
Solving Regular Tree Grammar Based Constraints�

Yanhong A. Liu Ning Li Scott D. Stoller

July 2000

Abstract

This paper describes the precise speci�cation, design, analysis, implementation, and measurements
of an e�cient algorithm for solving regular tree grammar based constraints. The particular constraints
are for dead-code elimination on recursive data, but the method used for the algorithm design and
complexity analysis is general and applies to other program analysis problems as well. The method is
centered around Paige's �nite di�erencing, i.e., computing expensive set expressions incrementally, and
allows the algorithm to be derived and analyzed formally and implemented easily. We study higher-
level transformations that make the derived algorithm concise and allow its complexity to be analyzed
accurately. Although a rough analysis shows that the worst-case time complexity is cubic in program size,
an accurate analysis shows that it is linear in the number of live program points and in other parameters
that are typically smaller in practice. Our implementation ranges from two to ten times as fast as a
previous implementation of an informally designed algorithm.

1 Introduction

Regular tree grammar based methods are important for program analysis, especially for analyzing programs
that use recursive data structures [23, 32, 18, 45, 26]. Basically, a set of grammar-based constraints is
constructed from the program and a user query and is then simpli�ed according to a set of simpli�cation
rules to produce the solution. Usually, the constraints are constructed in linear time in the size of the
program, and the e�ciency of the analysis is determined by the constraint-simpli�cation algorithms.

This paper describes the precise speci�cation, design, analysis, implementation, and measurements of
an e�cient algorithm for solving regular tree grammar based constraints. The particular constraints are
for dead-code elimination on recursive data, but the method used for the algorithm design and complexity
analysis is general and applies to other program analyses as well.

The method is centered around Paige's �nite di�erencing [33, 36, 34], i.e., computing expensive set
expressions incrementally. It starts with a �xed-point speci�cation of the problem, then applies (1) dominated
convergence at the higher level [9] to transform �xed-point expressions into loops, (2) �nite di�erencing [36,
34] to transform expensive set expressions in loops into incremental operations, and (3) real-time simulation
at the lower level [35, 8] to transform sets and set operations to use e�cient data structures. This method
allows the algorithm to be derived and analyzed formally and implemented easily.

We �rst give a precise �xed-point speci�cation of the problem. We then transform it into a loop and apply
�nite di�erencing completely systematically, making all the steps explicit. At the higher level, we study new
transformations that make the derived algorithm concise and allow its complexity to be analyzed accurately.
The complexity analysis captures the exact contribution of each parameter. In particular, although a rough
analysis shows that the worst-case time complexity is cubic in program size, an accurate analysis shows that it
is linear in the number of live program points and in other parameters that are typically smaller in practice.
Our experimental measurements con�rm the accuracy of the complexity analysis. At the lower level, we
show that real-time simulation using based representation [35] applies only partially to our application, and
we discuss data structure choices and the trade-o�s. In particular, our accurate complexity analysis at the
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higher-level suggests that combination with unbased representation work well in our application, and our
experiments support this. Our implementation runs two to ten times as fast as a previous implementation
of an informally designed algorithm [26].

The rest of the paper is organized as follows. Section 2 speci�es the problem. Section 3 gives an overview
of the algorithm design and analysis approach. Sections 4, 5, and 6 describe �nite di�erencing applied to the
derivation of our simpli�cation algorithm, higher-level design and analysis, and lower-level implementation
and experiments, each with accurate complexity analysis. Section 7 discusses complexity and other issues.
Section 8 discusses related work and concludes.

2 Problem speci�cation

The speci�cation from the application. We �rst look at the grammar constraints and the simpli�cation
algorithm in [26]1. There, regular tree grammars, called liveness patterns, represent projection functions that
project out components of values and parts of programs that are of interest.

The grammar constraints constructed from a given program or given in a user query consist of productions
of the following standard forms:

N!D dead form
N!L live form
N! c(N1; :::; Nk) constructor form, where c can also have arity 0

and the following extended forms:

N 0!N copy form
N 0! c�1i (N) selector form
N 0! [N ]R0 conditional form

where R0 is of forms L, c(N1; :::; Nk), and N 00. Symbols D, L, and c's are terminals; symbols N , N1; :::; Nk,
N 0, N 00 are nonterminals. The extended forms will be simpli�ed away using the algorithm below, where R
is of forms L and c(N1; :::; Nk), which are called good forms.

input: productions P of forms N!D; N!R; N 0!N; N 0! c�1i (N); N 0! [N ]R0

repeat

if P contains N 0!N and N!R, add N 0!R to P ;
if P contains N 0! c�1i (N) and N!L, add N 0!L to P ;
if P contains N 0! c�1i (N) and N! c(N1; :::; Nk), add N 0!Ni to P ;
if P contains N 0! [N ]R0 and N!R, add N 0!R0 to P ;

until no more productions can be added;
remove all productions not of forms N!D and N!R from P ;
add productions N!D to P for all N 's such that no N!R is in P ;
output: the resulting productions P

Note that no N!D is used to add other productions, and an N!D is only added at the end if there is
no N!R in P . Indeed, only productions of form N!R are of interest, and the meaning of grammars
as projection functions implies N!D if there is no N!R for a nonterminal N . Thus, we can ignore
productions of form N!D in the input, output only productions of form N!R, and assume that N!D
for all N 's such that no N!R is in P .

All production forms here are the same as or similar to those studied by many people. For example,
standard forms are as in [15, 23, 10], copy forms are common in grammars, selector forms are �rst seen
in [23], and conditional forms have counterparts in [4, 18]. Overall, the constraints and simpli�cations rules
here extend those by Jones and Muchnick [23].

In the application, productions constructed from programs are all in extended forms, which is why these
forms are needed, and those in user queries are all in standard forms, as direct description of liveness patterns
of interest.

1In [26], the condition in the �rst production for a binding expression is unnecessary.
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Notation. We use a set-based language. It is based on SETL [47, 48] extended with a �xed-point oper-
ation by Cai and Paige [9]; we allow sets of heterogeneous elements and extend the language with pattern
matching.

Primitive data types are sets, tuples, and maps, i.e., binary relations represented as sets of 2-tuples.
Their syntax and operations on them are summarized below:

fX1; :::; Xng a set with elements X1,...,Xn

[X1; :::; Xn] a tuple with elements X1,...,Xn in order
f[X1; Y1]; :::; [Xn; Yn]g a map that maps X1 to Y1, ..., Xn to Yn
fg empty set
exists X in S whether S is empty and, if not, bind X to any element of S
S + T; S � T union and di�erence, respectively, of sets S and T

S with X; S less X S + fXg and S � fXg, respectively
S � T whether S is a subset of T
X in S; X notin S whether or not, respectively, X is an element of S
#S number of elements in set S
T (I) I'th component of tuple T
dom M fX : [X; Y ] in Mg, i.e., domain of map M

MfXg fY : [Z; Y ] in M j Z = Xg, i.e., image of map M at X
inv M f[Y;X] : [X;Y ] in Mg, i.e., inverse of map M

We use the notation below for pattern matching against constants and tuples. The �rst returns true if X is
constant c and false otherwise. The second returns false if X is not a tuple of length n; otherwise, it binds
Yi to the ith component of X if Yi is an unbound variable, and otherwise, recursively tests whether the ith
component of X matches Yi, until either a test fails or all unbound variables in the pattern become bound.

X of c, where c is a constant whether X is constant c
X of [Y1; :::; Yn] whether X matches pattern [Y1; :::; Yn]

We use the notation below for set comprehension, where X and Z are expressions that use Yi's. Yi's
enumerate elements of all Si's; for each combination of Y1; :::; Yn, if the Boolean expression Z holds, the
result of expression X forms an element of the resulting set. Each Yi can be a tuple, in which case an
enumerated element of Si is �rst matched against it.

fX : Y1 in S1; :::; Yn in Sn j Zg set former
fX : Y1 in S1; :::; Yn in Sng abbreviation of fX : Y1 in S1; :::; Yn in Sn j trueg
fY in S j Zg abbreviation of fY : Y in S j Zg

We use the following least-�xed-point operation to denote the minimum element Y , with respect to partial
ordering � , that satis�es the condition X � Y and F (Y ) = Y :

LFPX; � (F (Y ); Y ) least-�xed-point operation

We use standard control constructs while, for, if , and case, and we use indentation to indicate scoping.
We abbreviate X := X op Y as X op := Y . Also, we abbreviate X1 := Y ; :::;Xn := Y as X1; :::; Xn := Y .

Throughout the paper, we use R0 to denote right-side forms L, c(N1; :::; Nk), and N 00. We use R to
denote right-side good forms L and c(N1; :::; Nk); when R is a variable whose value could be an N form, it
is accompanied by a test to ensure that its value is a good form.

