
Detecting Global Predicates in Distributed
Systems with Clocks

Scott D. Stoller�

Dept. of Computer Science, Indiana University, Bloomington, IN 47405, USA

Abstract. This paper proposes a framework for predicate detection in
systems of processes with approximately-synchronized real-time clocks.
Timestamps from these clocks are used to define two orderings on events:
“definitely occurred before” and “possibly occurred before”. These or-
derings lead naturally to definitions of 3 distinct detection modalities,
i.e., 3 meanings of “predicate Φ held during a computation”, namely:
PossT Φ (“Φ possibly held”), DefT Φ (“Φ definitely held”), and InstΦ
(“Φ definitely held at a specific instant”). This paper defines these modal-
ities and gives efficient algorithms for detecting them; the algorithms are
based on algorithms of Cooper and Marzullo, Garg and Waldecker, and
Fromentin and Raynal.

Keywords: global predicate detection, consistent global states, partially-
synchronous systems, distributed debugging, real-time monitoring

1 Introduction

A history of a distributed system can be modeled as a sequence of events in their
order of occurrence. Since execution of a particular sequence of events leaves the
system in a well-defined global state, a history uniquely determines a sequence
of global states through which the system has passed. Unfortunately, in a dis-
tributed system without perfect synchronization, it is, in general, impossible for
a process to determine the order in which events on different processors actually
occurred. Therefore, no process can determine unambiguously the sequence of
global states through which the system passed. This leads to an obvious diffi-
culty for detecting whether a global state predicate (hereafter simply called a
“predicate”).

Cooper and Marzullo proposed a solution for asynchronous distributed sys-
tems [CM91]. Their solution involves two modalities, which we denote by Poss
(read “possibly”) and Def (read “definitely”). These modalities are based on
logical time [Lam78] as embodied in the happened-before relation e→hb, a partial
ordering2 of events that reflects causal dependencies. Happened-before is not a
total order, so it does not uniquely determine the history, but it does restrict the
possibilities. Given a predicate Φ, a computation satisfies PossΦ iff there is some
interleaving of events that is consistent with happened-before and in which the
system passes through a global state satisfying Φ. A computation satisfies Def Φ
iff for every interleaving of events that is consistent with happened-before, the
system passes through a global state satisfying Φ.
� Email: stoller@cs.indiana.edu. Web: http://www.cs.indiana.edu/˜stoller/
2 In this paper, all partial orderings are irreflexive unless specified otherwise.

Cooper and Marzullo’s definitions of these modalities established an im-
portant conceptual framework for predicate detection in asynchronous systems,
which has been the basis for considerable research [DJR93, GW94, CBDGF95,
JMN95, SS95, GW96]. In practice, though, detection of Poss or Def suffers from
two significant burdens. First, most of the detection algorithms require that each
process maintain a vector clock; this imposes computational overhead of O(N)
arithmetic operations per “tick” (of the vector clock) and requires that a vector
timestamp with O(N) components be attached to each message, where N is the
number of processes in the system. Second, detecting PossΦ or Def Φ can be
computationally expensive: the worst-case time complexity is Ω(EN), where E
is the maximum number of events executed by each process.

This paper proposes a framework for predicate detection in systems with
approximately-synchronized real-time clocks. Timestamps from these clocks can
be used to define two orderings on events:

e� (read “definitely occurred before”)
and e→ (read “possibly occurred before”). By (roughly speaking) substituting
each of these orderings for happened-before in the definitions of Poss and Def ,
we obtain definitions of four new modalities. The two modalities based on

e�
are closely analogous to Poss and Def , so we denote them by PossT and DefT
(the “T” stands for “timed”). We obtain algorithms for detecting PossT and
DefT by adapting (and, as we do so, optimizing) algorithms of Cooper and
Marzullo [CM91] and Garg and Waldecker [GW94, GW96]. Modalities based on
e→ are quite different, because e→ (unlike e→hb and

e�) is not a partial ordering.
In fact, e→ yields a degenerate case, in which the analogues of Poss and Def
are equivalent. We show that this single modality, which we denote by Inst, is
closely related to Fromentin and Raynal’s concept of Properly [FR94, FR95],
and we adapt for detecting Inst an algorithm of theirs for detecting Properly.

Our detection framework is applicable to a wide range of systems, since it
does not require that clocks be synchronized to within a fixed bound. We assume
each event is time-stamped with a time interval, with the interpretation: when
that event occurred, the value of every (relevant) clock in the system was in that
interval. Implementing such timestamps is straightforward assuming the under-
lying clock synchronization mechanism provides bounds on the offsets between
clocks (the offset between two clocks (at some instant) is the difference in their
values). For example, such information can be obtained from NTP [Mil95] or the
Distributed Time Service in OSF DCE [Tan95].

