
Journal of Computer Security 0 (0) 1 1
IOS Press

Mining Hierarchical Temporal Roles with
Multiple Metrics 1

Scott D. Stoller a Thang Bui a
a Department of Computer Science, Stony Brook University, U.S.A.
E-mail: stoller@cs.stonybrook.edu, thang.bui@stonybrook.edu

Abstract. Temporal role-based access control (TRBAC) extends role-based access control to limit the times at which roles
are enabled. This paper presents a new algorithm for mining high-quality TRBAC policies from timed ACLs (i.e., ACLs with
time limits in the entries) and optionally user attribute information. Such algorithms have potential to significantly reduce the
cost of migration from timed ACLs to TRBAC. The algorithm is parameterized by the policy quality metric. We consider
multiple quality metrics, including number of roles, weighted structural complexity (a generalization of policy size), and (when
user attribute information is available) interpretability, i.e., how well role membership can be characterized in terms of user
attributes. Ours is the first TRBAC policy mining algorithm that produces hierarchical policies, and the first that optimizes
weighted structural complexity or interpretability. In experiments with datasets based on real-world ACL policies, our algorithm
is more effective than previous algorithms at optimizing policy quality.

Keywords: role mining, temporal role-based access control

1. Introduction

Role-based access control (RBAC) offers significant advantages over lower-level access control policy
representations, such as access control lists (ACLs). RBAC policy mining algorithms have potential to
significantly reduce the cost of migration to RBAC, by partially automating the development of an RBAC
policy from an access control list (ACL) policy and possibly other information, such as user attributes
[4]. The most widely studied versions of the RBAC policy mining problem involve finding a minimum-
size RBAC policy consistent with (i.e., equivalent to) given ACLs. When user attribute information is
available, it is also important to maximize interpretability (or “meaning”) of roles—in other words, to
find roles whose membership can be characterized well in terms of user attributes. Interpretability is
critical in practice. Researchers at HP Labs report “the biggest barrier we have encountered to getting the
results of role mining to be used in practice” is that “customers are unwilling to deploy roles that they
can’t understand” [2]. Algorithms for mining meaningful roles are described in, e.g., [10,16].

1This material is based on work supported in part by NSF under Grants CNS-1421893, CCF-1248184, and CCF-1414078,
ONR under Grant N00014-15-1-2208, and AFOSR under Grant FA9550-14-1-0261. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of these agencies.
The final publication is available at IOS Press through http://dx.doi.org/ http://dx.doi.org/10.3233/JCS-17989

0926-227X/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved

http://dx.doi.org/10.3233/JCS-17989

2 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

Temporal RBAC (TRBAC) extends RBAC to limit the times at which roles are enabled [1]. TRBAC
supports an expressive notation, called periodic expressions, for expressing sets of time intervals during
which a role is enabled. A role’s permissions are available to members only while the role is enabled. This
allows tighter enforcement of the principle of least privilege. Access control in many existing systems
supports some form of groups or roles and some form of periodic temporal constraints. This includes
LDAP-based directory servers, such as Oracle Unified Directory and Red Hat Directory Server, XACML-
based Identity and Access Management (IAM) products, such as Axiomatics Policy Server, some other
IAM products, such as NetIQ Access Manager, some cloud computing services, such as Joyent’s Triton
Compute Service, and many network routers and switches.

This paper presents an algorithm for mining hierarchical TRBAC policies. It is parameterized by a
policy quality metric. We consider multiple policy quality metrics: number of roles, weighted struc-
tural complexity (WSC) [10], a generalization of syntactic policy size, interpretability (INT) [10,16],
described briefly above, and a compound quality metric, denoted WSC-INT, that combines WSC and
INT. Our algorithm does not require attribute data; attribute data, if available, is used only in the policy
quality metric, if it considers interpretability. Our algorithm is the first TRBAC policy mining algorithm
that produces hierarchical policies, and the first that optimizes WSC or interpretability.

Our algorithm is based on Xu and Stoller’s elimination algorithm for RBAC mining [16] and some
aspects of Mitra et al.’s pioneering generalized temporal role mining algorithm, which we call GTRM
algorithm, for mining flat TRBAC policies (i.e., policies without role hierarchy) with minimal number
of roles [7,8], which inspired our work. Our algorithm has four phases: (1) produce a set of candidate
roles that contains initial roles (generated directly from the entitlements in the input) and roles created by
intersecting initial roles, (2) merge candidate roles where possible, (3) organize the candidate roles into
a role hierarchy, and (4) remove low-quality candidate roles (this is a greedy heuristic). The generated
policy is not guaranteed to have optimal quality. Fundamentally, this is because the problem of finding
an optimal policy is NP-complete (this follows from NP-completeness of the untimed version of the
problem ([10]).

To evaluate the algorithm, we created datasets based on real-world ACL policies from HP, described
in [2] and used in several evaluations of role mining algorithms, e.g., [10,16,8]. We could simply extend
the ACLs with temporal information to create a temporal user-permission assignment (TUPA), and then
mine a TRBAC policy from the TUPA and attribute data. However, it would be hard to evaluate the algo-
rithm’s effectiveness, because there is nothing with which to compare the quality of the mined policies.
Therefore, we adopt a similar methodology as Mitra et al. [8]. For each ACL policy, we mine an RBAC
policy from the ACLs and synthetic attribute data using Xu and Stoller’s elimination algorithm [16],
pseudorandomly extend the RBAC policy with temporal information numerous times to obtain TRBAC
policies, expand the TRBAC policies into equivalent TUPAs, mine a TRBAC policy from each TUPA
and the attribute data, and compare the average quality of the resulting TRBAC policies with the quality
of the original TRBAC policy, with the goal that the former is at least as good as the latter.

We created two datasets, using different temporal information when extending RBAC policies to obtain
TRBAC policies. For the first dataset, we use simple periodic expressions, each of which is a range of
hours that implicitly repeats every day. We use the same time intervals as [8]. They are designed to cover
various relationships between intervals, such as overlapping, consecutive, disjoint, and nested. For the
second dataset, we use more complex periodic expressions based on a hospital staffing schedule. For
both datasets, we use the same attribute data, namely, the high-fit synthetic attribute data for these ACL
policies described in [16].

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 3

In experiments using number of roles as the policy quality metric, Mitra et al.’s GTRM algorithm,
designed to minimize number of roles, produces 34% more roles than our algorithm, on average. In
experiments using WSC-INT as the policy quality metric, our algorithm succeeds in finding the implicit
structure in the TUPA, producing policies with comparable (for the first dataset) or moderately higher
(for the second dataset) WSC and better interpretability, on average, compared with the original TRBAC
policy.

Mitra et al. developed another temporal role mining algorithm, called the CO-TRAPMP-MVCL al-
gorithm [9]. It minimizes a restricted variant of WSC based on the sizes of two components of the pol-
icy. In experiments using that variant as a policy quality metric, and using datasets created by Mitra et
al., our algorithm produces policies that are 41% smaller, on average, than the policies produced by the
CO-TRAPMP-MVCL algorithm.

We explored the effect of different inheritance types on the quality of the mined policy and found that
weakly restricted inheritance leads to policies with significantly better WSC and slightly better inter-
pretability, on average. We experimentally evaluated the benefits of some design decisions and quantified
the cost-quality trade-off provided by a parameter to our algorithm that limits the set of initial roles used
in intersections in phase 1.

This paper is a revised and extended version of [12]. The main improvements are substitution of
FastMiner for CompleteMiner when computing role intersections and an empirical justification for this,
an improved metric for selecting a subset of initial roles for use in role intersections, more explanation
and details of the algorithm, and more experiments, including an experimental comparison with Mitra et
al.’s CO-TRAPMP-MVCL algorithm [9].

Section 2 provides background on TRBAC. Section 3 defines the policy mining problem. Section 4
presents our algorithm. Section 5 describes the datasets used in the experimental evaluation. Section
6 presents the results of the experimental evaluation. Section 7 discusses related work. Directions for
future work include: mining TRBAC policies from operation logs, by extending work on mining RBAC
policies from logs [11]; optimization of TRBAC policies, i.e., improving the quality of a TRBAC policy
while minizing changes to it, by extending work on optimizing RBAC policies [14]; and mining temporal
ABAC policies, by extending work on ABAC policy mining [17,6].

2. Background on TRBAC

An RBAC policy is a tuple 〈User ,Perm,Role,UA,PA,RH 〉, where User is a set of users, Perm is a
set of permissions, Role is a set of roles, UA ⊆ User ×Role is the user-role assignment, PA ⊆ Role ×
Perm is the permission-role assignment, and RH ⊆ Role × Role is the role inheritance relation (also
called the role hierarchy). Specifically, 〈r, r′〉 ∈ RH means that r is senior to r′, hence all permissions
of r′ are also permissions of r, and all members of r are also members of r′. A role r′ is junior to role r
if rRH+r′, where RH+ is the transitive closure of RH .