A set-based �xed-point speci�cation. A straightforward translation of the problem into a �xed-point
speci�cation using sets and tuples is as follows. First, represent the right-side R0 forms as follows:

L as l, where l is a special constant
c(N1; :::; Nk) as [c; [N1; :::; Nk]]
N as N

(1)

and represent the productions as follows:

N 0!R0 as [N 0; representation of R0]
N 0! c�1i (N) as [N 0; c; i; N ]
N 0! [N ]R0 as [N 0; N; representation of R0]

(2)
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This representation allows us to distinguish all the production forms by simple pattern matching against
constants and tuples of di�erent lengths. The three kinds of productions in (2) happen to correspond to
tuples of di�erent lengths. The three kinds of right-side R0 forms in (1) correspond to special constant l,
pair, and other; we also need to tell the R form from the N form, so for convenience, we use the following
two predicates:

R0 isR = R0 of l or R0 of [C; T ]
R0 isN = not (R0 of l or R0 of [C; T ])

(3)

We could use tags to represent sets with heterogeneous elements [37], but tags are not needed here.
The algorithm can be speci�ed as follows. The input is a set P of productions in the new representation.

The loop computes the minimum set Q that satis�es P � Q and F (Q) � Q, where F (Q) captures the
four rules in the loop body:

F (Q) = f[N 0; R] : [N 0; N ] in Q; [N;R] in Q j R isRg +
f[N 0; l] : [N 0; C; I;N ] in Q; [N; l] in Qg +
f[N 0; T (I)] : [N 0; C; I;N ] in Q; [N; [C; T ]] in Qg +
f[N 0; R0] : [N 0; N;R0] in Q; [N;R] in Q j R isRg

(4)

This is the minimum set Q that satis�es P � Q and F (Q) +Q = Q, denoted as the least �xed point:

LFPP; � (F (Q) +Q; Q) (5)

The output is the set O of resulting productions whose right side is a good form:

O = f[N;R] in LFPP; � (F (Q) +Q; Q) j R isRg (6)

3 Approach

The method has three steps: (1) dominated convergence [9], (2) �nite di�erencing [36, 34], and (3) real-time
simulation [35, 8].

Step 1 transforms a set-based �xed-point speci�cation into a while-loop. The idea is to perform a small
update operation in each iteration. The �xed-point expression LFPP; � (F (Q)+Q; Q) in (6) is transformed
into the following while-loop:

Q := P ;
while exists p in F (Q)�Q

Q with := p;
(7)

This code is followed by
O = f[N;R] in Q j R isRg; (8)

Step 2 transforms expensive set operations in a loop into incremental operations. The idea is to compute
expensive expressions, say exp1 through expn, by maintaining the invariants E1 = exp1 through En = expn
incrementally with the execution of the loop, say called LOOP :

�E1; :::; En h LOOP i

This associates with each assignment in LOOP appropriate incremental updates to E1 through En, and
replaces the expensive computations of exp1 through expn in LOOP with E1 through En, respectively. For
our program from Step 1, expensive expressions are the one that computes O and others that are needed for
computing F (Q)�Q. They are initialized together with the assignment Q := P and computed incrementally
as Q is augmented by p in each iteration.

Step 3 selects appropriate data structures for representing sets so that operations on them can be imple-
mented e�ciently. The idea is to design sophisticated linked structures based on how sets and set elements
are accessed, so that each operation can be performed in constant time with at most a constant (a small
fraction) factor of overall space overhead.
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For our program, in Step 2, initialization of expensive set expressions is done by adding each production
in P into Q one at a time, yielding incremental computation of these expressions similar to that in the loop
body. This results in much larger initialization code.

To overcome this problem, Cai and Paige [9] propose transformations of �xed-point expressions in Step 1
so that much simpler initialization code can be obtained by the subsequent �nite di�erencing. However,
those transformations place code for handling di�erent cases of input data all in the loop body and make
the loop body larger and the complexity analysis less accurate. We propose more general transformations
that simplify the initialization code without complicating the loop body; in fact, they make the overall code
even simpler and make the overall complexity analysis accurate.

For Step 3, to support associative access, i.e., locating a given value in a set, say X in S, in constant
time, Paige [35] proposes to use based representation. The basic idea is to represent X as a record with a
�eld indicating whether it is in S. This works only if there are a constant number of sets like S. However,
our application involves a linear number of sets like S. We discuss data structure choices|arrays, linked
lists, and hash tables|and the trade-o�s. Our complexity analysis suggests that simple linked lists, called
unbased representation, work well in our application, and our experiments support this.

4 Finite di�erencing

We perform �nite di�erencing on (7). This consists of the following steps: identifying expensive subex-
pressions, discovering auxiliary expressions, �nite di�erencing of the loop body, handling initialization, and
eliminating dead code.

Identifying expensive subexpressions. The output O in (8) and expensive subexpressions used to
compute O need to be computed incrementally in the loop. The latter expressions are E1 to E4, one for
each of the sets in F (Q) in (4), and W , the workset:

E1 = f[N 0; R] : [N 0; N ] in Q; [N;R] in Q j R isRg
E2 = f[N 0; l] : [N 0; C; I;N ] in Q; [N; l] in Qg
E3 = f[N 0; T (I)] : [N 0; C; I;N ] in Q; [N; [C; T ]] in Qg
E4 = f[N 0; R0] : [N 0; N;R0] in Q; [N;R] in Q j R isRg
W = F (Q)�Q = E1 +E2 +E3 +E4�Q

(9)

Thus, the overall computation becomes

�O;E1; E2; E3; E4;W h Q := P ;
while exists p in W

Q with := p; i
(10)

Discovering auxiliary expressions. To compute E1 to E4 incrementally with respect to Q with := p,
the following auxiliary expressions E11 to E41 are maintained. Expression E11 maps N to N 0 if there is
a production of form N 0!N . Expression E21 maps N to N 0 and expression E31 maps [c;N ] to [N 0; i] if
there is a production of the form N 0! c�1i (N). Expression E41 maps N to [N 0; R0] if there is a production
of form N 0! [N ]R0.

E11 = f[N;N 0] : [N 0; N ] in Q j N isNg
E21 = f[N;N 0] : [N 0; C; I;N ] in Qg
E31 = f[[C;N ]; [N 0; I ]] : [N 0; C; I;N ] in Qg
E41 = f[N; [N 0; R0]] : [N 0; N;R0] in Qg

(11)

These expressions are introduced for di�erentiating E1 to E4, respectively. For example, E11 is introduced
for di�erentiating E1 in (9) after adding an element [N;R] in Q|we need to add [N 0; R] to E1 for all [N 0; N ]
in Q, i.e., for all N 0 in E11fNg. These expressions can be obtained systematically based on the set formers
in (9): after adding an element corresponding to one enumerator, create based on the other enumerator a
map from variables that are already bound to variables yet unbound. For example, consider E3 and adding
an element [N; [C; T ]] in Q. Then, for [N 0; C; I;N ] in Q, variables C and N are bound, and N 0 and I are
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not. So, we create a map from [C;N ] to [N 0; I ] for each [N 0; C; I;N ] in Q, which is E31. Now, the overall
computation becomes

�O;E1; E2; E3; E4;W;E11; E21; E31; E41 h Q := P ;
while exists p in W

Q with := p; i
(12)

These auxiliary maps provide, at a high level, the indexing needed to support e�cient incremental updates.

Transforming loop body. We apply �nite di�erencing to the loop body. This means that we di�erentiate
O, E1 to E4, W , and E11 to E41 with respect to Q with := p in (12):

�O;E1; E2; E3; E4;W;E11; E21; E31; E41 h Q with := p; i (13)

Based on the elements added to W , which is through E1 to E4, p can be of forms [N; l], [N; [C; T ]], and
[N 0; N ] where N isN . For each form of p, we list how the sets O, E1 to E4, and E11 to E41 are updated;
those not listed do not change:

if p is of form [N; l], O with := [N; l];
E1 + := f[N 0; l] : N 0 in E11fNgg;
E2 + := f[N 0; l] : N 0 in E21fNgg;
E4 + := f[N 0; R0] in E41fNgg;

if p is of form [N; [C; T ]], O with := [N; [C; T ]];
E1 + := f[N 0; [C; T ]] : N 0 in E11fNgg;
E3 + := f[N 0; T (I)] : [N 0; I ] in E31f[C;N ]gg;
same update to E4 as above

if p is of form [N 0; N ], where N isN , E1 + := f[N 0; R] : R in OfNgg;
E11 with := [N;N 0];

Also, for each of the forms, we do two things to update W . First, with anything added into E1 to E4, if it
is not in Q, then it is added to W . Second, remove p from W .