The quality of clock synchronization affects
e� and e→ and therefore affects

the results of detection. For example, consider InstΦ. Informally, a computation
satisfies InstΦ iff the timestamps imply that there was an instant during the
computation when predicate Φ held, i.e., iff there is some collection of local states
that form a global state satisfying Φ and that, based on the timestamps, definitely
overlapped in time. Suppose Φ actually holds in a global state g that persists
for time δ. Whether InstΦ holds depends on the quality of synchronization.
Roughly, if the clock offsets are known to be smaller than δ, then InstΦ holds;
otherwise, there is in some cases no way to determine whether the local states
in g actually overlapped in time, so InstΦ might not hold.

The quality of clock synchronization affects also the cost of detection. For
example, consider PossT Φ. Informally, a computation satisfies PossT Φ iff there
is some collection of local states that form a global state satisfying Φ and that,
based on the timestamps, possibly overlapped in time. The larger the bounds
on the offsets between clocks, the more combinations of local states possibly
overlap. In general, Φ must be evaluated in each such combination of local states.
Thus, the larger the bounds on the offsets, the more expensive the detection. If
the bounds on the offsets are comparable to or smaller than the mean interval
between events that potentially truthify or falsify Φ, then the number of global
states that must be checked is comparable to the number of global states that the
system actually passed through during execution, which is O(NE). In contrast,
the number of global states considered in the asynchronous case is O(EN).

We expect the above condition on the bounds on the offsets to hold in many
systems. In most local-area distributed systems, protocols like NTP can effi-
ciently maintain synchronization of clocks to within a few milliseconds [Mil95].
Even in extremely wide-area distributed systems like the Internet, clock synchro-
nization can usually be maintained to within a few tens of milliseconds [Mil91].
The detection framework and algorithms proposed here are designed to provide
a basis for monitoring and debugging applications in such systems.

2 Background

A local computation—that is, a computation of a single process—is represented
as a sequence of local states and events; thus, a local computation has the form

e1, s1, e2, s2, e3, s3, . . . (1)
where the eα are events, and the sα are local states. For a local state s, S(s) and
T (s) denote the start event and terminal event, respectively, of s. For example,
in (1), S(s2) is e2, and T (s2) is e3.

A computation of a distributed system is a collection of local computations,
one per process; we represent such a collection as a function from process names
to local computations. We use integers 1, 2, . . . , N as process names. Variables
i and j always range over process names. We use Ev(c) and St(c) to denote
the sets of all events and all local states, respectively, in a computation c. For
convenience, we assume all events and local states in a computation are distinct.
For a local state s, pr(s) denotes the process that passes through s. For an event
e, pr(e) denotes the process on which e occurs. A global state of a distributed
system is a collection of local states, one per process, represented as a function
from process names to local states. The set of global states of a computation c
is denoted GS (c); thus, g is in GS (c) iff for each process i, g(i) is a local state
in c(i). We define a reflexive partial ordering �G on global states by:

g �G g′ ∆= (∀i : g(i) = g′(i) ∨ (g(i) occurs before g(i′))). (2)
Each event e has a timestamp C(e), which is an interval with lower endpoint

C1(e) and upper endpoint C2(e), with the interpretation: when e occurred, every
clock in the system had a value between C1(e) and C2(e). We require that the
clock synchronization algorithm never decrease the value of a clock. This ensures:

SC1 For every event e, C1(e) ≤ C2(e).
SC2 For every event e with an immediately succeeding event e′ on the same
process, C1(e) ≤ C1(e′) and C2(e) ≤ C2(e′).

3 Generic Theory of Consistent Global States

Predicate detection in asynchronous systems is based on the notion of consistent
global states (CGSs) [BM93]. Informally, a global state is consistent if it could
have occurred during the computation. Recall that an ideal of a partial order
〈S,≺〉 is a set I ⊆ S such that (∀x ∈ I : ∀y ∈ S : y ≺ x ⇒ y ∈ I). Ideals
of 〈Ev(c), e→hb〉 are usually called consistent cuts. Recall that for any partial
order, the set of its ideals ordered by inclusion (⊆) forms a lattice [DJR93].
Furthermore, the lattice of CGSs ordered by �G is isomorphic to the lattice of
consistent cuts [SM94, BM93]. This isomorphism has an important consequence
for detection algorithms; specifically, it implies that a minimal increase with
respect to �G corresponds to advancing one process by one event, and hence
that the lattice of CGSs can be explored by repeatedly advancing one process by
one event. This principle underlies detection algorithms of Cooper and Marzullo
[CM91] and Garg and Waldecker [GW94, GW96].

In this section, we show that the above theory is not specific to the happened-
before relation but rather applies to any partial ordering

e
↪→ on events, provided

e
↪→ is process-wise-total, i.e., for any two events e and e′ on the same process,
if e occurred before e′, then e

e
↪→ e′. This generalization underlies the detection

algorithms in Sections 4 and 5.

Definition of CGSs. Let c be a computation, and let
e
↪→ be a relation on Ev(c).

We define a relation
s
↪→ on St(c), with the informal interpretation: s

s
↪→ s′ if s

ends before s′ starts. Formally,

s
s
↪→ s′ ∆=

{
S(s)

e
↪→ S(s′) if pr(s) = pr(s′)

T (s)
e
↪→ S(s′) if pr(s) �= pr(s′).

