. Computing
the set of all cycles in a graph takes at least factorial
time in the worst case, because a complete graph
with n nodes contains more than (n− 1)! cycles. The
algorithm we use for computing the set of cycles in
a graph [14] takes O((|V | + |E|)(c + 1)) time, where
V and E are the sets of nodes and edges in the
graph, respectively, and c is the number of cycles in
the graph. In practice, the number of cycles in the
ordering constraints in a disjunct is typically small,
so computing the set of cycles is not expensive.

4.6 Correctness
The algorithm is correct in the sense that, when it
terminates with a solution, it returns a comprehen-

sive solution to the given abductive atom-reachability
query. A proof of correctness appears in Section 9 in
the supplemental material. The algorithm is incom-
plete, because it might diverge, as discussed above.
Incompleteness is expected, because the abductive
atom-reachability problem is undecidable. Also, with-
out the extension to handle repeated administrative
operations, the algorithm might indicate that repeated
administrative operations might be needed, instead of
returning a solution, as discussed in Section 4.4.

5 EXPERIENCE

To gain experience with the framework and analysis,
we wrote a policy for a healthcare network in ACAR,
implemented the analysis algorithm in OCaml, and
used the implementation to evaluate a few queries.
A detailed presentation of the healthcare network
policy appears in [15, Chapter 3]. The policy controls
permissions for registration of users (patients, clini-
cians, etc.), workgroup management (creating work-
groups, and adding and removing members), agent
management (patients appointing agents), consent to
treatment (patients or their agents granting consent
to treatment by a specified clinician), encounter man-
agement (creating an encounter, in which a patient is
treated by a workgroup, and closing an encounter),
and access to patient health records. The policy con-
sists of 22 rules. Healthcare networks are interesting
from the perspective of policy administration, because
they involve policies at several organizational levels.
Our case study involves policies at the levels of
the healthcare network itself, a prototypical hospital
(gwHosp) in the network, a prototypical substance
abuse facility (gcSAF) in the network, and work-
groups in those facilities. For example, users at the
facility level can modify the facility’s policy in ways
consistent with the administrative permissions pro-
vided by the healthcare network’s policy. An example
of how a facility policy officer might specialize a
facility’s policy for appointing clinicians appears in
Section 2.4. As another example, rules added by the
substance abuse facility’s policy officer impose stricter
conditions for access to patient health records than
corresponding rules added by the hospital’s policy
officer; specifically, the former rules allow a clinician
to access a patient’s health records only if the clinician
has been individually granted consent to treatment
by the patient, while the latter rules allow a clinician
access to a patient’s health records if the patient
has granted consent to treatment by a workgroup of
which the clinician is a member.

One sample query has initial policy
P0 = PHCN ∪ PU1, where PHCN is the healthcare
network policy and PU1 contains a few facts
about the prototypical users hpo1, a member of
pOfc(gwHosp), clin1, a clinician at gwHosp,
and user1, a user with no roles (the only

13

fact about user1 in PU1 is user(user1)).
The other components of the query are
U0 = {hpo1, user1}, Ab = {memberOf(User,
wkgp(WG, gwHosp, Spcty, team))}, nAb = {},
A = 〈Ab,nAb〉, and G0 = workgroupHead(
GoalUser, cardioTeam, gwHosp). The analysis
generates 1493 nodes and returns five solutions.
For example, one solution has partial answer
workgroupHead(GoalUser, cardioTeam,
gwHosp), residue {memberOf(GoalUser,
wkgp(cardioTeam, gwHosp, Spcty, team))},
and tuple disequality 〈GoalUser〉 6= 〈hpo1〉. The
disequality reflects that hpo1 can appoint himself
to the hrManager(gwHosp) role, can then appoint
himself and other users as members of cardioTeam,
and can then appoint other users as team head,
but cannot then appoint himself as team head,
because the rule that allows HR managers to appoint
workgroup heads contains a negative premise that
prohibits an HR manager from appointing a head for
a workgroup if that HR manager is a member of that
workgroup.

Another sample query has initial policy
P0 = PHCN ∪ PU2, where PU2 contains a few
facts about the prototypical users hpo1, a
member of pOfc(gwHosp), hhr, a member
of hrManager(gwHosp), cli1, a clinician at
gwHosp, and pat1, a patient at gwHosp. The
other components of the query are U0 = {hpo1,
hhr}, Ab = {memberOf(User, wkgp(WG,
gwHosp, Spcty, team)), encounter(EncID,
pat1, Wkgp, gwHosp, Type)}, nAb = {},
A = 〈Ab,nAb〉, and G0 = memberOf(cli1,
trCli(pat1, gwHosp)). Informally, the query
asks whether a clinician can become the treating
clinician for a patient at gwHosp through actions
of the policy officer and HR manager (without
actions of the patient or the clinician). The analysis
generates 4946 nodes and returns one solution with
residue {memberOf(cli1, wkgp(WG, gwHosp,
Spcty, team), encounter(EncID, pat1,
WG, gwHosp, Type)}, which indicates that this is
possible if hhr makes cli1 a member of a workgroup
WG that is currently handling an encounter EncID
for pat1. This illustrates that the analysis can bring
non-obvious and possibly unanticipated scenarios to
the attention of policy auditors.

Running time: We ran the algorithm on a hp
dc7900 with 3.0 GHz Intel Core2 Duo processor. The
above examples take 0.20 seconds and 2.40 seconds,
respectively, of user+system time. We used the GNU
profiler, gprof, with a sampling period of 0.01 seconds,
to help measure the cost of each phase. Phases 1 and
2 are fast linear-time transformations of the input, so
phases 3 and 4 dominate the running time. For the
first example, phase 4 consumes 38% of the running
time, and phase 3 consumes most of the remainder.
For the second example, phase 4 consumes less than

1% of the running time, and phase 3 consumes most of
the running time. In both examples, the steps in phase
4 with high worst-case asymptotic time complexity—
putting a formula in DNF and finding all cycles in a
graph—take negligible time (gprof reports it as 0).

Multiple factors contribute to the algorithm’s
speed. Policy rules are relatively small compared to
databases of policy-related facts, so the input to our
abductive analysis algorithm is relatively small. Our
algorithm is goal-directed, so it avoids exploring ir-
relevant possibilities. Our algorithm avoids exploring
permutations of the administrative operations in a
proof graph by constructing and checking satisfiabil-
ity of ordering constraints.

6 RELATED WORK

6.1 Administration of Rule-Based Policies
Our work is inspired by Becker et al.’s abductive
policy analysis for rule-based policy languages [10],
[11]. The main difference between their work and
ours is that they do not consider changes to the rules.
Also, they do not consider constructors and negation,
while ACAR allows constructors and allows negation
applied to extensional predicates. Becker and Nanz’s
earlier work [16], [9] also considers changes to the
facts with fixed rules but does not consider abductive
analysis: it assumes the initial policy is known.