We can group the �rst two forms of p for their updates to E1 and E4, group the removal of p from W
for all forms at the beginning, and put all these updates after the original assignment Q with := p, yielding
the following complete code for the loop body:

Q with := p;
W less := p;
case p of

[N;R]; where R isR :
O with := [N;R];
E1 + := f[N 0; R] : N 0 in E11fNgg;
W + := f[N 0; R] : N 0 in E11fNg j [N 0; R] notin Qg;
E4 + := f[N 0; R0] in E41fNgg;
W + := f[N 0; R0] in E41fNg j [N 0; R0] notin Qg;

[N; l] :
E2 + := f[N 0; l] : N 0 in E21fNgg;
W + := f[N 0; l] : N 0 in E21fNg j [N 0; l] notin Qg;

[N; [C; T ]] :
E3 + := f[N 0; T (I)] : [N 0; I] in E31f[C; N ]gg;
W + := f[N 0; T (I)] : [N 0; I] in E31f[C; N ]g j [N 0; T (I)] notin Qg;

[N 0; N ]; where N isN :
E1 + := f[N 0; R] : R in OfNgg;
W + := f[N 0; R] : R in OfNg j [N 0; R] notin Qg;
E11 with := [N;N 0];

(14)

These updates are keys for achieving high e�ciency: after adding a new production, we consider only
productions that are directly a�ected. This makes the analysis proceed in an incremental fashion.
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Initialization. Sets O, E1 to E4, W , and E11 to E41 need to be initialized together with Q := P in (12).
To do this, we add each p from P into Q one by one, also incrementally:

�O;E1; E2; E3; E4;W;E11; E21; E31; E41 h Q := fg; i
for p in P

�O;E1; E2; E3; E4;W;E11; E21; E31; E41 h Q with := p; i
(15)

The �rst line becomes
O;E1; E2; E3; E4;W;E11; E21; E31; E41; Q := fg;

and, in the body of the for loop, which is the same as (13), we have the same four cases of p as in the loop
body (14) and the following two additional forms of p, for which we list how the sets O, E1 to E4, and E11
to E41 are updated:

if p is of form [N 0; C; I;N ], E2 + := f[N 0; l] : l in QfNgg;
E21 with := [N;N 0];
E3 + := f[N 0; T (I)] : [C; T ] in QfNgg;
E31 with := [[C;N ]; [N 0; I ]];

if p is of form [N 0; N;R0], E4 + := f[N 0; R0] : R in QfNg j R isRg;
E41 with := [N; [N 0; R0]];

Also, for each of the forms, W is handled as in the loop body. We obtain the following complete code for
initialization:

O;E1; E2; E3; E4;W;E11; E21; E31; E41; Q := fg;
for p in P

Q with := p;
W less := p;
case p of

same four cases of p as in the loop body
[N 0; C; I;N ] :

E2 + := f[N 0; l] : l in QfNgg;
W + := f[N 0; l] : l in QfNg j [N 0; l] notin Qg;
E21 with := [N;N 0];
E3 + := f[N 0; T (I)] : [C; T ] in QfNgg;
W + := f[N 0; T (I)] : [C; T ] in QfNg j [N 0; T (I)] notin Qg;
E31 with := [[C;N ]; [N 0; I]];

[N 0; N;R0] :
E4 + := f[N 0; R0] : R in QfNg j R isRg;
W + := f[N 0; R0] : R in QfNg j R isR; [N 0; R0] notin Qg;
E41 with := [N; [N 0; R0]];

(16)

Dead-code elimination. Since only O is the desired output, it is easy to see that E1 to E4 are dead.
Furthermore, Q can be eliminated using the equivalences:

[N;R] in Q; where R isR () [N;R] in O
[N 0; N ] in Q; where N isN () [N;N 0] in E11
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We obtain the following complete algorithm:

O;W;E11; E21; E31; E41 := fg;
for p in P

W less := p;
case p of

same four cases of p as in the loop body
[N 0; C; I;N ] :

W + := f[N 0; l] : l in OfNg j [N 0; l] notin Og;
E21 with := [N;N 0];
W + := f[N 0; T (I)] : [C; T ] in OfNg j [T (I);N 0] notin E11g;
E31 with := [[C;N ]; [N 0; I]];

[N 0; N;R0] :
W + := f[N 0; R0] : R in OfNg j if R0 isR then [N 0; R0] notin O else [R0; N 0] notin E11g;
E41 with := [N; [N 0; R0]];

while exists p in W

W less := p;
case p of

[N;R]; where R isR :
O with := [N;R];
W + := f[N 0; R] : N 0 in E11fNg j [N 0; R] notin Og;
W + := f[N 0; R0] in E41fNg j if R0 isR then [N 0; R0] notin O else [R0; N 0] notin E11g;

[N; l] :
W + := f[N 0; l] : N 0 in E21fNg j [N 0; l] notin Og;

[N; [C; T ]] :
W + := f[N 0; T (I)] : [N 0; I] in E31f[C;N ]g j [T (I);N 0] notin E11g;

[N 0; N ]; where N isN :
W + := f[N 0; R] : R in OfNg j [N 0; R] notin Og;
E11 with := [N;N 0];

(17)

where W + := fX : Y in S j Zg is implemented as

for Y in S

if Z then

W with := X;
(18)

Complexity analysis. We don't know the data structure that implements sets O, W , and E11 to E41
yet, but for now we assume that set initialization S := fg, retrieval of an arbitrary element in a set by for or
while or an indexed element by T (I), element addition and deletion S with=less X , and associative access
X notin S and MfXg each takes O(1) time. Other operations, such as pattern matching, clearly take O(1)
time.

Besides input size #P and output size #O, i.e., the number of productions in input and output, respec-
tively, we use the following parameters.

� Let a be the maximum of #E21fNg, #E31f[C;N ]g, and #E41fNg for any N and C. Note that E21
and E31 depend only on selector forms, and E41 on conditional forms, in the input.

In the application, these forms are built from programs [26], and a is the maximum of the arities of
constructors, primitive functions, and user-de�ned functions and the number of possible outermost
constructors in the argument of a tester (such as null). In fact, #E21fNg and #E31f[C;N ]g are
bounded by the maximum arity of constructors only.

� Let h be the maximum number of nonterminals to the left of a nonterminal:

h = max N in dom E11#E11fNg (19)

In the application, for productions built from programs, #E11fNg � 2 for any N (2 for a conditional
expression, 1 for a binding expression and a function call, 0 for others). However, E11 and h may grow
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during simpli�cation, by addition to E3, through selecting a component of a construction, or to E4,
through enabling a condition. In fact, from enabling conditions at function calls, h is at least as large
as the maximum number of live call sites of any function, but selecting components of constructions
may yield even larger h.

� Let g be the maximum number of good forms a nonterminal goes to:

g = max N in dom O#OfNg (20)

In the application, good forms are L and right sides of the constructor forms constructed at arguments
of selectors and testers, and testers together generate no more than a constructor forms. Thus, g is
basically the maximum number of selectors into whose arguments the value computed at a program
point might 
ow.

� Let r be the size of domain of O:
r = #dom O (21)

In the application, r is the number of live program points. Note that #O � r � g. If g is a constant,
then #O is O(r).

� Let n be the number of nonterminals in P .

In the application, n is the number of program points plus the number of nonterminals introduced in
a user query. A user query usually has a small number of productions, and at most a+ 1 productions
are constructed at each program point, so usually #P � n � a. If a is a constant, then #P is O(n).

Parameter n is not needed in the complexity analysis, but it best captures program size. Also, n
bounds h, and #P bounds g; the latter is because all good forms are in the given productions, so there
are at most #P of them.

The complexity is the sum of (i) a constant for each element considered for addition to W , as in all the
assignments to W , (ii) a constant for each element in W , as in the iterations, and (iii) a constant for each
element in P , as in the initialization. Clearly, (ii) is bounded by (i), and (iii) is O(#P ). The total for (i) is
the sum of (c1) to (c8) below, where (c1) to (c5) are for cases 1 to 4 in both the iteration and initialization,
and (c6) to (c8) are for cases 5 and 6 in the initialization, explained below.

cases 1-3: � [N;R] in O#E11fNg (c1)
� [N;l] in O#E21fNg (c2)
� [N;[C;T ]] in O#E31f[C;N ]g (c3)
� [N;R] in O#E41fNg (c4)

case 4: � [N;N 0] in E11#OfNg (c5)
case 5: � [N 0;C;I;N ] in P #fl in OfNgg (c6)

� [N 0;C;I;N ] in P #f[C; T ] in OfNgg (c7)
case 6: � [N 0;N;R0] in P #fR in OfNgg (c8)

For each p of form [N;R], all N 0 in E11fNg and all [N 0; R0] in E41fNg are considered; since each p of form
[N;R] is added to set O, the total complexity for case 1 is (c1) plus (c4). For each p of form [N; l], we also
add (c2), and for each p of form [N; [C; T ]], we also add (c3). Similarly, for each p of form [N 0; N ], we have
(c5). For cases 5 and 6 in the initialization, we have (c6) to (c8).

Using the parameters introduced above, we have

(c1) � h �#O
(c2) � a � r
(c3) � a �#O
(c4) � a �#O

(22)

Note that
(c1) = (c5) = �N in dom O#E11fNg �#OfNg (23)
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A second way of estimating (c1) and (c5) is

(c1) = (c5) � #f[N;N 0] in E11 j N in dom Og � g
= #f[N 0; N ] in Q j N in dom Og � g by de�nition of E11
� (#f[N 0; N ] in P j N in dom Og+ those in P

#f[N 0; N ] in E3 j N in dom Og+ those added to E3
#f[N 0; N ] in E4 j N in dom Og) � g those added to E4 where N isN

� (r + (c3) + (c4)) � g
� (r + a �#O + a �#O) � g (24)

Therefore, (c1) and (c5) are O(#O � g � a). Thus, the sum of (c1) through (c5) is O(#O � (h + a)), using
the �rst way of estimating (c1) and (c5), and O(#O � g � a), using the second way. Also,

(c6), (c7), (c8) � g �#P (25)

Thus, the total complexity of (i) to (iii) is O(#O�min(h+a; g �a)+#P �g+#P ), which is O(#O�min(h+
a; g � a) + #P � g), since #O 6= 0 and thus g 6= 0 in the application.