(3)

Two local states are concurrent if they are not related by
s
↪→. A global state is

consistent if its constituent local states are pairwise concurrent. Thus, the set of
CGSs of computation c with respect to

e
↪→ is

CGS
e

↪→(c) = {g ∈ GS (c) | ∀i, j : i �= j ⇒ ¬(g(i) s
↪→ g(j))}. (4)

Note that CGS
e→hb is the usual notion of CGSs.

Generic Definitions of Poss and Def . The detection modalities Poss and Def
for asynchronous systems are defined in terms of the lattice of CGSs induced by
happened-before. We generalize them as follows.

Poss: A computation c satisfies Poss
e

↪→ Φ iff CGS
e

↪→(c) contains a global state
satisfying Φ.

Def
e

↪→ is defined in terms of paths. A path of a partial order 〈S,�〉 is a sequence3

σ of distinct elements of S such that σ[1] and σ[|σ|] are minimal and maximal,
respectively, with respect to � and such that for all α < |σ|, σ[α+1] is an imme-

diate successor4 of σ[α]. Informally, each path in 〈CGS
e

↪→(c),�G〉 corresponds
to an order in which the events in the computation could have occurred.

Def: A computation c satisfies Def
e

↪→ Φ iff every path of 〈CGS
e

↪→(c),�G〉
contains a global state satisfying Φ.

CGSs and Ideals. When
e
↪→ is a process-wise-total partial ordering of events,

there is a natural correspondence between CGS
e

↪→ and ideals of 〈Ev(c), e
↪→〉. One

can think of an ideal I as the set of events that have occurred. Executing set I of
events leaves each process i in the local state immediately following the last event
of process i in I. Thus, ideal I corresponds to the global state g such that for
all i, S(g(i)) is the maximal element of {e ∈ I | pr(e) = i}. This correspondence
is an isomorphism.

Theorem 1. For any process-wise-total partial ordering
e
↪→ on Ev(c), the partial

order 〈CGS
e

↪→(c),�G〉 is a lattice and is isomorphic to the lattice of ideals of
〈Ev(c), e

↪→〉.
Proof. This is true for the same reasons as in the standard theory based on
happened-before [SM94, BM93, DJR93]. The proof is straightforward. ��

The following corollary underlies the detection algorithms in Sections 4 and 5.

Corollary 2. If global state g′ is an immediate successor of g in 〈CGS (c),�G〉,
then the ideal corresponding to g′ contains exactly one more event than the ideal
corresponding to g.

Proof. This follows from Theorem 1 and the fact that if one ideal of a partial
order is an immediate successor of another ideal of that partial order, then those
two ideals differ by exactly one element. ��

4 Detection Based on a Strong Event Ordering: PossT

and DefT

We instantiate the generic theory in Section 3 with a specific partial ordering
e�

(“definitely occurred before”), defined by:

e
e�e′ ∆=

{
e occurs before e’ if pr(e) = pr(e′)
C2(e) < C1(e′) if pr(e) �= pr(e′). (5)

3 We use 1-based indexing for sequences.
4 For a reflexive or irreflexive partial order 〈S,≺〉 and elements x ∈ S and y ∈ S, y is
an immediate successor of x iff x �= y ∧ x ≺ y ∧ ¬(∃ z ∈ S \ {x, y} : x ≺ z ∧ z ≺ y).

This ordering cannot be defined solely in terms of the real-time timestamps, since
SC1 and SC2 allow consecutive events on a process to have identical timestamps.
We solve this problem by assuming that when a process records the real-time
timestamp for an event, it records a sequence number L(e) (starting with zero)
as well; thus, for events e and e′ with pr(e) = pr(e′), e

e�e′ iff L(e) < L(e′).

Theorem 3. For any computation c,
e� is a process-wise-total partial ordering

on Ev(c).

Proof. See Appendix. ��

By the discussion in Section 3,
e� induces an ordering

s� on local states, a

notion CGS
e� of CGSs, and detection modalities Poss

e� and Def
e�, which we

denote by PossT and DefT, respectively. If g ∈ CGS
e�(c), then the local states

in g possibly overlapped in time.
We consider in this paper only detection algorithms with a passive monitor.

In such algorithms, each process in the original system sends its timestamped
local states to a new process, called the monitor. More specifically, for each
process, when an event terminating the current local state s occurs, the process
sends to the monitor a message containing s and the timestamps C(S(s)) and
C(T (s)).5

We consider only on-line detection, in which the monitor detects the property
as soon as possible. Algorithms for off-line detection, in which the monitor waits
until the computation has terminated and all local states have arrived before
checking whether the property is satisfied, can be obtained as special cases. We
consider first general algorithms for PossT and DefT and then more efficient
algorithms that work only for predicates of a certain form.