A periodic expression (PE) is a symbolic representation for an infinite set of time intervals. The formal
definition of periodic expressions in [1,8] is standard and somewhat complicated; instead of repeating
it, we give a brief intuitive version. A calendar is an infinite set of consecutive time intervals of the
same duration; informally, it corresponds to a time unit, e.g., a day or an hour. A sequence of calendars
C1, . . . , Cn, Cd defines the sequence of time units used in a periodic expression, from larger to smaller.
A periodic expression has the form

∑n
k=1Ok · Ck B d · Cd where O1 = all , Ok is a set of natural

numbers or the special value all for 2 ≤ k ≤ n, and d is a natural number. The first part of a PE (before

4 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

B) identifies the set of starting points of the intervals represented by the PE. The second part of the PE
(after B) specifies the duration of each interval.

For example, consider the sequence of calendars Quadweeks, Weeks, Days, hours, where a Quadweek
is four consecutive weeks—similar to a month, but with a uniform duration. The periodic expression [all
· Quadweeks + {1,3} ·Weeks + {1,2,3,4,5} · Days + {10} · Hours B 8 · Hours] represents the set of time
intervals starting at 9am (the time intervals in each calendar are indexed starting with 1, so for Hours, 1
denotes the hour starting at midnight, 2 denotes the hour starting at 1am, etc.) and ending at 5pm (since
duration is 8 hours) of every weekday (assuming days of the week are indexed with 1=Monday) during
the first and third weeks of every quadweek.

A bounded periodic expression (BPE) is a tuple 〈[begin, end], pe〉, where begin and end are date-times,
and pe is a periodic expression. A BPE represents the set of time intervals represented by pe except
limited to the interval [begin, end].

A BPE set (BPES) is a set of BPEs. It represents the union of the sets of time intervals represented by
its members

A temporal RBAC (TRBAC) policy is a tuple 〈User ,Perm,Role,UA,PA,RH , IT ,REB〉, where the
first six components are the same as for an RBAC policy, IT is the inheritance type (described below),
and REB is the role enabling base (REB), which specifies when roles are enabled [1]. Bertino et al.
allow the REB to specify various conditions and events that enabled or disable a role. Like Mitra et al.
[8,9], we are interested only in temporal conditions and therefore consider a limited form of REB, which
we call a role-time assignment. Specifically, a role-time assignment TA maps each role to a BPES. A
role r is enabled during the set of time intervals represented by TA(r). A REB can easily be constructed
from a role-time assignment, so an RBAC policy with temporal conditions represented by a role-time
assignment instead of a REB can also be considered a TRBAC policy.

We consider two types of inheritance [5]. In both cases, a senior role r inherits permissions from each
of its junior roles r′. With weakly restricted inheritance, denoted by IT = WR, a permission inherited
from r′ is available to members of r during the time intervals specified by TA(r). With strongly restricted
inheritance, denoted by IT = SR, a permission inherited from r′ is available to members of r during
the time intervals specified by TA(r′).

A temporal user-permission assignment (TUPA) is a set of triples of the form 〈u, p, bpes〉, where u is
a user, p is a permission, and bpes is a BPES. We refer to such a triple as an entitlement triple. Such a
triple means that u has permission p during the set of time intervals represented by bpes . A TUPA should
contain at most one entitlement triple for each user-permission pair. A TUPA can therefore be regarded
as a dictionary that maps user-permission pairs to BPESs.

The meaning of a role r in a TRBAC policy π, denoted [[r]]π, is a TUPA that expresses the entitlements
granted by r, taking inheritance into account. The meaning [[π]] of a TRBAC policy π is a TUPA that
expresses the entitlements granted by π.

3. The Relaxed TRBAC Policy Mining Problem

A policy quality metric is a function from TRBAC policies to a totally-ordered set, such as the natural
numbers. The ordering is chosen so that small values indicate high quality; this might seem counter-
intuitive at first glance, but it is natural for metrics such as policy size. We define three basic policy
quality metrics and then consider combinations of them.

Number of roles is a simplistic but traditional policy quality metric.

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 5

Weighted Structural Complexity (WSC) is a generalization of policy size [10]. For a TRBAC policy π
of the above form with a role-time assignment TA as its REB, we define the WSC of π to be WSC(π) =
w1|Role|+ w2|UA|+ w3|PA|+ w4|RH |+ w5WSC(TA), where the wi are user-specified weights, |s|
is the size (cardinality) of set s, and WSC(TA) is the sum of the sizes of the BPESs in TA. The size of a
BPES is the sum of the sizes of the BPEs in it. The size of a BPE is the size of the PE in it (the beginning
and ending date-times have fixed size, so we ignore them). The size of a PE is the sum of the sizes of the
sets in it plus 1 for the duration, with the special value all counted as a set of size 1.

Interpretability is a policy quality metric that measures how well role membership can be characterized
in terms of user attributes. User-attribute data is a tuple 〈A, f〉, where A is a set of attributes, and f is a
function such that f(u, a) is the value of attribute a for user u. An attribute expression e is a function from
the set A of attributes to sets of values. A user u satisfies an attribute expression e iff (∀a ∈ A. f(u, a) ∈
e(a)). For example, if A = {dept , level}, the function e with e(dept) = {CS} and e(level) = {2, 3}
is an attribute expression, which can be written with syntactic sugar as dept ∈ {CS} ∧ level ∈ {2, 3}.
We refer to the set e(a) as the conjunct for attribute a. Let [[e]] denote the set of users that satisfy e. For
an attribute expression e and a set U of users, the mismatch of e and U is defined by mismatch(e, U) =
| [[e]] 	 U |, where the symmetric difference of sets s1 and s2 is s1 	 s2 = (s1 \ s2) ∪ (s2 \ s1). The
attribute mismatch of a role r, denoted AM(r), is mine∈E mismatch(e, asgndU(r)), where E is the
set of all attribute expressions, and asgndU(r) = {u | 〈u, r〉 ∈ UA}. An attribute expression e that
minimizes the attribute mismatch of role r is called a best-fit attribute expression for r. Intuitively, it is
the most accurate possible “explanation” (characterization) of r’s membership using the given attribute
data; it can be shown to users to help them understand the role. We define policy interpretability INT as
the sum over roles of attribute mismatch, i.e., INT(π) =

∑
r∈Role AM(r).

Compound policy quality metrics take multiple aspects of policy quality into account. We com-
bine metrics by Cartesian product, with lexicographic order on the tuples. Lexicographic order means
〈x1, y1〉 < 〈x1, y〉 iff x1 < x2 or x1 = x2∧ y1 < y2. Weighted sums of policy quality metrics could also
be used. Let WSC-INT(π) = 〈WSC(π), INT(π)〉.

A TRBAC policy π is consistent with a TUPA T if they grant the same permissions to the same users
for the same sets of time intervals. When the given TUPA contains noise, it is desirable to weaken this
requirement. A TRBAC policy π is ε-consistent with a TUPA T , where ε is a natural number, if they
grant the same permissions to the same users for the same sets of time intervals, except that, for at most
ε entitlement triples 〈u, p, bpes〉 in T , the policy π either does not grant p to u or grants p to u at fewer
times than bpes [8]. Note that consistency is a special case of ε-consistency, corresponding to ε = 0.

The relaxed TRBAC policy mining problem is: given a TUPA T , policy quality metricQpol , and consis-
tency threshold ε, find a TRBAC policy π that is ε-consistent with T and has the best quality, according to
Qpol , among policies ε-consistent with T . Auxiliary information used by the policy quality metric, e.g.,
user-attribute data, is implicitly considered to be part of Qpol in this definition. Note that the temporal
part of T strongly influences π, even using WSC with w5 = 0, because it determines how entitlements
can be grouped in roles.

We refer to this as the relaxed TRBAC policy mining problem, because of the relaxed consistency
requirement; Mitra et al. refer to it as the generalized TRBAC policy mining problem.

Suggested role assignments for new users. If attribute data is available, the system can compute and
store a best-fit attribute expression er for each role r. When a new user u is added, the system can suggest
that u be made a member of the roles for which u satisfies the best-fit attribute expression, and it presents
these suggested roles in ascending order of attribute mismatch. This reduces the administrative effort
involved in assigning roles to new users.