In the application, productions in P with right sides in good forms are from the user query, and they are
put in O in the initialization; if we assume there is a constant number of them, i.e., #O and thus g is a constant
during initialization, then (c6) to (c8) are O(#P ), and the total complexity is O(#O�min(h+a; g�a)+#P ).
Section 5 proposes a high-level transformation that allows us to both avoid the code duplication in algorithm
(17) and give the complexity O(#O �min(h+ a; g � a)+#P ) without this assumption about the user query.

5 Higher-level design and analysis

Avoiding duplication of code for initialization. Algorithm (17) duplicates the code in the loop body
in the initialization. Cai and Paige [9] proposed a high-level transformation that can drastically simplify the
initialization and do all the work in the loop body. By Theorem 5 in [9], the �xed-point expression (5) is
equivalent to

LFPfg; � (P + F (Q) +Q; Q) (26)

which can be transformed into
Q := fg;
while exists p in P + F (Q)�Q

Q with := p;
(27)

This merges the initialization for Q := P into the iteration and thus avoids code duplication. After �nite
di�erencing, we obtain the following complete algorithm:

O;E11; E21; E31; E41 := fg;
W := P ;
same iteration as in algorithm (17) except with

cases 5 and 6 in the initialization appended to the loop body

(28)

However, this merging reduces the accuracy of the complexity analysis. The complexity of the resulting
program is analyzed as in Section 4, except that there is no (iii) here, but (ii) here equals the sum of (ii)
and (iii) there. So, the total complexity is again O(#O �min(h + a; g � a) + #P � g). We can not obtain
O(#O � min(h + a; g � a) + #P ) here, as we did at the end of Section 4, even if we have the additional
assumption about the user query, because (c6) to (c8) are now from the main loop, where g is not bounded
by a constant.

Simplifying overall code and making complexity analysis accurate. We propose a general method
that not only eliminates code duplication completely but also yields overall even smaller code and more
accurate complexity. The method is to merge into the main loop only the cases in the initialization that
must be handled in the main loop, not the cases that are needed only in initialization. This is good for
two reasons: performing work under the same cases together allows its total amount to be counted more
accurately, and separating work under di�erent cases allows each to be counted more accurately. Our method
is supported by the following theorem. It generalizes the transformation from (5) to (26).

10



Theorem 5.1 For all P0 � P , LFPP0; � ((P �P0)+F (Q)+Q;Q) exists if and only if LFPP; � (F (Q)+
Q;Q) exists, and if they exist, they are equal.

Proof: De�ne predicates C0 and C1 by

C0(Q) = P0 � Q ^ Q = (P � P0) + F (Q) +Q

C1(Q) = P � Q ^ Q = F (Q) +Q

Let Si contain the sets satisfying Ci. LFPP0; � ((P � P0) + F (Q) + Q;Q) exists i� S0 is non-empty and
has a least element; if such an element exists, it is the least �xed point. Similarly, LFPP; � (F (Q) +Q;Q)
exists i� S1 is non-empty and has a least element; if such an element exists, it is the least �xed point. Thus,
it su�ces to show S0 = S1, or equivalently, C0(Q), C1(Q).

First, we show C0(Q) ) C1(Q). Suppose Q satis�es C0. By de�nition of C0, P0 � Q, so P � (P �
P0) +Q. This and Q = (P � P0) + F (Q) +Q imply P � Q, which implies Q = (P � P0) +Q. Using this
equality, Q = (P � P0) + F (Q) +Q simpli�es to Q = F (Q) +Q. Thus, Q satis�es C1.

Second, we show C1(Q) ) C0(Q). Suppose Q satis�es C1. By de�nition of C1, P � Q. This and
the hypothesis P0 � P imply P0 � Q. Also, P � Q implies Q = (P � P0) + Q. Using this equality,
Q = F (Q) +Q can be transformed to Q = (P � P0) + F (Q) +Q. Thus, Q satis�es C0. QED

We apply Theorem 5.1 with

P0 = fp in P j p of [N 0; C; I;N ] or p of [N 0; N;R0]g

The �xed-point expression (5) is equivalent to

LFPP0; � (P � P0 + F (Q) +Q; Q) (29)

which is transformed into the following while-loop:

Q := P0;
while exists p in P � P0 + F (Q)�Q

Q with := p;
(30)

This merges cases 1 through 4 in the initialization into the loop body and thus avoids code duplication.
Furthermore, it makes cases 5 and 6 much simpler, because there are no good forms in P0, hence no updates
to O and thus no updates to W . After �nite di�erencing, we obtain the following complete algorithm, which
has the same iteration as in algorithm (17) and initializes O and E11 to fg, E21 through E41 for p in P0 as
in (17), and W to P � P0:

O;W;E11; E21; E31; E41 := fg;
for p in P

case p of

[N 0; C; I;N ] :
E21 with := [N;N 0];
E31 with := [[C;N ]; [N 0; I]];

[N 0; N;R0] :
E41 with := [N; [N 0; R0]];

other :
W with := p;

same iteration as in algorithm (17)

(31)

The complexity analysis is the same as in Section 4, except that the corresponding (c6) to (c8) in (i)
equal zero here, and (ii) here is bounded by the sum of (ii) and (iii) there. Thus, the total complexity is
O(#O �min(h+ a; g � a) + #P ), which is better than the complexity obtained for (17).

Handling multiple queries. In the application, especially for interactive program manipulation envi-
ronments, there can be many queries about a program. We can transform the above algorithm, so that
initialization is done once in linear time in the size of the program, and simpli�cation after each query
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takes time roughly linear in the number of live program points. In particular, initialization can be done
concurrently with the construction of the productions.

Let P0 be the set of productions constructed from the given program; it contains only productions of
copy, selector, and conditional forms. Let P1 be the set of productions from a user query; they are all in
good forms. Thus, based on Theorem 5.1, initialization using P0 followed by simpli�cation using P1 can be
speci�ed as

LFPP0; � (P1 + F (Q) +Q; Q) (32)

which is transformed into
Q := P0;
while exists p in P1 + F (Q)�Q

Q with := p;
(33)

After �nite di�erencing, we obtain the following complete algorithm:

E11; E21; E31; E41 := fg;
for p in P0

case p of

[N 0; N ]; where N isN :
E11 with := [N;N 0];

[N 0; C; I;N ] :
E21 with := [N;N 0];
E31 with := [[C;N ]; [N 0; I]];

[N 0; N;R0] :
E41 with := [N; [N 0; R0]];

O;W := fg;
for p in P1

W with := p;
same iteration as in algorithm (17)

(34)

Initializations of E11 to E41 depend on P0 and are done only once. So we put them before initialization
of O and W , which are updated by the iteration. Note that E11 may also be augmented by the iteration,
so we need to preserve the value of E11 after the initialization. To do so, we simply use a new set E110

to keep new elements of E11 in the iteration: set E110 := fg immediately before the iteration, and in the
iteration, replace assignments to E11 with assignments to E11', and enumerations and tests using E11 with
those using E11 +E110. Use of E110 does not change the complexity.

Initializations of E11 to E41 clearly take O(#P0) time. The complexity of the rest is again analyzed as
in Section 4, except that the corresponding (c6) to (c8) in (i) equal zero here, and (ii) here equals the sum
of (ii) and (iii) there where P is replaced by P1. Since all productions in P1 are in good forms, P1 � O.
So, the total complexity for simpli�cation after a query is O(#O �min(h+ a; g � a)).

An optimization to conditional forms. For production p of form [N;R] where R isR, we can add the
following updates at the end of handling that form, so as to avoid unnecessarily enabling any conditional
form more than once:

Q � := f[N 0; N;R0] in Qg
E41 � := f[N; [N 0; R0]] in E41g

Then the assignment to Q will be deleted by dead-code elimination, and the assignment to E41 is simply
E41fNg := fg. This optimization can be applied to all algorithms derived above.

For complexity analysis, we only need to change formula (c4) to

�N in dom O #E41fNg (c4')

Therefore,
(c4') � a � r (35)

This does not change the overall asymptotic complexities.
For handling multiple queries, since this optimization updates E41 in the iteration, we need to preserve

E41 after the initialization. To do this, we simply use a new set E410 to function as E41 in the iteration:
insert E410 := E41 immediately before the iteration, which can be a pointer assignment, and in the iteration,
replace all uses of E41 by E410. This does not change the complexity.
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A specialization of constructor forms. Specializing the speci�cation to our application enables some
improvements.