DynPAL is an administrative framework with a
rule-based access control policy language [7]. DynPAL
allows stratified negation of intensional predicates;
ACAR does not. DynPAL provides more complex
administrative operations than ACAR for adding and
removing facts. On the other hand, DynPAL’s ad-
ministrative framework considers only addition and
removal of facts, not addition or removal of rules.
Becker et al. also present two methods for reachability
analysis for DynPAL [7]. The first method, based on
AI planning, it requires the domain of constants in
the language to be finite and the policy to be tight,
i.e., every rule defining an intensional predicate can
be finitely unfolded down to extensional predicates.
The second method, based on theorem proving, does
not require finite domains but requires tightness. Both
methods deal only with addition and removal of facts
and solve reachability from a given initial state. Our
abductive analysis does not require the domain of
constants to be finite, or the policy to be tight, and
returns solutions that are more general in terms of
the facts in the initial policy.

Craven et al. present a rule-based policy language
with an administrative framework based on Event
Calculus [8]. Their policy language is richer than
ACAR in that it supports obligations, time constraints,
and stratified negation. They describe how to use
abductive logic programming to solve a variety of
policy analysis problems. They do not consider addi-
tion and removal of rules, and their analysis algorithm

14

restricts abduction to ground residues. In contrast, we
consider addition and removal of rules and facts, and
our analysis algorithm supports non-ground residues.

Barletta et al. [17] give a model checking algorithm
for bounded-length reachability for Access Control
Systems (ACSs). In their work, the set of rules is fixed,
and abductive analysis is not considered.

6.2 Administration of RBAC

ARBAC97 is the first comprehensive administrative
framework for RBAC [2]. ACAR is more expressive
than ARBAC97 in many ways (rule (2.5) in Figure 2 is
a good example of a policy that cannot be expressed in
ARBAC97) but is also less expressive in some ways, as
discussed in Section 12 in the supplemental material.

Analysis algorithms for user-permission reachabil-
ity for ARBAC97 and variants thereof have been
developed, e.g., [3], [4], [5], [6]. Analysis of ARBAC
considers, in effect, only addition and removal of
facts, not rules, because administrative operations in
ARBAC (e.g., removing a user from a role) correspond
to addition and removal of facts. Work on analysis
of ARBAC generally does not consider abductive
analysis, with the exception of some works, such as
[4], that consider the weakest precondition problem
for ARBAC97, which asks for minimal sets of initial
role memberships of the target user that allow the
target user to be eventually assigned to given roles.

7 CONCLUSIONS AND FUTURE WORK

This paper’s main contribution is the first analysis
algorithm for a rule-based policy framework with
administrative policies that control changes to the
rules as well as the facts in the policy. Furthermore,
through the use of abduction, the analysis algorithm
can analyze policies even when only partial infor-
mation about the facts in the initial policy is avail-
able. Directions for future work include relaxing the
restrictions on use of wildcard and negation, and
developing an analysis algorithm based on state-space
exploration, instead of tabling, for the comprehen-
sive abductive atom-reachability problem. The main
challenge for the latter is how to handle the lack of
complete information about the initial policy.

ACKNOWLEDGMENTS

This work was supported in part by ONR Grant
N00014-07-1-0928, NSF Grants CNS-0831298 and
CCF-1248184, and AFOSR Grant FA0550-09-1-0481.
We thank the reviewers for helpful comments.

REFERENCES

[1] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-
based access control models,” IEEE Computer, vol. 29, no. 2,
pp. 38–47, Feb. 1996.

[2] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
model for role-based administration of roles,” ACM Transac-
tions on Information and Systems Security, vol. 2, no. 1, pp. 105–
135, Feb. 1999.

[3] N. Li and M. V. Tripunitara, “Security analysis in role-based
access control,” ACM Transactions on Information and System
Security, vol. 9, no. 4, pp. 391–420, Nov. 2006.

[4] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman,
“Efficient policy analysis for administrative role based access
control,” in Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS). ACM Press, 2007.

[5] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakrishnan,
“Policy analysis for administrative role based access control,”
Theoretical Computer Science, vol. 412, no. 44, pp. 6208–6234,
Oct. 2011.

[6] S. D. Stoller, P. Yang, M. Gofman, and C. R. Ramakrishnan,
“Symbolic reachability analysis for parameterized administra-
tive role based access control,” Computers & Security, vol. 30,
no. 2-3, pp. 148–164, March-May 2011.

[7] M. Y. Becker, “Specification and analysis of dynamic authorisa-
tion policies,” in Proceedings of the 22nd IEEE Computer Security
Foundations Symposium (CSF). IEEE Computer Society, 2009,
pp. 203–217.

[8] R. Craven, J. Lobo, J. Ma, A. Russo, E. Lupu, and A. Bandara,
“Expressive policy analysis with enhanced system dynamic-
ity,” in Proc. 4th International Symposium on Information, Com-
puter, and Communications Security (ASIACCS). ACM, 2009,
pp. 239–250.

[9] M. Y. Becker and S. Nanz, “A logic for state-modifying autho-
rization policies,” ACM Transactions on Information and System
Security, vol. 13, no. 3, 2010.

[10] ——, “The role of abduction in declarative authorization poli-
cies,” in Proc. 10th International Conference on Practical Aspects
of Declarative Languages (PADL 2008), ser. Lecture Notes in
Computer Science, vol. 4902. Springer, 2008, pp. 84–99.

[11] M. Y. Becker, J. F. Mackay, and B. Dillaway, “Abductive
authorization credential gathering,” in Proc. IEEE International
Symposium on Policies for Distributed Systems and Networks
(POLICY). IEEE Computer Society, Jul. 2009, pp. 1–8.

[12] P. Gupta, S. D. Stoller, and Z. Xu, “Abductive analysis of
administrative policies in rule-based access control,” in Proc.
Seventh International Conference on Information Systems Security
(ICISS 2011). Springer, Dec. 2011, pp. 116–130.

[13] F. B. Schneider, On Concurrent Programming. Springer, 1997.
[14] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algo-

rithms: Theory and Practice. Prentice-Hall, 1977.
[15] P. Gupta, “Abductive analysis of administrative policies in

rule-based access control,” Ph.D. dissertation, Stony Brook
University, Dec. 2011.

[16] M. Y. Becker and S. Nanz, “A logic for state-modifying au-
thorization policies,” in Proc. 12th European Symposium On
Research In Computer Security (ESORICS), 2007, pp. 203–218.

[17] M. Barletta, S. Ranise, and L. Viganò, “Automated analysis
of scenario-based specifications of distributed access control
policies with non-mechanizable activities,” in Proc. 8th Inter-
national Workshop on Security and Trust Management (STM).
Springer, 2012, pp. 49–64.

Puneet Gupta Puneet Gupta received the B.Tech. degree in Com-
puter Science from IIT Delhi in 2006 and the Ph.D. degree in Com-
puter Science from Stony Brook University in 2011. He is currently a
Software Engineer at Google, Inc.

Scott D. Stoller Scott D. Stoller received the B.A. degree in Physics,
summa cum laude, from Princeton University in 1990 and the Ph.D.
degree in Computer Science from Cornell University in 1997. He is
currently a Professor at Stony Brook University.

Zhongyuan Xu Zhongyuan Xu received the B.S. and M.S. degrees
in Computer Science from Peking University in 2006 and 2009,
respectively. He is currently a Ph.D. candidate at Stony Brook Uni-
versity.