6 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

Rinit = new Set()
asgndP0 = new Dictionary()
asgndU0 = new Dictionary()
TA = new Dictionary()
for u in U
for 〈P, bpes〉 in permBPES(u, T)
addRole(Rinit, {u}, P, bpes)
for bpe in bpes
addRole(Rinit, {u}, P, {bpe})

permBPES(u, T) =
{〈P, bpes〉 | (∃p.〈u, p, bpes〉 ∈ T)

∧ P = {p | 〈u, p, bpes ′〉 ∈ T
∧bpes v bpes ′}}

function addRole(R,U, P, bpes)
// if there is an existing role with permissions P and
// BPES bpes , add users in U to it, else create new
// role with users U , permissions P , and BPES bpes .
if U , P , or bpes is empty

return
if ∃ r in R s.t. asgndP0(r) = P ∧ TA(r) = bpes
asgndU0(r).addAll(U)

else
r = new Role()
asgndP0(r) = P
asgndU0(r) = U
TA(r) = bpes
R.add(r)

Fig. 1. Phase 1.1: Generate initial roles. “s.t.” abbreviates “such that”.

4. TRBAC Policy Mining Algorithm

Inputs to the algorithm are the TUPA T , the type of inheritance IT to use in the generated policy,
the consistency threshold ε, and the policy quality metric Qpol . While reading the TUPA, our algorithm
attempts to simplify the BPES in each triple by merging BPEs in it that represent sets of overlapping or
consecutive time intervals; this is done in the same way as in case (2b) of Phase 2, described below.

In traditional RBAC and TRBAC notation, roles are identifiers (not objects), and separate relations
such as UA (not object attributes) provide information about them. Similarly, in our pseudocode, roles
have no attributes; instead, dictionaries map roles to relevant information.

Our pseudocode uses the following notation for sets and dictionaries. “new Set()” and “new Dictio-
nary()” create an empty set and empty dictionary, respectively. The methods of a set s include s.add(x)
to add an element x, s.remove(x) to remove an element x, s.addAll(x) to add all elements of set s2, and
s.copy(x) to create a copy of x. The statement d(k) = v updates dictionary d to map key k to value v.
The expression d(k) returns the value that dictionary d associates with key k; it is used only in contexts
where d contains an entry for k.

Phase 1: Generate roles. Phase 1 generates initial roles and then creates additional candidate roles by
intersecting sets of initial roles.

Phase 1.1: Generate initial roles. Pseudocode for generating initial roles appears in Figure 1. It uses
a semantic containment relation v on PEs, BPEs, and BPESs: x1 v x2 iff the set of time instants
represented by x1 is a subset of the set of time instants represented by x2. Note that, for BPESs bpes1 and
bpes2, bpes1 v bpes2 may hold even if bpes1 ⊆ bpes2 does not hold. The function permBPES groups
together the set of permissions P that a user u has for exactly the same BPES bpes or a BPES bpes ′

that semantically contains bpes . An initial role is created with user u, the resulting set of permissions P ,
and time assignment bpes . In addition, for each BPE bpe in bpes , we create an initial role with user u,
permissions P , and time assignment {bpe}.
Phase 1.2: Intersect roles. Phase 1.2 starts to construct a set Rcand of candidate roles, by adding to
Rcand all of the initial roles in Rinit and all non-empty intersections of all pairs of initial roles. In other

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 7

for r in Rinit

Rinit.remove(r)
Rcand.add(r)
for r′ in Rinit

P = asgndP0(r) ∩ asgndP0(r
′)

bpes = TA(r) u TA(r′)
if P and bpes are non-empty

addRole(Rcand, asgndU0(r) ∪ asgndU0(r
′), P, bpes)

Fig. 2. Phase 1.2: Intersect roles

words, for each pair of initial roles, if the intersection of their permission sets is a non-empty set P , and
the intersection of their BPESs is a non-empty BPES bpes , then create a candidate role with permissions
P , BPES bpes , and the union of their user sets. BPESs are intersected semantically, not syntactically;
for example, if bpes1 represents 9am-5pm on Mondays and Wednesdays, and bpes2 represents 1pm-2pm
on Mondays and Fridays, then their intersection is a BPES that represents 1pm-2pm on Mondays. This
phase is similar to role intersection in FastMiner [15]. Pseudocode appears in Figure 2. The function u
denotes semantic intersection of BPESs; in other words, bpes1 u bpes2 is a BPES that represents the set
of time instants represented by bpes1 and bpes2.

This phase is expensive for large datasets. To reduce the cost, we allow role intersections to be limited
to a subset of the initial roles containing the roles mostly likely to produce useful intersections. To support
a flexible trade-off between cost (running time) and policy quality, we introduce a parameter that controls
the size of the subset.

The subset is characterized using a new role quality metric, called the usefulness-for-intersection met-
ric (UI metric). It is a weighted sum of four quantities relevant to the usefulness of a role r in intersec-
tions: role size (sum of number of users, number of permissions, and the WSC of the BPES), covEntit(r)
(defined below), permission popularity (sum over the permissions p of r of the fraction of initial roles
having permission p), and PE popularity (sum over the PEs pe in r’s BPES of the fraction of initial roles
having pe in its BPES). For example, consider the set of roles {r1, r2, r3}, where r1 has permissions
{p1, p2} and enabled time {pe1}, r2 has permissions {p1} and enabled time {pe1}, and r3 has permis-
sions {p4} and enabled time {pe2, pe3} (user assignments are irrelevant hence omitted). The permission
popularity of r1 is 2

3 + 1
3 = 1, of r2 is 2

3 , and of r3 is 1
3 . The PE popularity of r1 is 2

3 , of r2 is 2
3 , and of

r3 is 1
3 + 1

3 = 2
3 .

We used a Support Vector Machine (SVM) to find the weights that maximize the UI metric’s effective-
ness as a classifier for whether an initial role is “useful for intersections”, i.e., is used in an intersection
that contributes to the final policy, either directly or via merges. We extended our system to keep track
of which initial roles are useful for intersections, ran the extended system on one small policy (domino),
and trained the SVM on the resulting data. The resulting weights are -2.7357, -1.6484, 2.3417, and -
0.6017, respectively. The signs of the parameters show that, for example, roles with smaller size and
more popular permissions are more useful in intersections.

To control the cost-quality trade-off, we introduce a parameter RIC (mnemonic for “role intersection
cutoff”) that ranges between 0 and 1, sort the roles by the usefulness-for-intersection metric, and use
only roles in the top RIC in intersections. For example, RIC = 0.3 means that only roles whose values
of the UI metric are in the top (i.e., largest) 30% are used in intersections.

8 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

Phase 2: Merge roles. Phase 2 merges candidate roles to produce a revised set of candidate roles. It uses
the following types of merges. (1) If candidate roles r and r′ have the same set of users U and the same
BPES bpes , then they are replaced with a new role with users U , permissions asgndP0(r)∪asgndP0(r

′),
and BPES bpes , unless a role with those permissions and that BPES already exists, in which case the users
U are added to it. (2) If candidate roles r and r′ have the same users U and same permissions P , then they
are replaced with a new role with usersU , permissions P , and BPES bpes(r)tbpes(r′), unless a role with
those permissions and that BPES already exists, in which case the users U are added to it. Pseudocode
appears in Figure 3. The function t denotes semantic union of BPESs; in other words, bpes1 t bpes2
is a BPES that represents the set of time instants represented by bpes1 or bpes2. We distinguish two
sub-cases. (2a) If bpes1 and bpes2 represent disjoint sets of time intervals, then bpes1 t bpes2 is simply
bpes1 ∪ bpes2. (2b) If bpes1 and bpes2 represent sets of overlapping or consecutive time intervals, then
BPEs in them are merged, if possible, to simplify the result. For example, if bpes1 represents 9am-noon
on weekdays, and bpes2 denotes noon-5pm on weekdays, then bpes1 t bpes2 contains a single BPE
denoting 9am-5pm on weekdays.

Phase 3: Construct role hierarchy. Phase 3 organizes the candidate roles into a role hierarchy with full
inheritance. A TRBAC policy has full inheritance if every two roles that can be related by the inheritance
relation are related by it, i.e., ∀r, r′ ∈ R. [[r]]π ⊇ [[r′]]π ⇒ 〈r, r′〉 ∈ RH ∗. Guo et al. call this property
completeness in the context of RBAC [3]. We always generate policies with full inheritance, even though
relaxing this requirement would allow our algorithms to achieve better policy quality in some cases,
because in the absence of other information, all of these possible inheritance relationships are equally
plausible, and removing any of them risks removing some that are semantically meaningful and desirable.