4.1 General Algorithms for PossT and DefT

The algorithms in [CM91, MN91] can be adapted to explore lattice 〈CGS
e�(c),�G〉

by (roughly) replacing each condition of the form e
e→hb e′ with e

e�e′. Following
[CM91, MN91], we give algorithms in which the monitor constructs one level of
the lattice of CGSs at a time. The level of a global state g is

∑N
i=1 L(S(g(i))).

Level � of the lattice of CGSs contains the CGSs with level �. Constructing one
level of the lattice at a time is unnecessary and sometimes delays detection of a
property; this construction is used only to simplify the presentation.

The algorithm used by the monitor to detect PossT Φ is given in Figure 1.
To enumerate the states in the next level of the lattice (line 7 of the algorithm),

5 Several straightforward optimizations are possible. For example, each message might
describe only the differences between consecutive reported local states, rather than
repeating the entire local state. Also, except for the initial local state, it suffices to
include with local state s only the timestamp C(T (s)), since C(S(s)) was sent in the
previous message to the monitor. Also, for a given predicate Φ, events that cannot
possibly truthify or falsify Φ can be ignored.

the monitor considers each state g in last and each process i, and checks whether
the next local state s of process i (i.e., the immediate successor on process i of
g(i)) is concurrent with the local states in g of all the other processes. (The
monitor cannot complete construction of the next level until the next local state
of each process has arrived.) If so, the monitor adds g[i �→ s] to the set current ,
where for a function f and an element x in the domain of f , f [x �→ c] is the
function that maps x to c and that agrees with f on all arguments except x.
Cooper and Marzullo’s algorithm for detecting Def can be adapted in a similar
way to detect DefT.

lvl := 0;
wait until at least one local state has been received from each process;
current := the global state of level 0;
while no state in current satisfies Φ

last := current ;
lvl := lvl + 1;
current := consistent global states of level lvl reachable from a state in last

endwhile;
report PossT Φ

Fig. 1. Algorithm for detecting PossT Φ.

Recall that a process sends a local state to the monitor when that local state
ends. This is natural (because

s� depends on when local states end) but can delay
detection. One approach to bounding and reducing this delay is for a process
that has not reported an event to the monitor recently to send a message to the
monitor to report that it is still in the same local state (as if the process were
reporting that it just executed a “skip” event). Another approach (described in
[MN91]) requires knowledge of a bound on message latency: the monitor can use
its own local clock and this bound to determine a lower bound on the ending
time of the last local state it received from a process.

The time complexity of these algorithms depends on the rate at which events
occur relative to the bounds on clock offsets. To simplify the complexity analysis,
suppose the offset between two clocks is known to be always at most ε/2, so
for every event e, C2(e)−C1(e) < ε. Suppose also that the interval between
consecutive events at a process is always at least τ . For each CGS g, the algorithm
takes constant time to evaluate Φ and O(N) time to find all of the immediate
successors of g in the lattice. If τ > ε, then there are O(3NE) CGSs, so the
worst-case time complexity is O(3NNE), where E is the maximum number of
events executed by any process. If τ ≤ ε, then each local state appears in at
most O((� 2ε+τ

τ �+1)N−1) CGSs, so the worst-case time complexity is O((� 2ε
τ �+

2)N−1NE). In both cases, the worst-case time complexity is linear in E, which
is normally much larger than N ; in contrast, the worst-case time complexity of
general algorithms for detecting Poss and Def is Ω(EN).

4.2 Algorithms for PossT and DefT for Restricted Predicates

Garg and Waldecker [GW94, GW96] have developed efficient algorithms for de-
tecting PossΦ and Def Φ for conjunctive predicates Φ. A predicate is conjunctive
if it is a conjunction of predicates that each depend on the local state of one pro-
cess. Their algorithms can be adapted in a straightforward way to detect PossT
and DefT, by (roughly) replacing comparisons based on happened-before with
comparisons based on

e�. This yields detection algorithms with worst-case time
complexity O(N2E). The worst-case time complexity of both algorithms can
be reduced to O((N logN)E) by exploiting the total ordering on numbers. We
briefly review Garg and Waldecker’s algorithm for detecting PossΦ for conjunc-
tive predicates and then describe the optimized algorithm for detecting PossT
for such predicates.

Suppose the global predicate of interest is Φ =
∧N

i=1 φi, where φi depends
on the local state of process i. In Garg and Waldecker’s algorithm, each process
i sends to the monitor timestamped local states satisfying φi; local states not
satisfying φi are not reported. For each process i, the monitor maintains a queue
qi and adds each timestamped local state received from process i to the end
of qi. Let head(q) denote the head of a non-empty queue q. If for some i and
j, head(qi)

e→hb head(qj), then head(qi) is removed from qi. The heads of the
queues are repeatedly compared in this way and (when appropriate) removed,
until the heads of the non-empty queues are (pairwise) concurrent. Then, if all
the queues are non-empty, then the heads of the queues form a CGS satisfying
Φ, so the property has been detected; if some queue is empty, then the monitor
waits to receive more local states. The worst-case time complexity is O(N2E),
because there are O(NE) local states, and each time a local state is removed
from qi, the new head of qi is compared with the heads of the other O(N) queues.