1

8 PROOF OF UNDECIDABILITY OF ABDUC-
TIVE ATOM-REACHABILITY FOR ACAR
This section briefly describes a reduction from the
user-role reachability problem for PARBAC without
role hierarchy, which is known to be undecidable [6],
to the abductive atom-reachability problem for ACAR.

PARBAC, short for “Parameterized ARBAC”, is
based on ARBAC97, extended with parameters. A
PARBAC policy is defined by a set RS of role
schemas, a set U of users, a can assign relation, and
a can revoke relation. A role schema consists of a role
name and a list of named parameters. The can assign
relation contains tuples of the form 〈ra, 〈P,N〉, r〉,
where ra is an administrative role, r is a regular (i.e.,
non-administrative) role, and P and N are sets of reg-
ular roles called the positive precondition, and negative
precondition, respectively. The meaning of such a tuple
is that a member of ra can assign a user to be a mem-
ber of r, if that user is a member of all of the roles in
P and none of the roles in N . The can revoke relation
contains tuples of the form 〈ra, r〉, where ra is an ad-
ministrative role, and r is a regular role. The meaning
of such a tuple is that a member of ra can remove
users from r. Since there is no role hierarchy, we omit
the directMemberOf predicate and use memberOf
as the extensional predicate recording role mem-
bership. A tuple 〈ra, 〈{p1, . . . , pi}, {n1, . . . , nj}〉, r〉 in
can assign is translated into the ACAR rule

permit(Uadmin, addFact(memberOf(U, r)))
:- memberOf(Uadmin, ra), memberOf(U, p1),

. . ., memberOf(U, pi),
!memberOf(U, n1), . . ., !memberOf(U, nj)

A tuple 〈ra, r〉 in can revoke is translated into the
ACAR rule

permit(Uadmin, addFact(memberOf(U, r)))
:- memberOf(Uadmin, ra).

For example, the can assign tuple 〈Chair(dept =
D), 〈{Faculty(dept = D)}, {UgradAdComm(dept =
D)}〉, GradAdComm(dept = D)〉 specifies that the
Chair of department D can assign faculty of that
department to the department’s graduate admis-
sions committee if they are not members of the de-
partment’s undergraduate admissions committee. For
readability, PARBAC uses named parameters, but this
does not affect the expressiveness, so we translate
them to positional parameters in ACAR. The above
tuple is translated to the ACAR rule

permit(Uadmin, addFact(memberOf(U,
GradAdComm(D))))

:- memberOf(Uadmin, Chair(D)),
memberOf(U, Faculty(D)),
!memberOf(U, UgradAdComm(D))

A user-role reachability query for PARBAC asks
whether a given user u can become a member

of a given set {r1, . . . , ri} of roles, given the ini-
tial role memberships of the user and a PARBAC
policy. This is translated into an abductive atom-
reachability query with an ACAR policy containing
the translations of the can assign and can revoke tu-
ples, memberOf facts expressing the user’s initial role
memberships, and a rule goal() :- memberOf(u,
r1), . . ., memberOf(u, rn). The atom goal() is
the goal of the query, and no atoms are abducible.

9 PROOF OF CORRECTNESS OF THE ANAL-
YSIS ALGORITHM

Correctness of Phase 1: We prove correctness of
phase 1 in two steps. We define a transition relation
T↓aR,−rR that contains a restricted set of addRule
transitions and no removeRule transitions. The first
step of the proof, embodied in Theorem 9.3, shows
that an atom is reachable in SG(P0, U0, T) iff it is
reachable in SG(P0, U0, T↓aR,−rR). The second step
of the proof, embodied in Theorem 9.6, shows that
an atom is reachable in SG(P0, U0, T↓aR,−rR) iff it is
reachable in SG(simAddRule(P0), U0, T−aR,−rR).

The restricted-addRule, no-removeRule transition
relation T↓aR,−rR is defined the same way as the tran-
sition relation T in Section 2.4 except (1) addRule
transitions are restricted so that they do not add addi-
tional premises to rule patterns, and (2) removeRule
transitions are eliminated.

Policy P is at least as strict as policy P ′, denoted P ≤
P ′, if (1) P and P ′ contain the same set of (explicitly
given) facts, and (2) for every rule R in P , P ′ contains
a rule R′ such that R is at least as strict as R′. Recall
that the at-least-as-strict-as relation on rules is defined
in Section 2.4.

Lemma 9.1. For all policies P and P ′, if P ≤ P ′, then
[[P]] ⊆ [[P ′]].

Proof: The proof is by induction on the derivation
of the fact, considered as a tree built from rules and
facts. The proof relies on the restriction that negation
is applied only to extensional predicates. Consider a
derivation of a fact f from P . f can be derived from P ′

using the same derivation except with each rule R in
P replaced with a rule R′ in P ′ such that R is at least
as strict as R′. We need to show that each premise q
of R′, instantiated using the same substitution used to
instantiate R in the derivation of f , holds in P ′. Since
R is at least as strict as R′, the instance of R used in the
derivation of f has the same premise q, and q holds
in P . If q is a positive premise, then the derivation of
q from P is a sub-derivation of the derivation of f , so
by the induction hypothesis, q is derivable from P ′.
If q is a negative premise !a, then a must be an atom
for an extensional predicate, so it suffices to consider
the facts that appear explicitly in P and P ′ (i.e., we
do not need to consider the possibility of deriving a
using rules). Since q holds in P , a does not appear in

2

P . Since P ≤ P ′ implies that P and P ′ contain the
same set of facts, a does not appear in P ′, so q holds
in P ′.

Lemma 9.2. For every policy P0 and set U0 of users,
for every policy P in SG(P0, U0, T), there exists a
policy P ′ in SG(P0, U0, T↓aR,−rR) such that P ≤ P ′.

Proof: Let pi = P0
u0:op0−→ P1

u1:op1−→ . . .
un−1:opn−1−→ Pn

be a path in SG(U0, P0) from the initial policy to P ,
hence Pn = P . We show by construction that there

is a corresponding path p′i = P0
u′0:op

′
0−→ P ′1

u′1:op
′
1−→

. . .
u′n−1:op

′
n−1−→ P ′n in SG(P0, U0, T↓aR,−rR) such that for

each i ∈ [0 . . . n], Pi ≤ P ′i .
To simplify the correspondence, we allow skip

transitions in p′i.
Based on the definition of the transition relation, if

opi is an addRule transition addRule(Ri), then there
exists an addRule permission rule Rarpi in Pi (“arp” is
mnemonic for “addRule permission”) and a rule R′i
such that Pi derives permit(ui,addRule(R′i)) using
Rarpi in the last step of the derivation, and Ri is stricter
than R′i (note that R′i already reflects instantiations of
variables).
p′i is defined as follows.

u′i = ui

op′i =



opi if opi has the form
addFact(. . .) or
removeFact(. . .)

skip if opi has the form
removeRule(. . .)

addRule(R′i) if opi has the form
addRule(Ri),
where R′i is defined above

We prove by induction on i that (a) Pi ≤ P ′i and (b)
permit(u′i, op

′
i) ∈ [[P ′i]].