Phase 3.1: Compute inheritance. Phase 3.1 determines inheritance relationships between candidate
roles, based on the requirement of full inheritance. Function isAncestorFullInher(r′, r) tests whether r′

is an ancestor of r with full inheritance; if IT = WR, the function avoids inheritance relationships that
would lead to cycles in the role hierarchy.

isAncestorFullInher(r′, r) =
asgndP0(r

′) ⊆ asgndP0(r) ∧ asgndU0(r) ⊆ asgndU0(r
′)

∧ (IT = SR⇒ TA(r′) v TA(r))
∧ (IT = WR⇒ ¬(asgndP0(r) ⊂ asgndP0(r

′) ∧ asgndU0(r
′) ⊂ asgndU0(r)))

This function is called for every pair of candidate roles. If isAncestorFullInher(r′, r) is true, and there
is no role between r′ and r in the role hierarchy (i.e., no role r′′ such that isAncestorFullInher(r′, r′′)
and isAncestorFullInher(r′′, r)), then r′ is a parent of r. This phase produces dictionaries parents and
children , such that parents(r) and children(r) are the sets of parents and children of r, respectively.
Pseudocode appears in Figure 4.

Phase 3.2: Compute assigned users and permissions. Phase 3.2 computes the directly assigned users
asgndU(r) and directly assigned permissions asgndP(r) of each role r, by removing inherited users and
permissions from the role’s originally assigned users asgndU0(r) and originally assigned permissions
asgndP0(r). Pseudocode appears in Figure 5.

Phase 4: Remove roles. Phase 4 removes roles from the candidate role hierarchy if the removal pre-
serves ε-consistency with the given ACL policy and improves policy quality. When a role r is removed,
the role hierarchy is adjusted to preserve inheritance relations between parents and children of r, and
the sets of directly assigned users and permissions of other roles are expanded to contain users and
permissions that they previously inherited from r.

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 9

Rvis = new Set()
for r in Rcand

Rvis.add(r)
for r′ in Rcand \Rvis

mergeIfSameMemberBPES(Rcand, r, r
′)

mergeIfSameMemberPerm(Rcand, r, r
′)

function mergeIfSameMemberBPES(Rcand, r, r
′)

if asgndU0(r) = asgndU0(r
′)

∧ TA(r) = TA(r′)
if asgndP0(r) ⊆ asgndP0(r

′)
// merging r and r′ yields r′, so just remove r
Rcand.remove(r)

else if asgndP0(r
′) ⊆ asgndP0(r)

// merging r and r′ yields r, so just remove r′

Rcand.remove(r′)
else
P = asgndP0(r) ∪ asgndP0(r

′)
if ∃ r′′ in Rcand s.t. asgndP0(r

′′) = P
∧ TA(r′′) = TA(r)

asgndU0(r
′′).addAll(asgndU0(r))

else
r′′ = new Role()
asgndU0(r

′′) = asgndU0(r)
asgndP0(r

′′) = P
TA(r′′) = TA(r)
Rcand.add(r)
Rcand.remove(r)
Rcand.remove(r′)

function mergeIfSameMemberPerm(Rcand, r, r
′)

if asgndU0(r) = asgndU0(r
′)

∧ asgndP0(r) = asgndP0(r
′)

if TA(r) v TA(r′)
Rcand.remove(r)

else if TA(r′) v TA(r)
Rcand.remove(r′)

else
bpes = TA(r) t TA(r′)
if ∃ r′′ in R s.t. asgndP0(r

′′) = asgndP0(r)
∧ TA(r′′) = bpes

asgndU0(r
′′).addAll(asgndU0(r))

else
r′′ = new Role()
asgndU0(r

′′) = asgndU0(r)
asgndP0(r

′′) = asgndP0(r)
TA(r′′) = bpes
Rcand.add(r)
Rcand.remove(r)
Rcand.remove(r′)

Fig. 3. Phase 2: Merge roles.

The order in which roles are considered for removal affects the final result. We control this ordering
with a role quality metric Qrole , which maps roles to an ordered set, with the interpretation that large
values denote high quality (note: this is opposite to the interpretation of the ordering for policy quality
metrics). Low-quality roles are considered for removal first. We use a role quality metric that is a temporal
variant of the role quality metric in [16] that gave the best results in their experiments. We define some
auxiliary functions then role quality.

The redundancy of a role rmeasures how many other roles also cover the entitlement triples covered by
r. We say that a role r covers an entitlement triple t if t ∈ [[r]]π. Removing a role with higher redundancy
is less likely to prevent subsequent removal of other roles, so we eliminate roles with higher redundancy
first. The redundancy of role r, denoted redun(r), is the negative of the minimum, over entitlement
triples 〈u, p, bpes〉 covered by r, of the number of removable roles that cover 〈u, p, bpes〉 (we take the
negative so that roles with more redundancy have lower quality). A role is removable in policy π, denoted
removable(r) (the policy is an implicit argument), if the policy obtained by removing r is ε-consistent

10 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

parents =new Dictionary()
children =new Dictionary()
for r in Rcand

parents(r) = new Set()
children(r) = new Set()

for r in Rcand

for r′ in Rcand \ {r}
if isAncestorFullInher(r′, r)

// check whether r′ is a parent or a more distant ancestor of r
if ¬∃ r′′ in parents(r) s.t. isAncestorFullInher(r′, r′′)
// r′ is a parent of r, based on roles considered so far.
// a subsequent role could be placed between them.
parents(r).add(r′)
// remove parents of r that are also parents of r′.
for r′′ in parents(r) \ {r′}

if isAncestorFullInher(r′′, r′)
parents(r).remove(r′′)

if isAncestorFullInher(r, r′)
// check whether r′ is a child or more distant descendant of r
if ¬∃ r′′ in children(r) s.t. isAncestorFullInher(r′′, r′)
// r′ is a child of r, based on roles considered so far.
// a subsequent role could be placed between them.
children(r).add(r′)
// remove children of r that are also children of r′.
for r′′ in children(r) \ {r′}

if isAncestorFullInher(r′, r′′)
children(r).remove(r′′)

Fig. 4. Phase 3.1: Determine inheritance relationships.

with T .

redun(〈u, p, bpes〉) = |{r ∈ Rcand | 〈u, p, bpes ′〉 ∈ [[r]]π ∧ bpes v bpes ′ ∧ removable(r)}|

redun(r) =− min
t∈[[r]]π

(redun(t))

The clustered size of a role r measures how many entitlements are covered by r and how well they
are clustered. A first attempt at formulating this metric (ignoring clustering) might be as the fraction of
entitlement triples in T that are covered by r. As discussed in [16], it is better for the covered entitlement
triples to be “clustered” on (i.e., associated with) fewer users rather than being spread across many users.
The clustered size of r is defined to equal the fraction of the entitlements of r’s members that are covered
by r. In the temporal case, each entitlement triple 〈u, p, bpes〉 is weighted by the fraction of the time
represented bpes that is covered by TA(r).

covEntit(r) =
∑

u∈asgndU(r)
p∈asgndP(r)

dur(TA(r))

dur(T (u, p))
clsSz(r) =

covEntit(r)

|entitlements(asgndU(r), T)|

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 11

for r in Rcand

inheritedU =
⋃
r′inchildren(r) asgndU0(r

′)

asgndU(r) = asgndU0(r).copy().removeAll(inheritedU)
if IT=WR
inheritedP =

⋃
r′inparents(r) asgndP0(r

′)

asgndP(r) = asgndP0(r).copy().removeAll(inheritedP)
if IT=SR
asgndP(r) = asgndP0(r).copy()
for p in asgndP0(r)

// inherBPES is the BPES with which p is inherited by r
inherBPES = tr′∈parents(r)TA(r′)
// if inherBPES equals TA(r), then p does not need to be directly assigned, i.e., p is inherited.
if TA(r) = inherBPES

asgndP.remove(p)

Fig. 5. Phase 3.2: Compute directly assigned users and directly assigned permissions.

where T (u, p) is the BPES bpes such that 〈u, p, bpes〉 ∈ T , dur(bpes) is the fraction of one time unit in
calendar C1 that is covered by bpes , and entitlements(U, T) is the set of entitlement triples in T for a
user in U . For example, if the sequence of calendars is C1 = Year, . . . , Cn = Hour, Cd = Hour, and
bpes is 9am-5pm every day, then dur(bpes) = 1/3, since bpes covers 1/3 of the time in a year.

Our role quality metric is Qrole(r) = 〈redun(r), clsSz(r)〉, with lexicographic order on the tuples.
Our algorithm may remove a role even if the removal worsens policy quality slightly. Specifically, we

introduce a quality change tolerance δ, with δ ≥ 1, and we remove a role if the quality Q′ of the TRBAC
policy resulting from the removal is related to the quality Q of the current TRBAC policy by Q′ < δQ
(recall that, for policy quality metrics, smaller values are better). Choosing δ > 1 partially compensates
for the fact that a purely greedy approach to policy quality improvement is not an optimal strategy.