For detection of PossT
∧N

i=1 φi, the number of comparisons can be reduced

as follows. Expanding the definition of CGS
e�(c), g ∈ GS (c) is consistent iff

(∀i, j : i �= j ⇒ C2(T (g(i))) ≥ C1(S(g(j)))). (6)

Using the fact that for all i, C2(T (head(g(i)))) ≥ C1(S(head(g(i)))), which
follows from SC1 and SC2, one can show that (6) is equivalent to

min
i

(C2(T (head(g(i))))) ≥ max
i

(C1(S(head(g(i))))). (7)

To evaluate (7) efficiently, we maintain two priority queues p1 and p2, whose
contents are determined by the invariants:

I1: For each process i such that qi is non-empty, p1 contains a record with
key C1(S(head(qi))) and satellite data i. p1 contains no other records.

I2: For each process i such that qi is non-empty, p2 contains a record with
key C2(T (head(qi))) and satellite data 〈i, ptr〉, where ptr is a pointer to the
record with satellite data i in p1. p2 contains no other records.

Recall that the operations on a priority queue p include getMin(p), which returns
a record 〈k, d〉 with key k and satellite data d such that k is the minimal value of

the key, and extractMin(p), which removes and returns such a record [CLR90].
We also use priority queues with operations based on maximal key values. Thus,
(7) is equivalent to

key(getMin(p2)) ≥ key(getMax(p1)), (8)
where key(〈k, d〉) = k. The negation of (8) is used in the while loop in Figure 2
to check whether a CGS has been found. Recall that an operation on a priority
queue containing n records takes O(log n) time. A constant number of such
operations are performed for each local state, so the worst-case time complexity
of the algorithm in Figure 2 is O((N logN)E). Note that the time complexity is
independent of the rate of events and the quality of clock synchronization.

The algorithm in [GW96] for detecting Def Φ for conjunctive Φ can be
adapted in a similar way to detect DefT Φ for such predicates.

On receiving x from process i:
append(qi, x);
if head(qi) = x then

add records for i to p1 and p2;
while ¬empty(p1) ∧ key(getMin(p2)) < key(getMax(p1))

〈k, 〈i, ptr〉〉 := extractMin(p2);
remove record for i from p1;
removeHead(qi);
if ¬empty(qi) then

add records for i to p1 and p2;
endif

endwhile
if (∀i : ¬empty(qi)) then

report PossT Φ and exit
endif

endif

Fig. 2. Algorithm for detecting PossT Φ for Φ a conjunction of local predicates.

5 Detection Based on a Weak Event Ordering: Inst

This section considers the ordering “possibly occurred before”, defined by:

e
e→ e′ ∆=

{
e occurs before e’ if pr(e) = pr(e′)
C1(e) ≤ C2(e′) if pr(e) �= pr(e′). (9)

Using (3), this induces a relation s→ on local states, with the interpretation: s s→
s′ if s possibly ended before s′ started. Two local states are strongly concurrent
if they are not related by s→; such local states must overlap in time. The set
CGS

e→ is defined by (4). We call elements of CGS
e→ strongly consistent global

states (SCGSs).

Poss
e→ and Def

e→ are equivalent, i.e., for all computations c and predicates

Φ, c satisfies Poss
e→ Φ iff c satisfies Def

e→ Φ. This equivalence is an easy corollary
of the following theorem.

Theorem 4. 〈CGS
e→(c),�G〉 is a total order (and therefore a lattice).

Proof. See Appendix. ��

We define Inst (read “instantaneously”) to denote this modality (i.e., Poss
e→

and Def
e→). Informally, a computation satisfies InstΦ if there is a global state

g satisfying Φ and such that the system definitely passes through g during the
computation. Theorem 1 does not apply to e→, because:

Theorem 5. e→ is not a partial ordering.

Proof. See Appendix. ��

Since Theorem 1 does not apply, it is not surprising that a minimal increase
in 〈CGS

e→(c),�G〉 does not necessarily correspond to advancing one process by
one event (it is easy to construct examples of this). Consequently, the algorithms
in Section 4 cannot be easily adapted to detect Inst. Our algorithm for detecting
Inst is based on Fromentin and Raynal’s algorithm for detecting Properly (read
“properly”) in asynchronous systems [FR94, FR95]. The definition of Properly,
generalized to an arbitrary ordering on events, is:

Properly: A computation c satisfies Properly
e

↪→ Φ iff there is a global state

satisfying Φ and contained in every path of 〈CGS
e

↪→(c),�G〉.

Theorem 6. Properly
e� is equivalent to Inst.