Base case: In the base case, i = 0.
(a) P0 ≤ P0 follows directly from the definition of ≤.
(b) We need to show permit(u′0, op

′
0) ∈ [[P0]].

case: op0 is removeRule. This case is trivial,
because op′0 is skip, and (as a special
case) skip is always permitted.

case: op0 is addFact or removeFact.
op′0 is the same as op0, so permit(
u′0, op

′
0) ∈ [[P0]] follows directly from

permit(u0, op0) ∈ [[P0]].
case: op0 is addRule(R0). In this

case, op′0 is addRule(R′0). The
definition of R′i directly implies that
permit(u0,addRule(R′0)) ∈ [[P0]].

Step case: In the step case, we assume Pi ≤ P ′i
and permit(u′i, op

′
i) ∈ [[P ′i]].

(a) We need to show Pi+1 ≤ P ′i+1. This follows
directly from the induction hypothesis and the
definitions of op′i and ≤. Note that this proof does

not rely on the claim that (b) holds in the step case,
so this conclusion can be used in the following
proof of (b).

(b) We need to show permit(u′i+1, op
′
i+1) ∈

[[
P ′i+1

]]
.

case: opi+1 is removeRule. This case is trivial,
because op′i+1 is skip, and (as a special
case) skip is always permitted.

case: opi+1 is addFact or removeFact.
op′i+1 is the same as opi+1, so
permit(u′i+1, op

′
i+1) ∈

[[
P ′i+1

]]
follows directly from permit(ui+1,
opi+1) ∈ [[Pi+1]], Pi+1 ≤ P ′i+1, and Lemma
9.1.

case: opi+1 is addRule(Ri+1). In this
case, op′i+1 is addRule(R′i+1), as
defined above. The definition of R′i
in that paragraph directly implies that
permit(ui+1,addRule(R′i+1)) ∈ [[Pi+1]].
This, together with Pi+1 ≤ P ′i+1 and
Lemma 9.1, imply that permit(ui+1,
addRule(R′i+1)) ∈

[[
P ′i+1

]]
.

Theorem 9.3. For every policy P0, set U0 of users,
and atom a, SG(P0, U0, T) contains a policy P with
a ∈ [[P]] iff SG(P0, U0, T↓aR,−rR) contains a policy P ′

with a ∈ [[P ′]].

Proof: We prove one direction at time.
Suppose SG(P0, U0, T) contains a policy P such that

a ∈ [[P]]. We need to show that there exists P ′ in
SG(P0, U0, T↓aR,−rR) such that a ∈ [[P ′]]. This follows
immediately from Theorem 9.2, the definition of ≤,
Lemma 9.1, and the fact that goals do not contain
negative intensional literals.

Suppose SG(P0, U0, T↓aR,−rR) contains a policy P ′

such that a ∈ [[P ′]]. We need to show that SG(P0, U0, T)
contains a policy P such that a ∈ [[P]]. This follows
from the fact that the restricted transition relation
T↓aR,−rR is a subset of the transition relation T , which
implies that SG(P0, U0, T) also contains P .

For the second step of the proof of correctness of
phase 1, we start by showing that SG(P0, U0, T↓aR,−rR)
is similar to SG(simAddRule(P0), U0, T−aR,−rR) in the
sense captured in Theorem 9.6. We call predicates with
names like auxR as auxiliary predicates. We assume
that the original policy does not contain predicates
with such names.

We give a more formal definition of the similarity
relationship between policies (an informal definition
appears in Section 4.1). Formally, P ' P ′ if P contains
no occurrences of auxiliary predicates, and there exists
a partition π′ of P ′ and a bijection b between P and π′

such that, for all x ∈ P , (1) x is an addRule permis-
sion rule and b(x) contains only x and the two rules
produced by applying the simAddRule transformation
to x, or (2) x is not an addRule permission rule, and
x is an instance under some ground substitution θ of
the rule pattern in some addRule permission rule R

3

of the form permit(U,addRule(L :- ~L1)) :- ~L2 in
P , and b(x) contains only the fact auxR(~X)θ, where
~X = vars(L :- ~L1) ∩ (vars({U}) ∪ vars(~L2)), or (3) x
is not an addRule permission rule, and b(x) contains
only x. Note that this relation is not symmetric.

Let auxAtoms denote the set of atoms that contain
an auxiliary predicate. This includes, e.g., atoms of the
form permit(. . . ,addFact(auxR(. . .))).

Lemma 9.4. For all policies P and P ′ such that P '
P ′, for all atoms a not in auxAtoms, a ∈ [[P]] iff a ∈
[[P ′]].

Proof: We do a case analysis on whether a is an
atom for an intensional or extensional predicate.

case a is extensional: The definition of ' implies
that P and P ′ contain the same extensional
facts except for facts for auxiliary predicates.
By hypothesis, a 6∈ auxAtoms, so a is not a
fact for an auxiliary predicate. Therefore, a ∈
[[P]] iff a ∈ [[P ′]].

case a is intensional: Let π′ and b be the partition
and bijection required to exist by the defi-
nition of '. First we consider the forward
direction of the “iff”, i.e., we assume a ∈ [[P]]
and show a ∈ [[P ′]]. Let D be a derivation of
a using facts and rules in P . We construct a
derivation D′ of a using rules and facts in
P ′ by starting with D and making the fol-
lowing replacements. Consider a rule x used
in D. We do a case analysis based on which
disjunct in the definition of ' holds for x. If
disjunct (1) or (3) holds, then P ′ also contains
x, so no replacement is needed. If disjunct
(2) holds, for some addRule permission rule
R in P , ground substitution θ, and fact
auxR(~X)θ, then the definition of ' implies
that P ′ contains the two rules generated from
R by the simAddRule transformation, and we
replace x with a use of the first of those rules,
instantiated with substitution θ (note that the
premises of that rule are the same as the
premises of R, plus one additional premise
involving an auxiliary predicate, which is
satisfied by the fact auxR(~X)θ in P ′). It is
straightforward to show that D′ is a deriva-
tion of a using facts and rules in P ′.
Now we consider the reverse direction of
the “iff”, i.e., we assume a ∈ [[P ′]] and
show a ∈ [[P]]. Let D′ be a derivation of
a using facts and rules in P ′. We construct
a derivation D of a using rules and facts
in P by starting with D′ and making the
following replacements. Consider a rule x′

used in D′. x′ is a member of a unique set
S in π′ that is related to a unique element x
of P by the bijection b. We replace x′ with
x (note that x′ and x might be the same).

It is straightforward to show that D is a
derivation of a using facts and rules in P .

The following theorem implies that ' is a bisim-
ulation (for a definition of bisimulation, see, e.g.,
Edmund M. Clarke, Jr., Orna Grumberg, and Doron A.
Peled, Model Checking, MIT Press, 1999).