The input is a regular tree grammar with productions P of the following forms built from a given program:

N 0!N; N 0! c�1i (N); N 0! [N ]R0

and the following forms given by a query about the program:

N!D; N!R

where R is as above, but R0 is of forms L, c(D; :::;D), c(D; :::;D;N 00; D; :::; D), and N 00.
In the application, grammars are liveness patterns; based on their meaning as projection functions,

a production of form c(N1; :::; Nk) can be replaced by at most k productions of forms c(D; :::;D) and
c(D; :::;D;N 00; D; :::; D), so we assume without loss of generality that R is of forms L, c(D; :::;D), and
c(D; :::;D;N 00; D; :::; D).

In the algorithm in Section 2, since N!D is not used to add other productions, and N!D is only added
at the end if no N!R is in P , the third clause in the loop body can be replaced by

if P contains N 0! c�1i (N) and N! c(D; :::; D; N 00; D; :::; D), where N 00 is in the ith position, add N 0!N 00 to P

The speci�cation, derivation, and analysis can be modi�ed as follows. First, represent the right sides of
special constructor forms as follows:

c(D; :::;D) as [c]
c(D; :::;D;N 00; D; :::; D), where N 00 is in the ith position as [c; i; N 00]

Then, the �xed-point expression is the same as in Section 2, except that the third clause in (4) becomes

f[N 0; N 00] : [N 0; C; I;N ] in Q; [N; [C; I;N 00]] in Qg

The derivation of the algorithm is the same as above except that expensive subexpression E3 becomes

E3 = f[N 0; N 00] : [N 0; C; I;N ] in Q; [N; [C; I;N 00]] in Qg

and its corresponding auxiliary expression becomes

E31 = f[[C; I;N ]; N 0] : [N 0; C; I;N ] in Qg

In the loop body, the relevant updates are

if p is of form [N; [C]], O with := [N; [C]];
E1 + := f[N 0; [C]] : N 0 in E11fNgg;
same update to E4 as above

if p is of form [N; [C; I;N 00]], O with := [N; [C; I;N 00]];
E1 + := f[N 0; [C; I;N 00]] : N 0 in E11fNgg;
E3 + := f[N 0; N 00] : N 0 in E31f[C; I;N ]gg;
same update to E4 as above

and the corresponding result of �nite di�erencing for case 3 becomes

[N; [C; I;N 00]] :
E3 + := f[N 0; N 00] : N 0 in E31f[C; I;N ]gg;
W + := f[N 0; N 00] : N 0 in E31f[C; I;N ]g j [N 0; N 00] notin Qg;

For initialization, the relevant updates are

if p is of form [N 0; C; I;N ], same updates to E2 and E21 as above
E3 + := f[N 0; N 00] : [N; [C; I;N 00]] in Qg;
E31 with := [[C; I;N ]; N 0];
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and the corresponding code for case 5 becomes

[N 0; C; I;N ] :
same �rst three lines of this case as in (16)
E3 + := f[N 0; N 00] : [N; [C; I;N 00]] in Qg;
W + := f[N 0; N 00] : [N; [C; I;N 00]] in Q j [N 00; N 0] notin Qg;
E31 with := [[C; I;N ]; N 0];

Then, E3 and assignments to E3 are dead and eliminated, and uses of Q are replaced with uses of O and
E11. We obtain the following case 5 in initialization:

[N 0; C; I;N ] :
same �rst two lines of this case as in (17)
W + := f[N 0; N 00] : [N; [C; I;N 00]] in O j [N 00; N 0] notin E11g;
E31 with := [[C; I;N ]; N 0];

and the following case 3 in the loop body:

[N; [C; I;N 00]] :
W + := f[N 0; N 00] : N 0 in E31f[C; I;N ]g j [N 00; N 0] notin E11g;

The complexity analysis is the same as before except that (c3) is replaced with

� [N;[C;I;N 00]] in O#E31f[C; I;N ]g (c3')

In the application, we have #E31f[C; I;N ]g � 1 for all [C; I;N ]. So,

(c3') � 1 �#O = #O (36)

Thus, without the above optimization to conditional forms, the sum of (c1) to (c5) is the same as before, and
total complexities are also the same. With the optimization to conditional forms, the second way of estimating
(c1) and (c5) givesO(#O�g+r�g�a), and thus the sum of (c1) to (c5) isO(min(#O�h+r�a;#O�g+r�g�a)),
and the total complexities are updated by replacing #O�min(h+a; g�a) by min(#O�h+r�a;#O�g+r�g�a).

Complexity. The complexities are summarized in Table 1. If we assume that a is a small constant

Algorithm Complexity With optimiz. to cond. forms & specializ. to cons. forms

(17), Sec. 4 O(#O �min(h+ a; g � a) + #P � g) O(min(#O � h+ r � a;#O � g + r � g � a) + #P � g)
(28), Sec. 5 O(#O �min(h+ a; g � a) + #P � g) O(min(#O � h+ r � a;#O � g + r � g � a) + #P � g)
(31), Sec. 5 O(#O �min(h+ a; g � a) + #P ) O(min(#O � h+ r � a;#O � g + r � g � a) + #P )
(34), Sec. 5 O(#O �min(h+ a; g � a)) (simp.)

O(#P0) (init.)
O(min(#O � h+ r � a;#O � g + r � g � a)) (simp.)
O(#P0) (init.)

Table 1: Summary of Complexities.

(realistic based on experiments), then with or without optimization to conditional forms and specialization
of constructor forms, we obtain the second column in Table 2. If we further assume that g is a constant (also
fairly realistic), then we obtain the last column. That is, the total complexity is roughly linear in the size of
the program, and simpli�cation after a query is roughly linear in the number of live program points.

6 Lower-level implementation and experiments

We consider implementation of the two best algorithms, (31) for one query and (34) for multiple queries.
The same data structures are suitable for both.
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Algorithm Complexity if a is constant If a and g are constants

(17), Sec. 4 O(#O �min(h; g) +#P � g) O(r+#P ) = O(#P )
(28), Sec. 5 O(#O �min(h; g) +#P � g) O(r+#P ) = O(#P )
(31), Sec. 5 O(#O �min(h; g) +#P ) O(r+#P ) = O(#P )
(34), Sec. 5 O(#O �min(h; g)) (simp.) O(r) (simp.)

Table 2: Complexities If Certain Parameters Are Constants.

Low-level set operations. All the sets O, W , and E11 to E41 constructed in our algorithms are in fact
maps, i.e., sets of pairs. To make this explicit, and to make each low-level operation simple, we do the
following three groups of replacements in order:

1) while exists Z in M
:::Z:::

with while exists X in dom M
while exists Y in MfXg

:::[X;Y ]:::
2) M with := [X;Y ] with MfXg with := Y

M less := [X;Y ] with MfXg less := Y
[X;Y ] notin M with Y notin MfXg

3) S with := X with if X notin S
S with := X

The �rst two groups clearly treat the domain of a map M as a set and the image of M at each element X
as a set. The third guarantees that an addition is only for an element not located in the set; in general,
similar replacements are done for deletions as well, but the only deletion in our algorithms is for an arbitrary
element retrieved from the same set and thus already located in it. We do not need to transform for-loops
in our algorithms, since they enumerate sets of tuples that are only read; we introduce pattern matching to
make components of these tuples explicit, so other replacements apply in the loop body.

After the replacements, all the operations on all the domain and image sets are restricted to initializing
to empty, retrieving an arbitrary element in a set by for or while or an indexed element by T (I), adding
an element not located in a set, deleting an element located in a set, and associative access, i.e., locating
an element X in a set S (X notin S, or MfXg where the domain of M is S). To support the complexity
analysis in Sections 4 and 5, each of these operations needs to be done in O(1) time.

Data structure selection. Consider using a singly linked list for each of the domain and image sets of
O, W , and E11 to E41. Let each element in a domain linked list contain a pointer to its image linked
list, i.e., represent a map as a linked list of linked lists. It is easy to see that all operations except indexed
retrieval and associative access can be done in worst-case O(1) time. The indexed retrievals are for tuples
of arguments of constructor forms and are never updated and can be implemented using arrays. However,
an associative access would take linear time if a linked list is naively traversed. A classical approach is to
use hash tables [2] instead of linked lists. This gives average, rather than worst-case, O(1) time for each
operation, and has an overhead of computing hashing related functions for each operation.

Paige et al. [35, 8] describe a technique for designing linked structures that support associative access in
worst-caseO(1) time with little space overhead for a general class of set-based programs. Consider associative
accesses in the loop body below:

for X in W or while exists X in W
:::X in S::: or :::X notin S::: or :::MfXg::: where the domain of M is S

We want to locate value X in S after it has been located in W . The idea is to use a �nite universal set B,
called a base, to store values for both W and S, so that retrieval from W also locates the value in S. B
is represented as a set (this set is only conceptual) of records, with a K �eld storing the key (i.e., value).
Set S is represented using a S �eld of B: records of B whose keys belong to S are connected by a linked
list where the links are stored in the S �eld; records of B whose keys are not in S store a special value for
unde�ned in the S �eld. Set W is represented as a separate linked list of pointers to records of B whose
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keys belong to W . Thus, an element of S is represented as a �eld in the record, and S is said to be strongly

based on B; and element of W is represented as a pointer to the record, and W is said to be weakly based

on B. This representation allows an arbitrary number of weakly based sets but only a constant number of
strongly based sets. Essentially, base B provides a kind of indexing.