Proof. See Appendix. ��

As Theorem 6 suggests, Fromentin and Raynal’s algorithm for detecting

Properly
e→hb can be adapted in a straightforward way to detect Inst. This

yields an algorithm with worst-case time complexity O(N3E). Optimizations
similar to those presented in Section 4.2 are possible here as well. Expanding
the definition of CGS

e→(c), a global state g is strongly consistent iff

(∀i, j : i �= j ⇒ C1(T (g(i))) > C2(S(g(j)))). (10)

To check this condition efficiently, we introduce priority queues p1 and p2, whose
contents are determined by the following invariants:

J1: for each process i such that qi is non-empty, p1 contains a record with
key C1(T (head(qi))) and satellite data 〈i, ptr〉, where ptr is a pointer to the
record with satellite data i in p2. p1 contains no other records.

J2: for each process i such that qi is non-empty, p2 contains a record with
key C2(S(head(qi))) and satellite data i. p2 contains no other records.

The goal is to define a condition SC(p1, p2) that tests whether the heads of
the non-empty queues are (pairwise) strongly concurrent. Based on (10), a first
attempt is empty(p1) ∨ key(getMin(p1)) > key(getMax(p2)). However, this con-
dition is not correct when for some i, C1(T (g(i))) < C2(S(g(i))). Taking this
possibility into account, we obtain

SC(p1, p2)
∆= empty(p1) ∨ key(getMin(p1)) > key(getMax(p2))

∨ (π1(data(getMin(p1)))=data(getMax(p2)) ∧ countMax(p2)=1),
(11)

where countMax(p) is the number of records containing the maximal value of the
key in priority queue p, and where data(〈k, d〉) = d and π1(〈i, ptr〉) = i. Thus,
the following procedure makeSC (“make Strongly Concurrent”) loops until the
heads of the non-empty queues are strongly concurrent:

procedure makeSC()
while ¬SC(p1, p2)

〈k, i〉 := extractMin(p1);
remove record for i from p2;
removeHead(qi);
if ¬empty(qi) then

add records for i to p1 and p2;
endif

endwhile

The optimized algorithm for detecting Inst appears in Figure 3, where head2(q)
returns the second element of a queue q. When a SCGS g is found, if g does not
satisfy Φ, then the algorithm starts searching for the next SCGS by advancing

some process j such that this advance yields a CGS (i.e., an element of CGS
e�).

If at first no process can be so advanced (e.g., if each queue qi contains only
one element), then the algorithm waits for more local states to be reported. It

follows from the definitions of CGS
e� and CGS

e→ that if some process can be
so advanced, then a process j such that C1(S(head2(qj))) is minimal can be so
advanced. Thus, by maintaining a priority queue p3 with key C1(S(head2(qi))),
a candidate process to advance can be found in constant time. We can determine
in constant time whether advancing this candidate yields a CGS, using a test
similar to (8), but with p1 and p2 replaced with appropriate priority queues.
This requires maintaining an additional priority queue.

We analyze the worst-case time complexity of this algorithm by summing the
times spent inside and outside of makeSC. Each iteration of the while loop in
makeSC takes O(logN) time (because each operation on priority queues takes
O(logN) time) and removes one local state. The computation contains O(NE)
local states, so the total time spent inside makeSC is O((N logN)E). The to-
tal time spent in the code outside makeSC is also O((N logN)E), since there
are O(NE) SCGSs (this is a corollary of Theorem 6), and each local state is
considered at most once and at constant cost in the wait statement. Thus, the
worst-case time complexity of the algorithm is O((N logN)E).

6 Sample Application: Debugging Coherence Protocols

Coherence of shared data is a central issue in many distributed systems, such as
distributed file systems, distributed shared memory, and distributed databases.
A typical invariant maintained by a coherence protocol is: if one machine has a
copy of a data item in write mode, then no other machine has a valid copy of that

On receiving x from process i:
append(qi, x);
if head(qi) = x then

add records for i to p1 and p2;
found := true;
while found

makeSC();
if (∃ i : empty(qi)) then

found := false
else (∗ found a SCGS ∗)

g := the global state (λi. head(qi));
if g satisfies Φ then

report InstΦ and exit
else

wait until there exists j such that g[j �→ head2(qj)] is in CGS
e�(c);

remove records for j from p1 and p2;
removeHead(qj);
add records for j to p1 and p2

endif
endif

endwhile
endif

Fig. 3. Algorithm for detecting InstΦ.

data item. Let cohrnt denote this predicate. As part of testing and debugging a
coherence protocol, one might issue a warning if PossT ¬cohrnt is detected and
report an error if DefT ¬cohrnt is detected. A computationally cheaper but less
informative alternative is to monitor only Inst¬cohrnt and report an error if
it is detected. In either case, if on-line detection would cause an unacceptable
probe effect, then the probe effect can be reduced by logging timestamped local
states locally and using the detection algorithms off-line.

A detection algorithm based on happened-before could be used instead, if the
system can be modified to maintain vector clocks (or is unusual and maintains
them already). However, if the coherence protocol uses timers—for example, if
leases are used instead of locks—then time acts as a hidden channel [BM93]
(i.e., a means of communication other than messages), so detection based on
happened-before might yield less precise results. For example, expiration of a
lease and granting of another lease to a different machine need not be related by
happened-before, so Poss¬cohrnt may be detected, even though coherence was
maintained and PossT ¬cohrnt would not be detected.