Lemma 9.5. For every policy P , policy P ′, and user u,
if P ' P ′ then (a) for every policy P1 and operation
op such that 〈P, u:op, P1〉 ∈ T↓aR,−rR, there exists a
policy P ′1 and operation op′ such that 〈P ′, u:op′, P ′1〉 ∈
T−aR,−rR and P1 ' P ′1, and (b) for every policy P ′1 and
operation op′ such that 〈P ′, u : op′, P ′1〉 ∈ T−aR,−rR,
there exists a policy P1 and operation op such that
〈P, u:op, P1〉 ∈ T↓aR,−rR and P1 ' P ′1.

Proof:
(a) Note that 〈P, u : op, P1〉 ∈ T↓aR,−rR implies that

permit(u, op) ∈ [[P]]. We perform a case analysis
on the kind of administrative operation that op is.

case op is removeRule: T↓aR,−rR does not
contain removeRule transitions, so this
case cannot occur.

case op is addFact or removeFact for
a non-auxiliary predicate: In this case,
permit(u, op) is not in auxAtoms, so
permit(u, op) ∈ [[P]] and P ' P ′ imply,
using Lemma 9.4, that permit(u, op) ∈
[[P ′]], so we take op′ to be the same as
op, and P ′1 to be the policy obtained by
executing op′ in P ′. It is easy to show that
〈P ′, u:op′, P ′1〉 ∈ T−aR,−rR and P1 ' P ′1.

case op is addFact or removeFact for an
auxiliary predicate: The definition of '
implies that P does not contain addFact
rules involving auxiliary predicates, so
this case cannot occur.

case op is addRule: permit(u, op) ∈ [[P]]
implies there is an addRule
permission rule R in P of the form
permit(U,addRule(L :- ~L1)) :- L2

used with a ground substitution θ
to derive permit(u, op) in P ; thus,
u = Uθ, and op = addRule(L :- ~L1)θ.
The definition of ', and the
definition of simAddRule, together
imply that P ′ contains the rule
L :- ~L1,auxR(~X) and the rule
permit(U,addFact(auxR(~X))) :- ~L2,
where ~X = vars(L :- ~L1) ∩ (vars({U}) ∪
vars(~L2)). Let R′ denote the latter rule.
We take op′ to be addFact(auxR(~X))θ,
and P ′1 to be the policy obtained
by executing op′ in P ′. To see that
permit(u, op′) ∈ [[P ′]], and hence
〈P ′, u : op′, P ′1〉 ∈ T−aR,−rR, note that
the premises of R′ are the same as the

4

premises of R, and they cannot be atoms
for auxiliary predicates (because P does
not contain occurrences of auxiliary
predicates), and these premises are
derivable in P , so Lemma 9.4 implies
that they are derivable in P ′. It is
straightforward to show that P1 ' P ′1.

(b) Note that 〈P ′, u:op′, P ′1〉 ∈ T−aR,−rR implies that
permit(u, op′) ∈ [[P ′]]. We perform a case analysis
on the kind of administrative operation that op′ is.

case op is addRule or removeRule:
T−aR,−rR does not contain addRule
or removeRule transitions, so this case
cannot occur.

case op′ is addFact or removeFact for
a non-auxiliary predicate: In this case,
permit(u, op′) is not in auxAtoms, so
permit(u, op) ∈ [[P ′]] and P ' P ′ imply,
using Lemma 9.4, that permit(u, op) ∈
[[P]], so we take op to be the same as
op′, and P1 to be the policy obtained by
executing op in P . It is easy to show that
〈P, u:op′ P ′1〉 ∈ T↓aR,−rR and P1 ' P ′1.

case op′ is addFact for an auxiliary predicate:
permit(u, op) ∈ [[P ′]] implies there is
an addFact permission rule R′ of the
form permit(U,addFact(auxR(~X)))
:- ~L2 used with a ground substitution
θ to derive permit(u, op′) in P ′; thus,
u = Uθ, and op′ = addFact(auxR(~X))θ.
The definition of ', and the definition of
simAddRule, together imply that P ′ also
contains the rule L :- ~L1,auxR(~X),
where ~X = vars(L :- ~L1) ∩
(vars({U}) ∪ vars(~L2)), and P
contains the addRule permission rule
permit(U,addRule(L :- ~L1)) :- L2.
Let R denote the latter rule. We take op
to be addRule(L :- ~L1)θ, and P1 to
be the policy obtained by executing op
in P . To see that permit(u, op) ∈ [[P]],
and hence 〈P, u : op, P1〉 ∈ T↓aR,−rR,
note that the premises of R are the
same as the premises of R′, and they
cannot be atoms for auxiliary predicates
(because P does not contain occurrences
of auxiliary predicates, and the definition
of ' implies that R′ was produced by
the simAddRule transformation applied
to R), and these premises are derivable
in P , so Lemma 9.4 implies that they are
derivable in P ′. It is straightforward to
show that P1 ' P ′1.

case op′ is removeFact for an auxiliary pred-
icate: The definition of ' implies that P ′

does not contain removeFact rules for
auxiliary predicates, so this case cannot

occur.

Theorem 9.6. For every policy P0, set U0

of users, and atom a not in auxAtoms,
SG(P0, U0, T↓aR,−rR) contains a policy P with a ∈ [[P]]
iff SG(simAddRule(P0), U0, T−aR,−rR) contains a
policy P ′ with a ∈ [[P ′]].

Proof: First we prove the forward direction of
the “iff”. Let P0, . . . , Pn be a path in SG(P0, U0,
T↓aR,−rR) such that a ∈ [[Pn]]. We show by induc-
tion that SG(simAddRule(P0), U0, T−aR,−rR) contains
a path P ′0, . . . , P

′
n from simAddRule(P0) such that

Pi ' P ′i . For the base case, note that the definitions of
simAddRule and ' imply that P0 ' simAddRule(P0).
The induction step follows immediately from Lemma
9.5(a). Since a ∈ [[Pn]] and Pn ' P ′n and a 6∈ auxAtoms,
Lemma 9.4 implies a ∈ [[P ′n]].

The proof for the backward direction of the “iff” is
the same except that the induction step uses Lemma
9.5(b).

The following theorem expresses overall correctness
of phase 1. In order to express the theorem cleanly, we
extend abductive atom-reachability queries with an
optional fifth component, which specifies the transi-
tion relation to use when constructing the state graph
in the semantics of queries. When this component is
omitted, the default is the full transition relation T
defined in Section 2.4.

Theorem 9.7. Let Q = 〈P0, U0, A,G0〉 be
an abductive atom-reachability query. Let
Q′ = 〈simAddRule(P0), U0, A,G0, T−aR,−rR〉. Then
S is a comprehensive solution for Q iff S′ is a
comprehensive solution for Q′, where S is obtained
from S′ by replacing addFact operations for
auxiliary predicates with the corresponding addRule
operations in the plan.

Proof: Theorems 9.3 and 9.6 together imply that
for every policy P0, set U0 of users, and atom a not in
auxAtoms, SG(P0, U0, T) contains a policy P with a ∈
[[P]] iff SG(simAddRule(P0), U0, T−aR,−rR) contains a
policy P ′ with a ∈ [[P ′]], and that the administrative
actions in plans for reaching those policies are the
same except (cf. the proof of Lemma 9.5) that plans in
the former contain addRule operations in positions
corresponding to addFact operations for auxiliary
predicates in plans in the latter. This directly implies
the desired relationship between the solutions of Q
and Q′.