Our while-loop retrieves elements from the domain of W and locates these elements in the domains of
O and E11 to E41. For example, at OfNg in case 4 in the main loop, nonterminal N needs to be located
in the domain of O. We use a base B for the set of nonterminals. The domain of W is weakly based on B,
and the domains of O and E11 to E41 are strongly based on B. The only exception is that the domain of
E31 needs a two-element key of the form [C;N ], but in the application, each N has only one corresponding
C, so we simply use N as the key and record the corresponding C in a separate �eld to be checked against.
It is worth noting that the linked lists for the domain (and images, discussed below) of W can be stacks, if
retrieval (followed by deletion) and addition are both at the head of a list, or queues, if retrieval is at the
head and addition is at the tail. The former corresponds to a depth-�rst search, and the latter corresponds
to a breadth-�rst search; these are low-level decisions that only need to be made at the end.

Our algorithms test whether a value is not in the images of O, W , and E11 to E41 at any element in
their domains, so there are O(n) sets that need to be strongly based, and thus the based-representation
method does not apply here. We describe three representations for these images and discuss the trade-o�s.

Data structure choices and trade-o�s. The images of O, W , and E11 to E41 can be implemented
using arrays, linked lists, hash tables, or a combination of linked lists and hash tables.

First, for the O(n) images of each of O, W , E11 to E41, we may make them strongly based using an array
of �elds. This includes making a base B2 for the set of good forms. Each membership test takes worst-case
O(1) time and thus achieves the time complexities analyzed in Sections 4 and 5. However, this requires a
total of quadratic space, which is not acceptable in practice for large programs. Quadratic initialization time
can be avoided using the technique in [1, Exercise 2.12]; that technique can be implemented in a language
like C but not Java or Scheme, since it requires allocating arrays without initializing them.

Second, we may use a singly linked list for each of the images of O, W , and E11 to E41. Such a list
is called unbased representation [35] if it is a list of elements rather than a list of pointers to the elements
in some base. Due to other associative accesses in the main loop body, any mention of a nonterminal (in
images of W , E11, and E21, in domains of the images of E31, and in domains and images of the images
of E41) should be implemented as a pointer to an element in base B. We also make a base B2 for the set
of good forms (where nonterminals in the arguments of constructor forms are also implemented as pointers
to elements in B), and represent any mention of a good form (in images of O and W and in images of the
images of E41) as a pointer to an element in B2; use of B2 avoids an extra factor of a in the time complexity
for comparing constructor forms if specialized constructor forms are not used. Linked-list representation
incurs no asymptotic space overhead, but each membership test takes worst-case O(l) time where l is the
length of such a linked list. Based on parameters introduced in Section 4, we know that l = a for the images
of E21, E31, and E41, l = h for the images of E11, and l = g for the images of O. Also, each element in W
either has a right side in a good form or is a copy form, and thus l = g + f for the images of W , where f is
the dual of h, i.e., it is the maximum number of nonterminals to the right of a nonterminal:

f = max N in dom (inv E11)#(inv E11)fNg (37)

In the application, f is bounded by the maximum of g + 1, the number of live call sites of any function,
and the number of live occurrences of any formal parameter or bound variable. We count factor l in the
complexity analysis and re�ne (c1) to (c8) for (i) as follows:

cases 1-3: � [N;R] in O; N0 in E11fNg#OfN
0g+#WfN 0g (d1)

� [N;l] in O; N0 in E21fNg 1 + #WfN 0g (d2)
� [N;[C;T ]] in O; N0 in E31f[C;N]g#E11fT (I)g+#WfN 0g (d3)
� [N;R] in O; [N0;R0] in E41fNg (if R

0 isR then #OfN 0g else #E11fR0g) + #WfN 0g (d4)
case 4: � [N;N0] in E11; R in OfNg#OfN

0g+#WfN 0g (d5)
case 5: � [N0;C;I;N] in P; l in OfNg 1 + #WfN 0g (d6)

� [N0;C;I;N] in P; [C;T ] in OfNg#E11fT (I)g+#WfN 0g (d7)
case 6: � [N0;N;R0] in P; R in OfNg (if R

0 isR then #OfN 0g else #E11fR0g) + #WfN 0g (d8)
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Also, (ii) becomes � p in W 1 + g + h, rather than a only constant for each p in W , and (iii) becomes
� p in P 1 + a, rather than a only constant for each p in P . We have, for (i),

(d1) � (c1) � (g + g + f)
(d2) � (c2) � (1 + g + f)
(d3) � (c3) � (h+ g + f)
(d4) � (c4) � (max(g; h) + g + f)
(d5) � (c5) � (g + g + f)
(d6) � (c6) � (1 + g + f)
(d7) � (c7) � (h+ g + f)
(d8) � (c8) � (max(g; h) + g + f)

(38)

(ii) is still bounded by (i), and (iii) is O(#P � a). For algorithms (31) and (34), the time for initialization
is increased by a factor of a, and the time for the main loop is increased by a factor of h + g + f . This
representation works well if h, g, and f are small. It works well for all our examples except a contrived
worst-case example.

Third, we may maintain a hash table for each of the image sets. This achieves the time complexities
analyzed in Sections 4 and 5, but they become average-case, rather than worst-case, complexities. It has
relatively large overhead for small programs, and it faces the standard issues with hashing such as how to
determine the size of hash tables and how to �nd good hash functions. Still, it works reasonably well for all
our examples, though not as well as linked-list representation.

Finally, we can combine the use of linked lists with hash tables: use linked lists when the images are small,
in particular for images of E21, E31, and E41, and possibly O, and use hash tables when the images are
larger, in particular for images of E11 and W when they become large. This achieves the same complexities
analyzed in Sections 4 and 5, also for average case.

Experiments. We implemented the simpli�cation algorithm obtained from (33) with the optimization to
conditional forms and used it to replace a previous algorithm in a prototype system for dead-code analysis
and elimination [26]. The prototype system is implemented using the Synthesizer Generator [44], and the
simpli�cation algorithms are written in the Synthesizer Generator Scripting Language, STk, a dialect of
Scheme. The labeled program, constructed grammar, and simpli�cation result for the worst-case example in
the Appendix are generated using the system.

We have used the system to analyze dozens of examples. Table 3 reports measurements of the most
relevant parameters and simpli�cation times from analyzing 14 programs with 25 di�erent queries using the
new simpli�cation algorithm.

Programs bigfun, minmax, and biggerfun are the �rst few examples to illustrate dead-code analysis
on recursive data in [26]. Program worst, given in the Appendix, is an example contrived to demon-
strate the worst-case cubic-time complexity, and programs worst10 and worst20 are similar except that,
instead of de�ning up to f3, they de�ne up to f10 and f20, respectively. Programs incsort and incout

are incremental programs for selection sort and outer product, respectively, derived using incrementaliza-
tion [30], where dead code after incrementalization is to be eliminated. Program cachebin and cachelcs are
dynamic-programming programs transformed from straightforward exponential-time programs for binomial
coe�cients and longest common subsequences, respectively, using a method called cache-and-prune [28, 25],
where cached intermediate results that are not used are to be pruned. Programs calend, symbdiff, takr,
and boyer are taken from the Internet Scheme Repository [46]. Program calend is a collection of calendrical
functions [11]. Program takr is a 100-function version of TAK that tries to defeat cache memory e�ects.
Program symbdiff does symbolic di�erentiation. Program boyer is a logic programming benchmark.

The queries are in the form N!L, where N corresponds to the return value of a function in the second
column of Table 3. In general, especially for libraries, such as the calend example, there may be multiple
functions of interest; we included an example where we picked 22 functions at once.

The size of a program is captured by the total number of program points, n, which for pretty-printed
programs is about twice the number of lines of code. We observe:

� #P ranges from 1:02n to 1:56n.
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-------------------------------------------------------------------------------------------------------------------
program user simp. time
name query #P #O n r a h g f c1,c5 c2 c3 c3' c4 c4' c w/ GC no GC
-------------------------------------------------------------------------------------------------------------------
bigfun lenf 48 47 36 23 2 2 3 3 40 0 4 1 24 14 68 .002 .001

minmax getlen 112 89 81 31 3 2 5 11 76 0 8 2 48 23 132 .006 .005
minmax getmin 112 149 81 49 3 2 8 11 129 2 38 14 72 33 241 .010 .007

biggerfun evef 115 114 84 64 2 2 5 10 86 2 14 4 64 45 166 .008 .007
biggerfun oddf 115 115 84 56 2 2 6 6 94 2 16 5 60 36 172 .008 .007
-------------------------------------------------------------------------------------------------------------------
worst f 28 69 24 24 2 4 4 4 64 0 0 0 21 12 85 .005 .004

worst10 f 70 419 59 59 2 11 11 11 407 0 0 0 133 33 540 .028 .018

worst20 f 130 1429 109 109 2 21 21 21 1407 0 0 0 463 63 1870 .097 .068
-------------------------------------------------------------------------------------------------------------------
incsort sort 144 132 108 49 3 2 11 5 139 2 20 9 98 29 259 .010 .007
incsort sort' 144 33 108 24 3 2 5 5 24 6 0 0 15 11 45 .002 .001