Pseudocode for removing roles appears in Figure 6. It repeatedly tries to remove all removable roles,
until none of the attempted removals succeeds in improving the policy quality. The policy π is an implicit
argument to auxiliary functions such as removeRole and addRole. Function addRole(r) adds role r
to the candidate role hierarchy: inheritance relations involving r are added, and the assigned users and
assigned permissions of r’s newly acquired ancestors and descendants are adjusted by removing inherited
users and permissions, in a similar way as in the construction of the role hierarchy in Phase 3. Removing
a role r and then restoring r using addRole leaves the policy unchanged.

When testing whether ε-consistency is violated, it is sufficient to check the size of T \ [[π]]. It is unnec-
essary to consider [[π]]\T , because it is always empty; to see this, note that [[π]] equals T at the beginning
of Phase 4, and Phase 4 only removes roles, which can only decrease [[π]].

The following auxiliary functions are used in removeRole. isDescendant(r,r′) holds if r is a descen-
dant of r′, as determined by following the parent-child relations in the children dictionary. The set of
authorized users of r, denoted authU(r), is the set of users in asgndU(r) or asgndU(r′) for some r′

senior to r; this is the same as in RBAC. The notion of authorized permissions must be defined differ-
ently in TRBAC than RBAC, because, with strongly-restricted inheritance, the inherited permissions of
a role r may be associated with BPESs different than TA(r). With strongly-restricted inheritance, the set
of authorized permissions of r, denoted authP(r), is the set of permission-BPES pairs 〈p, bpes〉 such
that (1) each directly assigned permission of r is paired with TA(r) and (2) each permission p inherited

12 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

π = policy from Phase 3
q = Qpol (π)
workL = list of removable roles in π
changed = true
while ¬empty(workL) ∧ changed
sort workL in ascending order by Qrole

changed = false
for r in workL
removeRole(r)
// if ε-consistency is violated,
// restore r.
if |T \ [[π]] | > ε
addRole(r)
workL.remove(r)

else
// if policy quality improved,
// keep the change.
if Qpol (π) < δq
changed = true
q = Qpol (π)
workL.remove(r)

else
// undo the change, i.e., restore r
addRole(r)

function removeRole(r)
for parent in parents(r)

// remove r from its parents
children(parent).remove(r)
for child in children(r)
// if child is not a descendant of parent
// after removing r, add an inheritance
// edge between child and parent .
if ¬ isDescendant(child,parent)
children(parent).add(child)
parents(child).add(parent)

for u in asgndU(r)
// if u is not authorized to parent after
// removing r, add u to assigned users
// of parent.

if u 6∈ authU(parent)
asgndU(parent).add(u)

for child in children(r)
parents(child).remove(r)
for p in asgndP(r)
// if p is not fully authorized to child
// after removing r, add p to assigned
// permissions of child .
if 〈r,TA(child)〉 6∈ authP(child)

asgndP(child).add(p)
Rcand.remove(r)

Fig. 6. Phase 4: Remove roles.

by r is paired with the semantic union of the BPESs of the junior roles from which it is inherited. With
weakly-restricted inheritance, authP(r) is the set of permission-BPES pairs 〈p,TA(r)〉 such that p is in
asgndP(r) or asgndP(r′) for some r′ junior to r; we use a set of pairs for uniformity with the case of
strongly-restricted inheritance.

5. Datasets

We generated two datasets based on real-world ACL policies from HP, described in [2], and the high-
fit synthetic attribute data for these ACL policies described in [16]; see those references for more infor-
mation about the ACL policies and attribute data. Briefly, the ACL policies are named americas_small,
apj, domino, emea, firewall1, firewall2, and healthcare. The synthetic attribute data is generated pseudo-
randomly, using statistical distributions based on statistical summaries of some real-world attribute data,
to make the synthetic data more realistic. The number of attributes ranges from 20 to 50, depending on
the policy size. The type of attribute values is unimportant (the only operation used by our algorithm on
attribute values is equality), so we simply use natural numbers for the values of all attributes.

As outlined in Section 1, for each ACL policy, we mine an RBAC policy from the ACLs and the
attribute data using Xu and Stoller’s elimination algorithm [16], and pseudorandomly extend the RBAC

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 13

policy with temporal information several times to obtain TRBAC policies. For each ACL policy except
americas_small, we create 30 TRBAC policies. For americas_small, which is larger, we create only 10
TRBAC policies, to reduce the running time of the experiments. We extend the RBAC policies in two
ways, using different temporal information.

Dataset with simple PEs. A simple PE is a range of hours (e.g., 9am-5pm) that implicitly repeats every
day. We define the WSC of a simple PE to be 1. This dataset uses the same simple PEs as in [8], namely,
[6, 11], [7, 10], [8, 9], [8, 11], [9, 11], [10, 11], [10, 12], [11, 13], [14, 15], [16, 17]. These PEs are designed
to cover various relationships between intervals, such as overlapping, consecutive, disjoint, and nested.
We choose the number of PEs in each BPES pseudorandomly using a similar probability distribution as
in [8], namely, pr(1) = 0.78, pr(2) = 0.2, pr(3) = 0.02. We choose the specific PEs in each BPES
pseudorandomly using a uniform distribution.

Dataset with complex PEs. For this dataset, we use periodic expressions based on a hospital staffing
schedule, based on discussions with the Director of Timekeeping at Stony Brook University Hospital.
The periodic expressions are not taken directly from the hospital’s staffing schedule, but they reflect its
general nature. The schedule does not repeat every week, but rather every few weeks, because weekend
duty rotates. Clinicians may work 3 days/week for 12 hours/day starting at 7am or 7pm, or 5 days/week
for 8.5 hours/day starting at 7am, 3pm, or 11pm. The probabilities of these work schedules are 0.144,
0.094, 0.284, 0.284, and 0.194, respectively. We create two instances of each of these five types of
work schedules, by pseudorandomly choosing the appropriate number of days of the week in each of
the four weeks of a Quadweek, using a uniform distribution. Each BPES is based on exactly one of
the resulting 10 work schedules. Multiple PEs are needed to represent work schedules that wrap around
calendar units; for example, a 7pm-7am shift is represented using two PEs, with time intervals 7pm-
midnight and midnight-7am. The PEs are based on the following sequence of calendars:C1=Quadweeks,
C2=Days, C3=Hours, Cd=Hours. The days in a Quadweek are numbered 1..28. Including Week in the
sequence of calendars is not helpful, because most workers’ schedules do not repeat on a weekly basis.
For example, consider a clinician who works 3 days/week for 12 hours/day starting at 7am, working
Mon,Wed,Fri during the first and second weeks of a quadweek, and Tue,Thu,Sat during the third and
fourth weeks. Assuming weeks start on Monday, this schedule is represented by the PE [all · Quadweeks
+ {1, 3, 5, 8, 10, 12, 16, 18, 20, 23, 25, 27} · Days + {8} · Hours B 12 · Hours].

6. Evaluation

The experimental methodology is outlined in Section 1. All experiments use quality change tolerance
δ = 1.001 (this value gave the best results for the experiments in [16]), ε = 0, and wi = 1 for all weights
in WSC. The policy quality metric is WSC-INT, and the inheritance type is weakly restricted, except
where specified otherwise.

Our Java code and datasets are available at http://www.cs.stonybrook.edu/~stoller/
software/. Periodic expressions are an abstract data type with two implementations: (1) simple PEs,
as defined in Section 5, and implemented as pairs of integers, and (2) (general) PEs, as defined in Section
2, and implemented as arrays of arrays of integers. These implementations are used in the experiments
in Sections 6.1 and 6.2, respectively. Running times include the cost of an end-to-end correctness check
that checks equivalence of the input TUPA and the meaning of the mined TRBAC policy; the average
cost is about 7% of the running time. The experiments were run on a Lenovo IdeaCentre K430 with a 3.4
GHz Intel Core i7-3770 CPU.

http://www.cs.stonybrook.edu/~stoller/software/
http://www.cs.stonybrook.edu/~stoller/software/

14 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

Original Policy Mined Policy Avg |R|
Dataset WSC INT WSC INT Time Our

µ σ µ σ CI µ σ CI µ Alg GTRM
americas_small 6975 7.5 189 7098 71 27 138 6 2.2 48:42 296
apj 4879 10.0 385 4813 16 5.9 384 3.4 1.3 0:15 470 527
domino 449 2.5 23 450 9 3 18 1.9 0.70 0:01 29 40
emea 3929 4.4 32 4065 80 30 32 0 - 0:41 99 115
firewall1 1533 4.1 48 1603 80 30 37 3.4 1.3 1:07 93 130
firewall2 960 1.4 7 963 7.2 2.7 4 1.2 0.44 0:02 12 17
healthcare 168 1.4 14 165 1.6 0.6 12 1.2 0.44 0:01 16 25

Fig. 7. Results of experiments with simple PEs.