Correctness of Phases 2–4: The following theo-
rem expresses soundness of the solution produced by
phases 2–4.

Theorem 9.8. Suppose the algorithm terminates, and
phase 4 returns a set solutions of solutions. Let
〈G,∆, π,D〉 be an element of solutions . For every
ground substitution θ such that satisfiable(Dθ), the

5

sequence of actions πθ can be executed starting from
simAddRule(P0) ∪ ∆θ and leads to a policy P such
that Gθ ∈ [[P]].

Proof: The proof is by induction on π. Let πi
denote the i’th element of π, indexed starting with
0. We prove by induction that, for 0 ≤ i < |π − 1|,
πiθ is executable in Pi, i.e., there exists a (unique)
policy Pi+1 such that 〈Pi, πiθ, Pi+1〉 ∈ T . Let ng be the
answer node that led to the inclusion of 〈G,∆, π,D〉
in solutions in phase 4. Let ni be the admin node in
proof(ng) such that πi = nodeToAction(ni).

Base case: The admin node n0 corresponding
to action π0 is a leaf in the proof graph for ng (to
see this, note that, if n0 had any descendants in
the proof graph, dependency orderings would force
the corresponding actions to precede π0 in π) and
therefore depends only on facts and rules in the initial
policy simAddRule(P0)∪∆. Note that the consistency
constraint dinit in Figure 8 ensures that negative pre-
conditions in the rules used to derive n0 from facts in
the initial policy are satisfied. Therefore, permission
for some user in U0 to perform π0θ is derivable in the
policy simAddRule(P0) ∪∆θ.

Step case: The tabling algorithm ensures that
ni+1 can be derived using some subset Admini of
the admin nodes in {n0, . . . , ni}, some set Abd i of
answer nodes that represent abduction, and some
set of other nodes that represent derivations using
inference rules. We argue that each of these three types
of nodes is valid in the derivation of ni+1 in Pi+1.
Regarding the admin nodes in Admini, the induction
hypothesis implies that each node nj in Admini can
be derived in Pj , and that the ordering constraints
defined in Figure 9 ensure that the derived atom (i.e.,
the partial answer) associated with nj is not falsified
by (i.e., is still derivable after) the administrative
actions associated with nj+1, . . . , ni. Regarding the
answer nodes in Abd i that represent abduction, the
tabling algorithm ensures that the abduced atom (i.e.,
the partial answer) associated with each node n in
Abd i is included in ∆, and the ordering constraints in
Oadd-init and Orm-init defined in Figure 9 ensure that
the abduced atom is not falsified by the administrative
actions associated with admin nodes n0, . . . , ni. Re-
garding the other nodes that represent derivations us-
ing inference rules, note that, since phase 1 eliminates
addition and removal of rules, the inference rules do
not change and are valid for use in derivations in
any step (i.e., after any sequence of administrative
operations). Note that the consistency constraint dinit
and the ordering constraints in Oadd-init and Oadd-rmvd

ensure that negative preconditions in these inference
rules are satisfied.

Finally, note that Gθ is derivable from the last
policy P|π| in this sequence, because n|π| is the answer
node ng (the dependence constraints ensure that ng
appears last in the sequence), hence the partial answer

associated with n|π| is G.
The following theorem expresses comprehensive-

ness of the solution produced by phases 2–4.

Theorem 9.9. Let Q′ =
〈simAddRule(P0), U0, A,G0, T−aR,−rR〉 be an
abductive atom-reachability query. Suppose the
algorithm terminates and phase 4 returns a set
solutions of solutions. Suppose there exists a set
∆m of ground facts, and a ground instance Gm of
G0, such that a policy that derives Gm is reachable
in SG(simAddRule(P0) ∪ ∆m, U0, T−aR,−rR) via a
path that does not involve repeated administrative
operations. Let πm be the sequence of administrative
actions labeling the edges of such a path. Suppose
also that ∆m is a minimal residue for Gm,
i.e., for all ∆ ⊂ ∆m, Gm is not reachable in
SG(simAddRule(P0) ∪ ∆, U0, T−aR,−rR). Then there
exists 〈G,∆, π,D〉 ∈ solutions such that for some
ground substitution θ, ∆θ = ∆m and Gθ = Gm and
Dθ = true.

Proof: Our proof of comprehensiveness is based
on the completeness theorem for Becker et al.’s tabling
algorithm, which we described at the end of Section
4.3.1. As discussed in Section 4.3, replacing the sub-
sumption check in processAnswer with an α-equality
check is needed for comprehensiveness, and inserting
the call to noCyclicDeriv to eliminate cyclic deriva-
tions improves termination without compromising
comprehensiveness.

Recall that the simAddRmFact transformation in
phase 2 changes the semantics of the policy such
that an atom a that may be added by an active
administrator is derivable through the new inference
rules, and an atom a that may be removed by an active
administrator is “removed” (in the sense that !a is
derivable), even though the administrators do not nec-
essarily add or remove them, and in particular, even
though those actions might not appear in plans that
lead to the goal. This change to the semantics of the
policy does not cause phase 3 to overlook any possible
derivations of the goal. To see this, recall that phase
3 does not interpret the negation symbol as negation
(recall that it treats the negation symbol as part of
the predicate name) and hence may construct proof
graphs corresponding to plans that lead to policies
containing both an atom and its negation. In effect, the
transformed policy used in phase 3 does not contain
negation and hence is monotonic, so increasing the
set of derivable facts allows more derivations to be
considered and cannot cause any derivation to be
overlooked. Finally, note that the constraints in phase
4 do not eliminate representations of minimal-residue
solutions, because they express only the conditions
needed to ensure that candidate solutions are feasible.

Overall Correctness: Next we state the correct-
ness of the overall algorithm. Let [[〈G,∆, π,D〉]] =

6

{〈Gθ, π,∆θ〉 |ground(θ) ∧Dθ = true}.

Theorem 9.10. Let Q = 〈P0, U0, A,G0〉 be an abduc-
tive atom-reachability query. Suppose the algorithm
terminates and phase 4 returns a set solutions of
solutions. Then solutions is a comprehensive solution
to Q.

Proof: This follows from the correctness of phase
1, as expressed in Theorem 9.7, and the soundness
and comprehensiveness of phases 2–4, as expressed
in Theorems 9.8 and9.9, respectively.

10 EXAMPLE PROOF GRAPHS

Figures 6 and 7 present proofs ψ1 and ψ2 generated
for the example query in Section 3.1. The tables in
the figures list the index and residue for each node;
the partial answer equals the index for each node in
these figures. In both figures, node ng is an answer
node for the goal G0. A directed edge 〈n, n′〉 in a
proof graph indicates that n is an answer node for a
subgoal resulting from the rule used to derive node n′.
For example, in Figure 7, n7 derives hasAct(hpo1,
pOfc(gwHosp)), which is used in n6 to derive
aux2.5(); in the context of the original policy, this
corresponds to a use of addRule permission rule (2.5)
in Figure 2 to add a rule defining membership in the
trCli role. That added rule is used in node n1 to de-
rive cli1’s membership in trCli(pat, gwHosp);
the other children of n1 represent derivations of the
premises of that rule.