incout out 152 53 117 30 5 2 4 3 43 4 0 0 24 18 71 .003 .002
incout out' 152 77 117 55 5 2 5 4 56 8 0 0 48 36 112 .005 .004
-------------------------------------------------------------------------------------------------------------------
cachebin bin 91 113 74 67 3 4 5 5 105 0 51 17 65 41 221 .009 .006

cachelcs lcs 140 205 117 89 4 6 7 5 214 0 152 38 104 48 470 .018 .014
-------------------------------------------------------------------------------------------------------------------
calend gregorian- 1840 228 1551 192 5 12 4 25 178 0 66 30 115 111 359 .018 .015
calend islamic- 1840 418 1551 346 5 12 4 25 339 4 144 68 199 189 686 .034 .024
calend eastern- 1840 460 1551 375 5 24 4 25 380 4 186 89 207 197 777 .038 .030
calend yahrzeit 1840 484 1551 428 5 11 4 25 373 0 108 46 293 290 774 .038 .030
calend 22 functions 1861 1604 1551 1352 5 37 4 25 1329 41 614 296 791 777 2775 .13 .10

symbdiff deriv 1974 7636 1264 1221 3 65 13 65 11045 28 206 103 6639 855 17918 .59 .48
symbdiff derivations-x 1974 7784 1264 1261 3 65 13 65 11214 30 206 103 6686 878 18136 .60 .48

takr tak99 4005 2800 2804 2800 3 4 1 5 3000 0 0 0 2200 2200 5200 .23 .21
takr run-takr 4005 2804 2804 2804 3 5 1 5 3004 0 0 0 2203 2203 5207 .23 .21

boyer setup 4496 4513 4347 3755 3 106 8 6 1152 3496 1316 549 92 31 6056 .29 .23
boyer setup,run-boyer 4497 39501 4347 4302 3 924 25 13 83925 3684 38370 18510 1377 254 127356 4.9 3.2
-------------------------------------------------------------------------------------------------------------------
gregorian-: gregorian->absolute islamic-: islamic-date eastern-: eastern-orthodox-christmas

Table 3: Measurements for Example Programs.
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� a is consistently very small.

� h varies widely.

� g and f are typically quite small.

� #O is roughly linear in r and in g.

This helps con�rm that the second way of estimating (c1) and (c5), not using h, better explains the running
time in practice.

Parameters (c1) to (c5) are as de�ned in Section 4, (c4') and (c3') are as de�ned in Section 5, and c =
(c1) + (c2) + (c3) + (c4). Let (i1) to (i5) be the numbers of times the if-statement in (18) for the 1st, 3rd,
4th, 2nd, and 5th assignments to W , respectively, is executed. Our test for all the examples con�rmed the
following equalities:

(i1) + (i5) = (c1) = (c5), (i2) = (c2), (i3) = (c3), (i4) = (c4)

and the relations in (22), (24), (35), and (36). We can see that (c1) and (c5) contribute most to c consistently
except for the �rst query of boyer, and (c4) is more than (c2) and (c3) for all examples except cachelcs
and boyer. We can see that c is roughly linear in #O, with a small additional factor of g. The e�ects of
optimization to conditional forms and specialization of constructor forms vary, but on average, (c4') is about
34% of (c4), and (c3') is about 40% of (c3).

The simpli�cation time after initialization, in milliseconds, with and without garbage-collection time, is
measured on a SUN station SPARC 20 with 60 MHz CPU and 256 MB main memory. The times in Table 3
are for when linked lists are used for images of O, W , and E11 to E41. We also measured the times for hash
tables and for linked lists combined with hash tables, where images greater than 100 are switched to use hash
tables; the former is about 50% slower than the number reported here, and the latter, only meaningful for
boyer, is about 10% slower. The times reported are for with optimization to conditional forms but without
specialization of constructor forms; the former gives up to 15% speedup, while the latter gives up to 10%
speedup and often small slowdown. The time reported is very fast compared with other reported analyses
using constraints. For example, Heintze's analysis takes on the order of seconds for programs of 100 lines to
over 2000 lines on a DEC station PMAX 5000/200 [18].

We can see that the simpli�cation time is very much linear in c, that is, it is roughly linear in #O with
a small factor from g, and thus, it is linear in r and quadratic in g, which is typically small. Being close to
linear in r rather than n is important, especially for analyzing libraries, where being linear in the size of the
entire library is clearly not good.

Liu and Stoller [26] reported measurements for n, r, #P , #O, and the simpli�cation times for a subset
of the examples. Our formal complexity analysis suggests that we should also measure a, h, g, f , and (c1)
to (c5) accurately, which help con�rm our complexity analysis and understand the running time in practice.

The analysis produces precise results, i.e., it �nds all dead code, as desired. When used for eliminating
dead code in deriving incremental programs [30], the speedup is often asymptotic. For example, dead code
elimination enables incremental selection sort to improve from O(n2) time to O(n) time. When adopted for
pruning in the cache-and-prune method [28], the pruned programs consistently run faster, use less space, and
are smaller in code size, often about 50%. It is also useful for analyzing benchmark programs. For example,
for several functions in the calend program, only the slice for date, not year or month, is needed.

7 Discussion

Linear vs. cubic time complexity. Our higher-level transformations in Section 5 allow initialization to
be done in O(#P ) time. Moreover, this only needs to be done while the productions are constructed. So we
consider here only the main loop in algorithm (34).

Based on our experiments and experiences, it is realistic to consider a as a small constant and assume that
each set associative operation can be implemented in constant time, at least on average. Thus, simpli�cation
after initialization takes O(#O �min(h; g)) time. When h or g is a small constant, this is O(#O), i.e., linear
in terms of the output size, which would be optimal. Note, however, that O contains only productions in
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good forms, but productions of copy forms, resulted from selecting components of constructions and enabling
conditions, are also added to the workset.

Our second way of estimating (c1) and (c5) yields the complexityO(#O�g), which isO(r�g2), not directly
depending on h. Thus, when g is some small constant, which we think is typically true, the simpli�cation
time is O(r). Our experiments with example programs also support that g is typically small. Note, however,
that in the worst case, simpli�cation may take O(n3) time, where r, h, and g are all of order n, and #O is
of order n2. We give an example below that exhibits this worst-case behavior.

We conjecture that real-world programs are more like our other examples than the contrived one, so the
simpli�cation time is typically linear in the size of the live program portion, not cubic in the size of the
entire program. The latter is easily given by a naive algorithm and loose complexity analysis, but our formal
algorithm design and accurate complexity analysis support the former; our experimental measurements so
far further support it.

Linear vs. quadratic space complexity. In the worst case, the output O has quadratic size, so the
worst-case space can be quadratic. However, using linked lists for the images of O, W , and E11 to E41
incurs virtually no space overhead, so the total space, besides O(#P ) for input related items, is O(#O),
which is O(r) when g is small. That is, the space is typically linear since g is typically small.

Note that even though this representation increases the running time by a factor of h+g+f , our accurate
analysis in (38) shows that (c1) and (c5) are increased only by a factor of g+ f , not h, and our experiments
show that (c1) and (c5) dominate the cost c, and that g and f are typically quite small.

Even though using arrays to represent the images of O, W , and E11 to E41 does not increase the worst-
case space, it has a large overhead, since for each array of size O(n), basically only O(g + h+ f) entries are
used. We think that using linked lists for small inputs and resorting to hash tables for larger inputs may be
the best compromise.

A cubic-time quadratic-space worst-case program. To obtain a program whose simpli�cation takes
cubic time and quadratic space, we use three main ideas. First, an identity function id is de�ned and called
a linear number of times, so that the liveness patterns at all calls to id are propagated to the arguments of
all calls. Second, each call to id is the argument of a selector s, so that the liveness pattern N at the call to
id is a distinct constructor form c(N1; :::; Nk) with a component Ni denoting the liveness pattern at the call
to s. For simplicity, we use a constructor pair with selectors fst and snd. Third, we de�ne a linear number
of functions f1 to fn, so that each fi is a call to fi�1 applied to s applied to a call to id, and f0 is just s
applied to a call to id.

Finally, a function f simply calls fn, and we query with the result of f being live. The Appendix gives
such an example for which simpli�cation of the generated constraints takes cubic time and quadratic space.

In such an example, factor g is linear, and the output O is quadratic. Note that simpli�cation eliminates
only extended forms; if further simpli�cation could achieve minimization, then the output of this example
may be made only linear. However, that would be a di�erent analysis problem. In particular, minimization
alone takes exponential time [13].

Language features a�ecting complexity. Again consider simpli�cation after initialization and consider
that a is a small constant. In the application, selector forms are constructed only from data construction in
programs, and constructor forms are constructed only for selectors and tester; testers together generate no
more than a constructor forms.