6.1. Experiments using dataset with simple PEs

All experiments on this simple PEs dataset use role intersection cutoff RIC = 1.

Comparison of original and mined policies. Figure 7 shows detailed results from experiments on this
dataset. In the column headings, µ is mean, σ is standard deviation, CI is half-width of 95% confidence
interval using Student’s t-distribution, and time is the average running time in minutes:seconds. There is
no standard deviation column for INT, because interpretability is unaffected by the role-time assignment
and hence is the same for all TRBAC policies generated by extending the same RBAC policy. Ignore the
last 2 columns for now. The averages and standard deviations are computed over the TRBAC policies
created by extending each RBAC policy. The WSC of the mined TRBAC policy ranges from about 2%
lower (for healthcare) to about 5% higher (for firewall1) than the WSC of the original TRBAC policy.
The interpretability of the mined policy ranges from about 40% lower (for firewall-2) to about 1% lower
(for apj) than the interpretability of the original TRBAC policy. On average over the seven policies, the
WSC is about 0.5% higher, and the interpretability is about 19% lower. Thus, our algorithm succeeds
in finding the implicit structure in the TUPA and producing a policy with comparable WSC and better
interpretability, on average, than the original TRBAC policy.

Comparison of FastMiner and CompleteMiner. In Phase 1.2 (Intersect roles), instead of the FastMiner
approach of computing intersections only for pairs of initial roles, we could instead adopt the Com-
pleteMiner approach of computing intersections for all subsets of initial roles [15]. We ran our algorithm,
modified to use CompleterMiner, on our simple PE dataset, omitting emea and americas_small because
of their longer running times. Figure 8 shows the results using FastMiner and CompleteMiner. Surpris-
ingly, CompleteMiner did not improve policy quality: it increased the average WSC by 4% on average,
ranging from 0.2% (for firewall2) to 11% (for domino), and it increased (worsened) the average INT
by 10% on average, ranging from 1% (for apj) to 19% (for firewall1). Although one might expect that
generating additional candidate roles would only improve the quality of the final policy, the role selec-
tion phase uses imperfect heuristics, so additional candidate roles sometimes lead to decreases in policy
quality. Not surprisingly, CompleteMiner is slower: it increased the average running time by 160% on
average, ranging from 15% for firewall2 to 201% for apj.

Comparison of inheritance types. We ran our algorithm again on the same dataset with all policies
except americas_small, specifying strongly restricted inheritance for the mined policies. This caused
a significant increase in the WSC of the mined policies. The percentage increase averages 51% and

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 15

Dataset
WSC INT Time

CM FM CM FM CM FM
µ σ µ σ µ σ µ σ µ µ

healthcare 168 4 165 1.6 14 0.4 12 1.2 0:01 0:01
firewall2 966 9 963 7.2 5 1.0 4 1.2 0:02 0:02
firewall1 1661 64 1603 80 44 3.7 37 3.4 1:13 1:07
domino 500 71 450 9 21 1.5 18 1.9 0:01 0:01
apj 4828 21 4813 16 388 3.7 384 3.4 0:46 0:15

Fig. 8. Results of experiments with Complete Miner (CM) and Fast Miner (FM).

ranges from 6% (for apj) to 105% (for firewall1 and healthcare). Intuitively, the reason for the increase
is that, with strongly restricted inheritance, the temporal information associated with directly assigned
and inherited permissions may be different, and this may prevent removing inherited permissions from
a role’s directly assigned permissions. Inheritance type has less effect on the average INT, increasing
(worsening) it by about 3% on average.

Evaluation of choice of initial roles. Recall from Section 4 that the definition of permBPES in Figure 1
uses the condition bpes v bpes ′ in order to include in each initial role the permissions that the user has for
a BPES bpes ′ that semantically contains bpes . A more obvious alternative is to require bpes = bpes ′ and
thereby include only the permissions that the user has for exactly the same BPES bpes . Let permBPES−

denote that variant of permBPES. We evaluated the benefit of using permBPES by running our algorithm,
modified to use permBPES− instead of permBPES, for all policies in the simple PE dataset except the
largest one, americas_small, due to its longer running time. This change increased the average WSC
by 37% on average, ranging from 13% (for apj) to 85% (for healthcare). It increased (worsened) the
average INT by 50% on average, ranging from 9% (for apj) to 100% (for emea). The average running
time decreased by 61% on average, ranging from 31% slower (for firewall2) (the only policy for which
the modified algorithm was slower) to 94% faster (for emea).

The policy quality benefit of permBPES over permBPES− can also be demonstrated with a
simple example. Consider the input TUPA T = {〈u1, p1, 10am−5pm〉, 〈u1, p2, 10am−noon〉,
〈u1, p3, noon−5pm〉}. Our algorithm generates a policy with 2 roles and WSC 8; one role has permis-
sions {p1, p2} during 10am-noon, and the other role has permissions {p1, p3} during noon-5pm. The
variant of our algorithm that uses permREB− instead of permBPES generates a policy with 3 roles, each
corresponding to one element of the TUPA, and with WSC 9. Mitra et al.’s GTRM algorithm [8] also
produces that policy, as expected, since its construction of initial roles is more similar to permBPES−

than permBPES. Mitra et al.’s CO-TRAPMP-MVCL algorithm [9] may produce either of these policies,
depending on the value of a parameter, namely, the threshold θ for degree of overlap.

We also evaluated the effect of using both permBPES and permBPES−, i.e., of replacing the call
permBPES(u, T) with permBPES(u, T) ∪ permBPES−(u, T). This change increased the average
WSC by 0.1% and the average INT by 0.2%. It also increased the average running time by 22% on
average, ranging from 7% faster (for firewall1) to 60% slower (for domino).

We considered reducing the cost of Phase 1.1 by removing the first call to addRole. Note that Mitra et
al.’s algorithm does not include an analogue of this call. This change increased the average WSC by 9%
on average over the policies used in this experiment (all except americas_small), ranging from 7% (for
emea and firewall2) to 10% (for domino). It increased (worsened) the average INT by 8% on average
over those policies, ranging from 2% (for firewall2) to 12% (for firewall1).

16 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

Original Policy Mined Policy
Dataset WSC INT WSC INT RIC Time

µ σ µ σ CI µ σ CI µ
apj 16836 159 385 16879 165 205 383 3.1 3.8 1 72:42
domino 1156 49 23 1256 64 24 16 2.0 0.7 1 0:34
emea 5975 99 32 7309 354 440 32 0 0 0.4 41:24
firewall1 3712 97 48 6534 509 190 46.8 3.9 4.9 0.4 324:48
firewall2 1269 37 7 1316 56 21 3.4 1.3 0.5 1 1:00
healthcare 560 35 14 592 38 48 8.8 1.2 1.5 1 11:00

Fig. 9. Results of experiments with complex PEs.

Comparison with Mitra et al.’s GTRM algorithm. We ran Mitra et al.’s GTRM algorithm [8], and
our algorithm with number of roles as policy quality metric (because GTRM algorithm optimizes this
metric), on our dataset with simple PEs. Their code supports only simple PEs, so we used only the simple
PE dataset in the comparison. Their code, implemented in C, gave an error (“malloc: ...: pointer being
freed was not allocated”) on some TRBAC policies generated for emea and firewall1; we ignored those
results. Their code did not run correctly on americas_small, so we omitted it from this comparison.

The last two columns of Figure 7 show the numbers of roles generated by the two algorithms. Standard
deviations are omitted to save space but are small: on average, 3% of the mean, for both algorithms. The
GTRM algorithm produces 34% more roles than ours, on average. Our algorithm produces hierarchical
policies, and their algorithm produces flat policies, but this does not affect the number of roles. There are
many other differences between the algorithms, discussed in Section 7, which contribute to the difference
in results. The above paragraph on evaluation of choice of initial roles describes two experiments that
explore differences between our algorithm and the GTRM algorithm and quantify the benefit of those
differences. The effects of some other differences between the two algorithms, such as the use of elim-
ination vs. selection in Phase 4, were investigated in the untimed case in [16] and likely have a similar
impact here.