11 PSEUDOCODE FOR PHASE 4
Pseudocode for phase 4 appears in Figures 8, 9, and
10. isAdmin(n) holds iff n is an administrative node
(also called an “admin node”, for short). isAddFact(n)
holds iff rule(n) is a transformed addFact permission
rule. isRmFact(n) holds iff rule(n) is a transformed
removeFact permission rule. For a Boolean expres-
sion O in disjunctive normal form (DNF), disjuncts(O)
returns the set of disjuncts (each of which is a con-
junction) in O. Disequalities may contain wildcards;
specifically, disequalities may have the form 6= t,
where t does not contain wildcards (because wild-
cards cannot appear as arguments of constructors).
The function satisfiable(d) tests satisfiability of a dise-
quality d. It handles wildcards as follows: a disequal-
ity of the form 6= t is not satisfiable.

Example: Figures 11 and 12 show the ordering
constraints produced by the orderingConstraints func-
tion in Figure 9 for node ng in the proof graphs ψ1

and ψ2 in Figures 6 and 7, respectively.
Removal of subsumed solutions: Another con-

sequence of replacing the subsumption check in pro-
cessAnswer with an equality check is that phase
3 may produce solutions subsumed by other solu-
tions. Informally, a solution S is subsumed by a
solution S′ if S represents fewer ground solutions

Oψ1
= C1 ∨ C2 ∨ C3 ∨ C4

C1 = 〈n2, n3, f〉 ∧ 〈n3, n2, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n4, ng, f〉∧
〈n3, ng, f〉 ∧ 〈n8, n2, f〉 ∧ 〈n6, n3, f〉

C2 = 〈n2, n3, f〉 ∧ 〈ng, n3, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n4, ng, f〉∧
〈n3, ng, f〉 ∧ 〈n8, n2, f〉 ∧ 〈n6, n3, f〉

C3 = 〈ng, n2, f〉 ∧ 〈n3, n2, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n4, ng, f〉∧
〈n3, ng, f〉 ∧ 〈n8, n2, f〉 ∧ 〈n6, n3, f〉

C4 = 〈ng, n2, f〉 ∧ 〈ng, n3, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n4, ng, f〉∧
〈n3, ng, f〉 ∧ 〈n8, n2, f〉 ∧ 〈n6, n3, f〉

f

6
n

gnC
 1

f

f

f
2

n

8
n

3
n

f

f

Fig. 11. Ordering constraint Oψ1
generated by function

orderingConstraints for node ng in the proof graph ψ1

in Figure 6, and disjunct C1 in Oψ1 represented as a
labeled graph, with the unsatisfiable cycle highlighted
by thicker lines. “f” abbreviates “false”.

Oψ2
= C1

C1 = 〈n6, ng, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n9, n2, f〉

f

ng

n
2

9
n

6
n

 1
C

f

f

Fig. 12. Ordering constraint Oψ2
generated by function

orderingConstraints for node ng in the proof graph ψ2

in Figure 7, and disjunct C1 in Oψ2
represented as a

labeled graph. “f” abbreviates “false”.

than S′ or ground solutions with larger residues.
Formally, a solution 〈G,∆, π,D〉 is subsumed by
a solution 〈G′,∆′, π′, D′〉, denoted 〈G,∆, π,D〉 �S
〈G′,∆′, π′, D′〉, if |∆| ≥ |∆′| and there exists a sub-
stitution θ such that G = G′θ and ∆ ⊇ ∆′θ and
D ⇒ D′θ. This definition is based on the definition of
the subsumption relation �A in [10, Subsection 2.4],
extended to compare the tuple disequalities. Including
subsumed solutions in the answer is undesirable, so
the last line of pseudo-code in Figure 8 removes them.

7

3

g

nn

n n

n n

n

1

4

2

8n

5

n7

6

ng index = treatingWithoutConsent(pat1, cli1)
residue = {}

n1 index = memberOf(cli1,
trCli(pat1, gwHosp))

residue = {}
n2 index = !consentTT(pat1, cli1,

gwHosp)
residue = {}

n3 index = consentTT(pat1, cli1,
gwHosp)

residue = {}
n4 index = aux2.4(), residue = {}
n5 index = hasAct(pat1, patient),

residue = {}
n6 index = aux2.6(), residue = {}
n7 index = hasAct(hpo1,

pOfc(gwHosp))
residue = {}

n8 index = aux2.7(), residue = {}

Fig. 6. A proof graph ψ1 generated in phase 3 for the example query in Section 3.1 using the transformed policy
simAddRmFact(simAddRule(P0), U0) in Figure 4.

g

n
6

n
5

n
4

n
3

n
8

n
9

n

n
2

n

n
7

1

ng index = treatingWithoutConsent(pat1, cli1)
residue = {memberOf(cli1, wkgp(W, gwHosp, Spcty, WT)),

encounter(EncID, pat1, W, gwHosp, Type)}
n1 index = memberOf(cli1, trCli(pat1, gwHosp))

residue = {memberOf(cli1, wkgp(W, gwHosp, Spcty, WT)),
encounter(EncID, pat1, W, gwHosp, Type)}

n2 index = !consentTT(pat1, cli1, gwHosp), residue = {}
n3 index = hasAct(cli1, cli(gwHosp, Spcty)), residue = {}
n4 index = memberOf(cli1, wkgp(W, gwHosp, Spcty, WT))

residue = {memberOf(cli1, wkgp(W, gwHosp, Spcty, WT))}
n5 index = encounter(EncID, pat1, W, gwHosp, Type)

residue = {encounter(EncID, pat1, W, gwHosp, Type)}
n6 index = aux2.5(), residue = {}
n7 index = hasAct(hpo1, pOfc(gwHosp)), residue = {}
n8 index = hasAct(pat1, patient), residue = {}
n9 index = aux2.7(), residue = {}

Fig. 7. A proof graph ψ2 generated in phase 3 for the example query in Section 3.1 using the transformed policy
simAddRmFact(simAddRule(P0), U0) in Figure 4.