7 Related and Future Work

Marzullo and Neiger [MN91] define two detection modalities for partially-syn-

chronous systems. In the notation of this paper, those modalities are Poss
e→MN

and Def
e→MN , where

e
e→MN e′ ∆= e

e�e′ ∨ e
e→hb e′. (12)

Combining logical and real-time orderings in this way exploits more information
about the computation but requires that the system maintain vector clocks. In
[MN91], there is no discussion of an event ordering analogous to e→ or a modality
analogous to Inst. Also, [MN91] considers only systems in which all clocks are
always synchronized within a fixed offset ε, while our framework accommodates
varying quality of synchronization.

Veŕıssimo [Ver93] discusses the uncertainty in event orderings caused by the
granularity6 and imperfect synchronization of digital real-time clocks, analyzes
the conditions under which this uncertainty is significant for an application,
and describes a synchronization technique, suitable for certain applications, that
masks this uncertainty. However, [Ver93] does not aim for a general approach to
detecting global predicates in the presence of this uncertainty.

This paper proposes a foundation for detection of global predicate in systems
with approximately-synchronized real-time clocks. One direction for future work
is to implement and gain experience with the detection algorithms. Another is
to study efficient detection of global predicates that depend explicitly on time.

References

[BM93] Ö. Babaoğlu and K. Marzullo. Consistent global states of distributed sys-
tems: Fundamental concepts and mechanisms. In Sape Mullender, editor,
Distributed Systems, ch. 5, pages 97–145. Addison Wesley, 2nd ed., 1993.

[CBDGF95] B. Charron-Bost, C. Delporte-Gallet, and H. Fauconnier. Local and tem-
poral predicates in distributed systems. ACM Trans. on Programming
Languages and Systems, 17(1):157–179, January 1995.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press and McGraw-Hill, 1990.

[CM91] R. Cooper and K. Marzullo. Consistent detection of global predicates. In
Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, 1991.
Appeared as ACM SIGPLAN Notices 26(12):167-174, December 1991.

[DJR93] C. Diehl, C. Jard, and J.-X. Rampon. Reachability analysis on distributed
executions. In J.-P. Jouannaud and M.-C. Gaudel, editors, TAPSOFT ’93:
Theory and Practice of Software Development, vol. 668 of Lecture Notes
in Computer Science, pages 629–643. Springer, 1993.

[FR94] E. Fromentin and M. Raynal. Inevitable global states: a concept to de-
tect unstable properties of distributed computations in an observer inde-
pendent way. In Proc. 6th IEEE Symposium on Parallel and Distributed
Processing, 1994.

[FR95] E. Fromentin and M. Raynal. Characterizing and detecting the set of
global states seen by all observers of a distributed computation. In Proc.
IEEE 15th Int’l. Conference on Distributed Computing Systems, 1995.

[GW94] V. K. Garg and B. Waldecker. Detection of weak unstable predicates in
distributed programs. IEEE Trans. on Parallel and Distributed Systems,
5(3):299–307, 1994.

6 Our framework accommodates the granularity of digital clocks by using ≤ instead
of < in SC1 and SC2.

[GW96] V. K. Garg and B. Waldecker. Detection of strong unstable predicates in
distributed programs. IEEE Trans. on Parallel and Distributed Systems,
7(12):1323–1333, 1996.

[JMN95] R. Jegou, R. Medina, and L. Nourine. Linear space algorithm for on-line
detection of global predicates. In J. Desel, editor, Proc. Int’l. Workshop
on Structures in Concurrency Theory (STRICT ’95). Springer, 1995.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–564, 1978.

[Mil91] D. L. Mills. Internet time synchronization: the Network Time Protocol.
IEEE Trans. Communications, 39(10):1482–1493, October 1991.

[Mil95] D. L. Mills. Improved algorithms for synchronizing computer network
clocks. IEEE/ACM Transactions on Networking, 3(3):245–254, June 1995.

[MN91] K. Marzullo and G. Neiger. Detection of global state predicates. In Proc.
5th Int’l. Workshop on Distributed Algorithms (WDAG ’91), vol. 579 of
Lecture Notes in Computer Science, pages 254–272. Springer, 1991.

[SM94] R. Schwarz and F. Mattern. Detecting causal relationships in dis-
tributed computations: In search of the holy grail. Distributed Computing,
7(3):149–174, 1994.

[SS95] S. D. Stoller and F. B. Schneider. Faster possibility detection by com-
bining two approaches. In J.-M. Hélary and M. Raynal, editors, Proc.
9th Int’l. Workshop on Distributed Algorithms (WDAG ’95), vol. 972 of
Lecture Notes in Computer Science, pages 318–332. Springer, 1995.

[Tan95] A. S. Tanenbaum. Distributed Operating Systems. Prentice–Hall, 1995.
[Ver93] P. Veŕıssimo. Real-time communication. In Sape Mullender, editor, Dis-

tributed Systems, ch. 17, pages 447–490. Addison Wesley, 2nd ed., 1993.