6.2. Experiments using dataset with complex PEs

Comparison of original and mined policies. Figure 9 shows detailed results from experiments on this
dataset. The original TRBAC policies here have higher WSC than the ones in Section 6.1, because
complex PEs have higher WSC than simple PEs. We averaged over 30 TRBAC policies each for domino
and firewall2, and (to reduce the running time of the experiments) 5 TRBAC policies each for the others.
For emea and firewall1, we use RIC = 0.4 instead of RIC = 1 to reduce the running time. The average
WSC of the mined TRBAC policies ranges from 0.3% higher (for apj) to 76% higher (for firewall1)
than the WSC of the original TRBAC policy. The average interpretability of the mined TRBAC policies
ranges from 52% lower (for firewall2) to 0.5% lower (for apj) than the interpretability of the original
TRBAC policy. On average over the four policies for which we use RIC = 1, the WSC is 5% higher,
and the interpretability is 30% lower. On average over the two policies for which we use RIC = 0.4, the
WSC is 49% higher, and the interpretability is 1% lower. On average over all six policies, the WSC is
19% higher, and the interpretability is 20% lower. Thus, our algorithm finds most of the implicit structure
in the TUPA and produces a policy with moderately higher WSC and better interpretability, on average,
than the original TRBAC policy. The results can be improved by using larger RIC, at the expense of
higher running time.

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 17

Fig. 10. Relative running time and relative WSC as functions of RIC.

The higher running times, compared to the dataset with simple PEs, are due primarily to the larger
number of candidate roles created by role intersection (there are more overlaps between BPESs in this
dataset), and secondarily to the larger overhead of manipulating more complex PEs.

Benefit of general PEs. PEs can be translated into sets of simple PEs. For example, the set of PEs
{[all · Weeks + {1,2,7} · Days + {1} · Hours B 8 · Hours]} can be translated to the set of simple PEs
{[1,9], [25,33], [145,153]}. However, PEs are generally more compact and efficient than simple PEs.
For example, in experiments with the healthcare, domino, and firewall2 policies, which have the smallest
WSCs among our example policies, using this translation and simple PEs was about 5x, 12x, and 14x
slower, respectively, than using general PEs.

Cost-benefit trade-off from role intersection cutoff. We investigated the cost-benefit trade-off when
varying the role intersection cutoff RIC. Figure 10 shows running time and WSC as functions of RIC,
averaged over apj, domino, firewall2, healthcare, which are four of the smaller policies. The trade-off
is favorable: as RIC decreases, running time decreases much more rapidly than WSC increases. For
example, at RIC = 0.5, running time is 70% lower than with RIC = 1, and WSC is only 11% higher.

Benefit of new RIC metric. We evaluated the advantage of the userfulness-for-intersection (UI) metric
in Section 4 over covEntit, which is the UI metric in our DBSec 2016 paper [12]. In experiments with
apj, domino, emea, firewall2, and healthcare, for RIC = 0.4, mining with covEntit as the UI metric
takes 2.5 times longer and produces policies with 17% higher WSC than mining with the new UI metric,
on average over those policies.

6.3. Comparison with Mitra et al.’s CO-TRAPMP-MVCL algorithm

Mitra et al.’s CO-TRAPMP-MVCL algorithm, called the CTR algorithm for brevity, minimizes a
variant of WSC, called cumulative overhead of temporal roles and permissions (CO-TRAP), defined by
wTA.|TA|+wPA.|PA|, where wTA and wPA are user-specified weights [9]. Mitra et al. use wPA = wTA

= 1 for their experiments, and we use the same values. In these experiments, we run our algorithm with
the following weights for WSC: w1 = 0, w2 = 0, w3 = 1, w4 = 0, w5 = 1. This means the WSC
equals |PA| + |TA|, the same as CO-TRAP. CO-TRAP is designed for non-hierarchical policies, so we
flatten the hierarchical policies produced by our algorithm and then compute CO-TRAP for the flattened
policies. Flattening transforms a hierarchical TRBAC policy into an equivalent non-hierarchical policy,

18 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

Dataset
c25_o75 c50_o50 c75_o25 c100 o100

Our Algorithm CTR Our Algorithm CTR Our Algorithm CTR Our Algorithm CTR Our Algorithm CTR
µ σ µ µ σ µ µ σ µ µ σ µ µ σ µ

healthcare 92 17 279 124 33 287 142 39 281 83 13 265 191 40 283
domino 420 43 627 391 25 631 402 37 632 405 35 625 405 38 634
apj 1813 11 2375 1817 9 2524 1832 9 2605 1799 8 2303 1849 5 2640
firewall1 1109 120 2819 1142 88 3370 1202 110 3432 1076 89 2704 1276 94 3353
firewall2 602 1 941 612 48 941 603 2 941 602 2 947 604 5 944
emea 5542 192 7245 5634 201 7245 5751 193 7245 5385 176 7245 5856 159 7245
americas_large 67288 964 94515 69077 795 96020 68108 878 96797 60734 1029 91971 62393 1012 97110
americas_small 3616 247 9563 3834 213 10052 4358 264 10446 3321 180 8567 4296 228 10618

Fig. 11. Comparison of our algorithm and the CO-TRAPMP-MVCL (a.k.a. CTR) algorithm using the CO-TRAP metric.

by adding direct user-role assignments for all role memberships that are inherited in the hierarchical
policy, and then removing the role hierarchy. Coincidentally, flattening leaves TA and PA unchanged,
so we get the same result regardless of whether we compute CO-TRAP for the hierarchical policy or the
flattened policy.

Dataset. Our experimental comparison with the CTR algorithm uses the datasets generated by Mitra et
al. for their experiments with CTR algorithm described in [9]. It is based on the same real-world ACL
policies from HP as our datasets described in Section 5. It contains TRBAC policies generated by mining
non-temporal RBAC policies using Ene et al.’s algorithm [2], and then extending them with synthetic
temporal information containing simple PEs. First, they create 10 sets of contained time intervals (the
intervals in each set are totally ordered by the subset relation) and 10 sets of overlapping time intervals
(every pair of intervals in each set has a non-empty intersection). They create a role-time assignment
by pseudorandomly associating some of these time intervals with each role, selecting from the sets of
contained time intervals and overlapping time intervals with probability d and 1− d, respectively, where
d is a parameter of the generation process. They generate five datasets, each for a different value of d: 1,
0.75, 0.50, 0.25, and 0. These datasets are denoted c100, c75o25, c50o50, c25o75, and o100, respectively.
Each dataset contains 30 TRBAC policies with different pseudorandom role-time assignments.

Results. Figure 11 shows the average µ and standard deviation σ of CO-TRAP for policies generated
by our algorithm, and average CO-TRAP for policies generated by CTR algorithm as reported in [8,
Table 6]. The average CO-TRAP for policies generated by our algorithm ranges from 68% lower (for
healthcare c100) to 19% lower (for emea o100) than the corresponding results for the CTR algorithm. On
average over all five datasets for all eight ACL policies, results for policies generated by our algorithm are
41% lower than results for policies generated by the CTR algorithm. Thus, our algorithm is significantly
more effective than the CTR algorithm at minimizing CO-TRAP.

It took less than 2 minutes to run our algorithm for all 30 TRBAC policies generated from each of the
ACL policies healthcare, domino, firewall2, and emea. It took less than 2 minutes to run our algorithm
for each TRBAC policy generated from apj, firewall1, and americas_large (an ACL policy from HP not
used in the datasets described in Section 5). It took approximately 24 minutes to run experiments for
each TRBAC policy generated from americas_small. Mitra et al. report that “each individual run took no
more than 24 minutes” [9]. Although these measurements are from experiments on different hardware
and software platforms (our algorithm is implemented in Java, and CTR algorithm is implemented in C),
they suggest that running times of our algorithm and CTR algorithm are comparable.

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 19

7. Related Work

We discuss related work on TRBAC policy mining and then related work on RBAC mining. Role
mining (for RBAC or TRBAC) is also reminiscent of some other data mining problems, but algorithms for
those other problems are not well suited to role mining. For example, association rule mining algorithms
are designed to find rules that are probabilistic in nature and are supported by statistically strong evidence.
They are not designed to produce a set of rules strictly consistent with the input that completely covers
the input and is minimum-sized among such sets of rules.

7.1. Related Work on TRBAC Policy Mining

Mitra et al. define a version of the TRBAC policy mining problem, called the generalized temporal role
mining (GTRM) problem, based on minimizing the number of roles. They present an algorithm, which
we call the GTRM algorithm, for approximately solving this problem [8]. It is an improved version of
their earlier work [7].

Mitra et al. also define another version of the TRBAC policy mining problem, called cumulative over-
head of temporal roles and permissions minimization problem (CO-TRAPMP), based on minimizing
the CO-TRAP metric described in Section 6.1. They present another algorithm, called CO-TRAPMP-
MVCL, for heuristically solving this problem [9].

Our algorithm is more flexible than the GTRM and CO-TRAPMP-MVCL algorithms, because our
algorithm can optimize a variety of metrics, including WSC and interpretability. The importance of
interpretability is discussed in Section 1. WSC is a more general measure of policy size than number
of roles or CO-TRAP and can more accurately reflect expected administrative cost. For example, the
average number of role assignments per user is a measure of expected administrative effort for adding
a new user [13], and this can be reflected in WSC by giving appropriate weight to the size of the user-
role assignment. Neither number of roles nor CO-TRAP take the size of the user-role assignment into
account.