12 RELATIVE EXPRESSIVENESS OF ACAR
AND ARBAC97

ACAR is more expressive than ARBAC97 in many
ways but is also less expressive in some ways. To
see this, we consider how to express ARBAC97 in
ACAR, by introducing extensional predicates that
capture the policy state (primarily the set of roles,
and the transitive reduction of the role hierarchy)
and introducing permission rules for adding and
removing facts for these predicates. These permis-
sion rules express ARBAC97’s preconditions on those
administrative operations. All aspects of ARBAC97’s
three components (URA97, PRA97, and RRA97) can

be expressed in ACAR except (1) negative precondi-
tions for assignment of users and permissions to roles
(they can be expressed if roles mentioned in negative
preconditions are not junior to other roles in the role
hierarchy), (2) the requirement that new role hierarchy
edges can be added only between roles that are incom-
parable in the current role hierarchy (however, this
requirement is not essential), and (3) the requirement
that encapsulation of authority ranges is not violated
when adding an edge to the role hierarchy (however,
a reasonable conservative approximation of this re-
quirement can be expressed in ACAR). These three
exceptions have a common underlying cause: they
would require applying negation to an intensional

8

solutions = ∅
for ng in Ans(G)

// consistency constraint for initial state: positive literals must be distinct from negative literals.
dinit =

∧
{args(a) 6= args(b) | a ∈ facts(P0) ∪ residue(ng) ∧ !b ∈ residue(ng) ∧ unifiable(a, b)}

// consistency constraint for residue: residue must be disjoint from nAb.
dnAb =

∧
{args(a) 6= args(b) | a ∈ residue(ng) ∧ b ∈ nAb ∧ unifiable(a, b)}

d0 = dinit ∧ dnAb

if ¬satisfiable(d0)
continue

O = orderingConstraints(ng)
if (∃c ∈ disjuncts(O). the ordering constraints in c are acyclic)

// the ordering constraints for ng are satisfiable without imposing disequalities.
// intersect residue with Atomex (the extensional atoms) to remove negative literals.
solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩Atomex ,plan(ng, c), d0〉}

else
// the ordering constraints for ng are not satisfiable in general, but might be satisfiable if disequalities are
// imposed to ensure that some administrative operations operate on distinct atoms and therefore commute.
for c in disjuncts(O)

if mightNeedRepeatedOp(ng, c)
// See text for description of how to extend the algorithm to support repeated operations.
return “repeated operations might be needed”

Dord = ∅
// c is a conjunction (treated as a set) of labeled ordering constraints. Remove some ordering constraints F
// from c to make the remaining ordering constraints acyclic, and insert in Dord the conjunction d of d0
// and the disequalities labeling the removed ordering constraints, if d is satisfiable and not subsumed by
// an existing element of Dord. We use the algorithm in [14] to compute Cyc.
Cyc = set of all cycles in ordering constraints for disjunct c
FAS = {F | F contains one edge selected from each cycle in Cyc}
// smFAS is the set of ⊆-minimal feedback arc sets (FASs) for disjunct c
smFAS = {F ∈ FAS | 6 ∃F ′ ∈ FAS . F ′ ⊂ F}
for F in smFAS
d = d0 ∧

∧
{d′ | 〈n1, n2, d′〉 ∈ F}

if satisfiable(d) ∧ ¬(∃〈d′, F ′〉 ∈ Dord. d
′ ⊆ d)

Dord = Dord ∪ {〈d, F 〉}
solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩Atomex ,plan(ng, c \ F), d〉 | 〈d, F 〉 ∈ Dord}

// return solutions that are not subsumed by other solutions.
return {s ∈ solutions | ¬∃s′ ∈ solutions. s �S s′}

Fig. 8. Pseudo-code for Phase 4. args(a) returns a tuple containing the arguments of atom a.

relation, in particular, the transitive closure of the role
hierarchy. That transitive relation is defined by a static
set of rules, i.e., there are no addRule or removeRule
permission rules that allow changing the definition
of that relation. ACAR could be extended to allow
negation to be applied to relations defined by a static
set of rules. All of ARBAC97 could be expressed in
ACAR with this extension.

9

function orderingConstraints(ng)
θ = θpa(ng)
// dependence constraint: an admin node ns that supports n must occur before n.
Odep =

∧
{〈ns, n, false〉 | n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ ns ∈ adminSupport(n)}

// all of the constraints below are interference-freedom constraints.
// a removeFact node nr that removes a supporting initial fact of a node n must occur after n.
Orm-init =

∧
{〈n, nr, args(a)θ 6= args(pAns(nr))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ nr ∈ proof(ng) ∧ isRmFact(nr)
∧ n 6= nr ∧ a ∈ supportingInitFact(n) ∧ unifiable(!a,pAns(nr))}

// an addFact node na that adds a fact whose negation is a supporting initial fact of a node n must occur after n.
Oadd-init =

∧
{〈n, na, args(a)θ 6= args(pAns(na))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ na ∈ proof(ng) ∧ isAddFact(na)
∧ n 6= na ∧ !a ∈ supportingInitFact(n) ∧ unifiable(a,pAns(na))}

// an addFact node na that adds a supporting removed fact of a node n must occur either before the removal
// of that fact or after n.
Oadd-rmvd =∧
{〈na, nr, args(pAns(na))θ 6=args(pAns(nr))θ〉 ∨ 〈n, na, args(pAns(na))θ 6=args(pAns(nr))θ〉 |

n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ nr ∈ adminSupport(n) ∧ isRmFact(nr)
∧ na ∈ proof(ng) ∧ isAddFact(na) ∧ n 6= na ∧ unifiable(!pAns(na),pAns(nr))}

// a removeFact node nr that removes a supporting added fact of a node n must occur either before the addition
// of that fact or after n.
Orm-added =∧
{〈nr, na, args(pAns(na))θ 6=args(pAns(nr))θ〉 ∨ 〈n, nr, args(pAns(na))θ 6=args(pAns(nr))θ〉 |

n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ na ∈ adminSupport(n) ∧ isAddFact(na)
∧ nr ∈ proof(ng) ∧ isRmFact(nr) ∧ n 6= nr ∧ unifiable(!pAns(na),pAns(nr))}

// conjoin all ordering constraints and convert the formula to disjunctive normal form.
O = DNF(Odep ∧Orm-init ∧Oadd-init ∧Oadd-rmvd ∧Orm-added)
// for each disjunct c of O, merge labeled ordering constraints for the same pair of nodes,
// so the disjunct represents a graph with at most one edge between each pair of nodes.
for c in disjuncts(O)

while ∃n1, n2, D,D′. 〈n1, n2, D〉 ∈ c ∧ 〈n1, n2, D′〉 ∈ c
replace 〈n1, n2, D〉 and 〈n1, n2, D′〉 with 〈n1, n2, D ∧D′〉 in c

return O

support(n) = {n′ ∈ proof(n) | isAns(n′) ∧ n′ 6= n ∧ ¬∃na.isAdmin(na) ∧ descendant(n, na) ∧ descendant(na, n
′)}

adminSupport(n) = {n′ ∈ support(n) | isAdmin(n′)}
supportingInitFact(n) = {pAns(n′) | n′ ∈ support(n) ∧ (rule(n′) ∈ facts(P0) ∨ rule(n′) = abduction)}
Fig. 9. Function to generate ordering constraints for an answer node ng, and some auxiliary functions.

function plan(ng, c)
N = {n ∈ proof(ng) | isAdmin(n)}
π = a permutation of N such that

∀n, n′ ∈ N. 〈n, n′, 〉 ∈ c⇒ n precedes n′ in π
return map(nodeToAction, π)

function nodeToAction(n)
if isAddFact(n)
op = addFact(pAns(n))

else
op = removeFact(pAns(n))

n′ = the node in children(n) with partial
answer of the form u0(. . .)

u = the argument of u0 in pAns(n′)
return u:op

Fig. 10. Functions used for plan construction. plan(ng, c) produces a plan from an answer node ng and a
conjunction c of ordering constraints; it calls map(f, s), which maps function f along sequence s and returns
the sequence containing the results. nodeToAction(n) computes the administrative action corresponding to an
administrative answer node n.