Appendix

Proof of Theorem 3. It follows immediately from the definitions that
e� is

process-wise-total. We need to show that
e� is irreflexive, acyclic, and transitive.

Irreflexivity is obvious. For transitivity, we suppose e
e�e′ and e′

e�e′′, and show
e

e�e′′. First consider the case pr(e) = pr(e′′). If pr(e′) = pr(e), then the desired
result follows from transitivity of “occurred before”. Of pr(e′) �= pr(e), then
using SC1, the hypothesis e

e�e′, SC1 again, and finally the hypothesis e′
e�e′′,

we have the chain of inequalities C1(e) ≤ C2(e) < C1(e′) ≤ C2(e′) < C1(e′′),
so C1(e) < C1(e′′), so by SC2, e occurred before e′′. Next consider the case
pr(e) �= pr(e′′). Note that ¬(pr(e) = pr(e′)∧pr(e′) = pr(e′′)). If pr(e′) �= pr(e),
then it is easy to show that C2(e) < C1(e′) ≤ C1(e′′), so C2(e) < C1(e′′), as de-
sired. If pr(e′) �= pr(e′′), then it is easy to show that C2(e) ≤ C2(e′) < C1(e′′),
so C2(e) < C1(e′′), as desired.

Given transitivity, to conclude acyclicity, it suffices to show that there are
no cycles of size 2. We suppose e

e�e′ and e′
e�e, and derive a contradiction. If

pr(e) = pr(e′), then the fact that “occurred before” is a total order on the
events of each process yields the desired contradiction. If pr(e) �= pr(e′), then
using SC1, the hypothesis e

e�e′, SC1 again, and finally the hypothesis e′
e�e, we

obtain the chain of inequalities C1(e) ≤ C2(e) < C1(e′) ≤ C2(e′) < C1(e), which
implies C1(e) < C1(e), a contradiction. ��

Proof of Theorem 4. Suppose not, i.e., suppose there exist a computation c,
global states g and g′ in CGS

e→(c), and processes i and j such that g(i) e→ g′(i)

and g′(j) e→ g(j). By definition of CGS
e→(c), ¬(g(i) e→ g(j)), so C2(S(g(j))) <

C1(T (g(i))). By hypothesis, g(i) e→ g′(i), so C1(T (g(i))) < C2(S(g′(i))), so

by transitivity, C2(S(g(j))) < C2(S(g′(i))). By definition of CGS
e→(c),

¬(g′(j) e→ g′(i)), so C2(S(g′(i))) < C1(T (g′(j))), so by transitivity, C2(S(g(j))) <

C1(T (g′(j))). By hypothesis, g′(j) e→ g(j), so C1(T (g′(j))) < C2(S(g(j))), so
by transitivity, C2(S(g(j))) < C2(S(g(j))), which is a contradiction. ��

Proof sketch of Theorem 5. Consider an computation in which, at approximately
the same time, event e1 occurs on process 1 and events e2 and e′2 occur in rapid
succession on process 2. If C2(e1)−C1(e1), C2(e2)−C1(e2), and C2(e′2)−C1(e′2)
are large relative to the separation (in time) between these events, then none of
the actual orderings between e1 and e2 or between e1 and e′2 can be determined
from the timestamps, so e′2

e→ e1 and e1
e→ e2. Since also e2

e→ e′2,
e→ contains

a cycle and therefore is not a partial ordering.

Proof of Theorem 6. It suffices to show that a global state g is in CGS
e→(c) iff

it is contained in every maximal path of CGS
e�(c). The proof of this is based

on a result of Fromentin and Raynal. Recast in our notation, Theorem IGS
of [FR94] (or Theorem C of [FR95]) states that a global state g is contained

in every maximal path of 〈CGS
e→hb(c),�G〉 iff (∀i, j : S(g(i)) e→hb T (g(j)) ∨

g(i) = last(c(i))), where last returns the last element of a sequence. A closely
analogous proof shows that a global state g is contained in every maximal path

of 〈CGS
e�(c),�G〉 iff (∀i, j : S(g(i))

e�T (g(j))), which by definition of
e� is

equivalent to
(∀i, j : i �= j ⇒ C2(S(g(i))) < C1(T (g(j)))). (13)

The only significant difference involves the treatment of the last local state of
each process. Informally, the disjunct g(i) = last(c(i)) is needed in Fromentin and
Raynal’s analysis based on happened-before because, by a peculiarity of the defi-
nitions, the global state gf containing the last local state of each process appears

in every maximal path of 〈CGS
e→hb(c),�G〉, even though the system might not

have passed through gf in real-time, since the processes might have terminated
at different times. This peculiarity is absent from our analysis based on real-time

timestamps—specifically, gf appears in every maximal path of 〈CGS
e�(c),�G〉

iff the system necessarily passed through gf in real-time—so (13) does not need
a disjunct dealing specially with the last local state of each process. Expanding
the definition of CGS

e→(c) and simplifying yields (13). ��

This article was processed using the LATEX macro package with LLNCS style