Our algorithm produces hierarchical TRBAC policies. The GTRM and CO-TRAPMP-MVCL algo-
rithms produce flat TRBAC policies. Role hierarchy is a well-known feature of RBAC that can signifi-
cantly reduce policy size and administrative effort by avoiding redundancy in the policy.

Our algorithm and the GTRM algorithm have a similar high-level structure: they both (1) create a large
set of candidate roles based on the input TUPA, (2) merge some candidate roles, and then (3) select a
subset of the candidate roles to include in the final policy. The algorithms also have many differences.
Some differences are related to policy quality metric and role hierarchy, as discussed above. Some other
differences are: (1) Our algorithm determines which candidate roles to include in the final policy by
elimination of low-quality roles, instead of selection of high-quality roles. We showed that elimination
gives better results in the untimed case [16]. (2) Our algorithm creates more initial roles than the GTRM
algorithm. The benefit of creating these additional initial roles is shown in Section 6.1. The GTRM algo-
rithm creates unit roles, which are similar to our initial roles but have only one permission. In particular,
an initial role created by the second call to addRole in our algorithm is a unit role only when P is a sin-
gleton set and permBPES(u, T) = permBPES−(u, T); we not expect this to be a common case, since
most temporal roles have multiple permissions. (3) Our algorithm performs fewer types of intersections
than the GTRM algorithm. The GTRM algorithm performs five types of intersections, corresponding to
ra, rb, rc, rd, re in [8, Algorithm 1]. Our algorithm performs only intersections corresponding to ra. We
omit rb and rc because they may create PEs with time intervals that do not appear in the input TUPA and

20 S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics

are not intuitive to security administrators. We omit rd and re because Phase 3 would merge those roles
back into the roles from which they were created. (4) Our algorithm performs more merges; specifically,
the GTRM algorithm does not include case (2a) of the merge in Phase 2 of our algorithm.

The CO-TRAPMP-MVCL algorithm has a different high-level structure than our algorithm: roughly
speaking, it (1) repeatedly generates a small set of candidate roles based on the current set of uncovered
triples and adds the best one among them to the policy, and then (2) merges some roles. In the exper-
iments in Section 6.3, our algorithm produces higher-quality policies than CO-TRAPMP-MVCL algo-
rithm, as measured using the CO-TRAP metric which the CO-TRAPMP-MVCL algorithm is designed
to optimize.

Our implementation supports periodic expressions for specifying temporal information, while Mitra et
al.’s implementations of the GTRM and CO-TRAPMP-MVCL algorithms support only ranges of hours
that implicitly repeat every day. Design and implementation of operations on sets of PEs is non-trivial.
This includes operations such as testing whether one set of PEs covers all of the time instants covered by
another set of PEs, and handling numerous corner cases, such as time intervals that wrap around calendar
units (e.g., a 7pm-7am work shift).

7.2. Related Work on RBAC Mining

A survey of work on RBAC mining appears in [4]. The most closely related work is Xu and Stoller’s
elimination algorithm [16]. We chose it as the starting point for design of our algorithm, because in
the experiments in [16], it optimizes WSC more effectively than Hierarchical Miner [10] and the Graph
Optimisation role mining algorithm [18], while simultaneously achieving good interpretability, and it
optimizes WSCA, an interpretability metric defined in [10], more effectively than Attribute Miner [10].

Our algorithm retains the overall structure of the elimination algorithm but differs in several ways, due
to the complexities created by considering time. Our algorithm introduces more kinds of candidate roles
than the elimination algorithm, because it needs to consider grouping permissions that are enabled for the
same time or a subset of the time of other permissions. Our algorithm attempts to merge candidate roles;
the elimination algorithm does not. Construction of the role hierarchy is significantly more complicated
than in the elimination algorithm; for example, with strongly restricted inheritance, a permission p can
be inherited by a role r from multiple junior roles with different BPESs, which may together cover all or
only part of the time that p is available in r. This also complicates adjustment of the role hierarchy when
removing candidate roles. The role quality metric used to select roles for removal is more complicated,
to give preference to roles that cover permissions for more times.

We thank the authors of [8,9]—Barsha Mitra, Shamik Sural, Vijayalakshmi Atluri, and Jaideep
Vaidya—for sharing their code and datasets with us and helping us understand their work.

References

[1] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A temporal role-based access control model. ACM Trans. Inf. Syst.
Secur., 4(3):191–233, 2001.

[2] A. Ene, W. G. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. E. Tarjan. Fast exact and heuristic methods for role
minimization problems. In Proc. 13th ACM Symposium on Access Control Models and Technologies (SACMAT), pages
1–10. ACM, 2008.

[3] Q. Guo, J. Vaidya, and V. Atluri. The role hierarchy mining problem: Discovery of optimal role hierarchies. In Proc. 2008
Annual Computer Security Applications Conference (ACSAC), pages 237–246. IEEE Computer Society, 2008.

[4] S. Hachana, N. Cuppens-Boulahia, and F. Cuppens. Role mining to assist authorization governance: How far have we
gone? International Journal of Secure Software Engineering, 3(4):45–64, October-December 2012.

S. D. Stoller and T. Bui / Mining Hierarchical Temporal Roles with Multiple Metrics 21

[5] J. B. D. Joshi, E. Bertino, and A. Ghafoor. Temporal hierarchies and inheritance semantics for GTRBAC. In Proceedings
of the Seventh ACM Symposium on Access Control Models and Technologies, pages 74–83. ACM, 2002.

[6] E. Medvet, A. Bartoli, B. Carminati, and E. Ferrari. Evolutionary inference of attribute-based access control policies. In
Proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization (EMO): Part I, volume
9018 of Lecture Notes in Computer Science, pages 351–365. Springer, 2015.

[7] B. Mitra, S. Sural, V. Atluri, and J. Vaidya. Toward mining of temporal roles. In Proc. 27th Annual IFIP WG 11.3
Conference on Data and Applications Security and Privacy (DBSec), volume 7964 of Lecture Notes in Computer Science,
pages 65–80. Springer, 2013.

[8] B. Mitra, S. Sural, V. Atluri, and J. Vaidya. The generalized temporal role mining problem. Journal of Computer Security,
23(1):31–58, 2015.

[9] B. Mitra, S. Sural, J. Vaidya, and V. Atluri. Mining temporal roles using many-valued concepts. Computers & Security,
60:79 – 94, July 2016.

[10] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. B. Calo, and J. Lobo. Mining roles with multiple objectives.
ACM Trans. Inf. Syst. Secur., 13(4):36:1–36:35, 2010.

[11] I. Molloy, Y. Park, and S. Chari. Generative models for access control policies: applications to role mining over logs with
attribution. In Proc. 17th ACM Symposium on Access Control Models and Technologies (SACMAT), pages 45–56. ACM,
2012.

[12] S. D. Stoller and T. Bui. Mining hierarchical temporal roles with multiple metrics. In Proceedings of the 30th Annual IFIP
WG 11.3 Working Conference on Data and Applications Security and Privacy (DBSec 2016), volume 9766 of Lecture
Notes in Computer Science, pages 79–95. Springer-Verlag, 2016.

[13] E. Uzun, D. Lorenzi, V. Atluri, J. Vaidya, and S. Sural. Migrating from DAC to RBAC. In Proc. 29th Annual IFIP WG
11.3 Conference on Data and Applications Security and Privacy (DBSec), volume 9149 of Lecture Notes in Computer
Science. Springer, 2015.

[14] J. Vaidya, V. Atluri, Q. Guo, and N. Adam. Migrating to optimal RBAC with minimal perturbation. In Proceedings of the
13th ACM Symposium on Access Control Models and Technologies (SACMAT), pages 11–20. ACM, 2008.

[15] J. Vaidya, V. Atluri, and J. Warner. RoleMiner: Mining roles using subset enumeration. In Proc. 13th ACM Conference
on Computer and Communications Security (CCS), pages 144–153. ACM, 2006.

[16] Z. Xu and S. D. Stoller. Algorithms for mining meaningful roles. In Proc. 17th ACM Symposium on Access Control
Models and Technologies (SACMAT), pages 57–66. ACM, 2012.

[17] Z. Xu and S. D. Stoller. Mining attribute-based access control policies. IEEE Transactions on Dependable and Secure
Computing, 12(5):533–545, September–October 2015.

[18] D. Zhang, K. Ramamohanarao, and T. Ebringer. Role engineering using graph optimisation. In Proceedings of the 12th
ACM Symposium on Access Control Models and Technologies, pages 139–144, 2007.