Suppose that the optimization to conditional forms is done, then in the second way of estimating (c1)
and (c5), it is clear that (c1) and (c5) force the worst-case complexity O(#O � g), where (c3) for selector
forms is the sole contribution of factor #O, while others contribute only factor r. Therefore, if there are
no selector forms, i.e., in the application, there are no data constructions in the program, then the total
complexity is O(r � g). Alternatively, if there are no constructor forms, i.e., in the application, there are no
selections of components, then g is a constant, and the total complexity is O(r). This also means that the
presence of conditional forms does not contribute to the super-linear complexity. The bottom line is that it
is the precise analysis of recursive data structures that causes the worst-case cubic-time complexity.
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Pattern matching a�ecting clarity. Pattern matching was not discussed in the study of �nite di�er-
encing, but it is not a language feature that introduces anything fundamentally new, so we do not need to
invent new �nite di�erencing techniques for it. However, it does help make the algorithm and derivation
clear and simple. Without it, we would need to code a lot of tests and variable bindings explicitly; to reduce
such code, we could group di�erent productions of forms into di�erent worksets and, in the while-loop,
always pick p out of one of the groups until it is empty. This would make the algorithm and its derivation
less clear and more clumsy.

8 Related work and conclusion

This work exploits the formal algorithm design and analysis method developed by Paige et al. that consists
of dominated convergence [9], �nite di�erencing [36, 34], and real-time simulation [35, 8]. Formal algorithm
description and derivation allow us to obtain not only a more e�cient algorithm but also more accurate
complexity compared to previous work [26].

At the center of the method is incremental computation of expensive set expressions by �nite di�erencing,
where maintaining expensive subexpressions (E1 to E4 and W ) and auxiliary expressions (E11 to E41),
in additional to the desired output (O), is crucial for achieving the e�ciency of the algorithm. The idea
of exploiting and incrementally maintaining return value [30], intermediate results [29, 28], and auxiliary
information [27] is described more explicitly by Liu et al. in the context of incrementalizing recursive func-
tions [24]. Making these aspects explicit, as we did in this paper, help make the method for set expressions
more systematic too.

Fixed-point expressions and dominated convergence [9] augment the method by specifying problems
concisely at even higher levels and enabling higher level and more global transformations. Cai and Paige
proposed transformations for simplifying initialization [9]; we propose more general transformations that
make the overall code even smaller and, at the same time, allow more accurate complexity analysis. We also
introduce pattern matching, which make the problem speci�cation and algorithm derivation more succinct
and easier to read.

Real-time simulation [35, 8] is a general method for implementing sets and set operations so that all
associative accesses can be implemented in worst-case constant time. Unfortunately, real-time simulation
using based representation, which incurs little space overhead, applies only partially to the constraint-
simpli�cation problem we consider. So we implement some sets as hash tables or linked lists whose lengths
are typically small in our application. There might be deeper reasons and better solutions to this problem
in general; the formal approach to data-structure selection in [16] might be helpful.

Our study of regular tree grammar based constraints for dead-code elimination is actually motivated
by the need to prune unused values and computations in recursive functions and data structures after
incrementalization [29, 28]. Previously, an algorithm was designed by informally applying �nite di�erencing
so that after adding a new production, we consider only productions in extended forms whose right sides
use the left-side symbol of the new production [26]; a simple analysis gives a O(n3) time complexity, while
experiments showed that the running time for the simpli�cation was roughly O(r). Implementation of the
algorithm in this paper was found to be two to ten times as fast as the previous algorithm.

Regular tree grammar based constraints have been used for analyzing recursive data in other applications.
This includes 
ow analysis for memory optimization by Jones and Muchnick [23], binding-time analysis for
partial evaluation by Mogensen [32], set-based analysis of ML by Heintze [18], type inference by Aiken et
al. [3, 4], backward slicing by Reps and Turnidge [45], and set-based analysis for debugging Scheme by
Flanagan and Felleisen [14]. Some of these are general type inference and are only shown to be decidable [4]
or take exponential time in the worst case [3]. For others, either a cubic time complexity is given based on a
simple worst-case analysis of a relatively straightforward algorithm [18, 14], or algorithm complexity is not
discussed explicitly [23, 32, 45].

Constraints have also been used for other analyses, in particular, analyses handling mainly higher-
order functions or pointers. This includes higher-order binding-time analysis by Henglein [22], Bondorf
and J�rgensen [7], and Birkedal and Welinder [5, 6], points-to analysis by Steensgaard [50], and control 
ow
analysis for special cases by Heintze and McAllester [20]. The last has a linear time complexity, and the
others are based on Henglein's algorithm [22] and have an almost linear time complexity. These complex-
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ities are practical for analyzing large programs, but these analyses either do not consider recursive data
structures [22, 50], or use bounded domains [7, 5, 6, 20] and are thus less precise than grammar constraints
constructed based on uses of recursive data in their contexts.

People study methods to speed up cubic-time analysis algorithms. For example, Heintze [17] describes
implementation techniques such as dependency directed updating and special representations, which has
the same idea as incremental update by �nite di�erencing and e�cient access by real-time simulation.
Flanagan and Felleisen [14] study techniques for component-wise simpli�cation. F�ahndrich et al. [12] study
a technique for eliminating cycles in the inclusion constraint graphs. Su et al. [51] study techniques for
reducing redundancies caused by transitivity in the constraint graphs. These improvements are all found
to be very e�ective. Moreover, sometimes a careful implementation of a worst-case cubic-time [19, 26] (or
quadratic-time [49]) analysis algorithm seems to give nearly linear behavior [19, 49, 26]. Our formal algorithm
design and analysis is a start in careful study of the reasons.

In particular, our analysis also adds edges dynamically, through selecting components of constructions
and enabling conditions, and our application also has the cycle and redundancy problems caused by dynamic
transitivity, as studied in [12, 51]. However, our algorithm still proceeds in a linear fashion. That is, if we
have constraints N1!N2; :::; Nk�1!Nk, possibly some added dynamically, and possibly Ni = Nj for some
i; j such that 1 � i � j � k, we do not add any edges Ni!Nj for any i; j such that 1 � i � j � k; only
when a new Nk!R is added, we add an Nk�1!R if it is not already added and subsequently an Nk�2!R
and so on.

The possibly non-linear behavior of this problem is because each nonterminal Ni may go to a linear
number of good forms. This is so even if we collapse strongly connected components of nonterminals that go
to one another and thus go to the same good forms; our worst-case example in the Appendix supports this.
Heintze and McAllester [21] show that it is unlikely we can improve the cubic-time worst-case complexity
for certain 
ow analysis and subtyping problem, because it is as hard as the 2-NPDA acceptability problem,
for which no faster algorithm has been found for over 30 years. Melski and Reps [31] also give some insight
on the cubic-time complexity by showing the interconvertibility of a class of set constraints and context-free
language reachability [43, 41, 42].

To summarize, for the problem of dead-code elimination on recursive data, this paper shows that formal
speci�cation, design, and analysis lead to an e�cient algorithm with exact complexity factors that can be
measured in experiments. The results explain both the worst-case cubic-time complexity and the basically
linear running time in practice. In essence, the reason that our algorithm has a running time typically linear
in the size of the live program parts, as opposed to cubic in the size of the entire program, is that it models a
reachability problem, rather than a transitivity problem, albeit dynamic either way. The potential non-linear
behavior is because there are potentially a linear number of good forms for each nonterminal to reach, but
this number is typically small in practice. Interestingly, this reachability is re
ected in the term \graph
reachability" used by Reps et al [43, 41, 42], where they show that a number of analyses can be formulated
as reachability problems following paths with labels from a context-free language.

We are looking at applying our algorithm on larger inputs like those in [12, 51]. We are also studying
algorithms for dead-code analysis in the presence of higher-order functions; Reps' undecidability result [40]
might imply that precise analysis in this case is infeasible. Meanwhile, we have a preliminary application of
our grammar-constraints based method to binding-time analysis in the presence of recursive data structures;
it suggests that the complexity result is similar to the dead-code analysis here. In fact, dead-code analysis
can be used together with binding-time analysis to increase termination of specialization by ensuring that a
value is static only if it is needed during specialization [7].

Clearly, precise and uni�ed speci�cation, design, and complexity analysis of all kinds of program analysis
algorithms deserve much further study. We believe that such study can bene�t greatly from the approach
of Paige et al. [36, 34, 9, 35, 8], as illustrated in this work, and from the more formal characterization by
Goyal [16].

Appendix: A worst-case program

Program. A program is a set of recursive function de�nitions, together with a set of constructor de�nitions,
each with the corresponding tester and selectors.
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f(x) = f3(x);
id(x) = x;
f0(x) = fst(id(x));
f1(x) = f0(fst(id(x)));
f2(x) = f1(fst(id(x)));
f3(x) = f2(fst(id(x)));

pair : pair?(fst; snd);

Labeled program. The program is labeled, with a distinct nonterminal associated with each program
point, as follows:

f(N24 : x) = N23 : f3(N22 : x);
id(N21 : x) = N20 : x;
f0(N19 : x) = N18 : fst(N17 : id(N16 : x));
f1(N15 : x) = N14 : f0(N13 : fst(N12 : id(N11 : x)));
f2(N10 : x) = N9 : f1(N8 : fst(N7 : id(N6 : x)));
f3(N5 : x) = N4 : f2(N3 : fst(N2 : id(N1 : x)));

Constructed grammar. The grammar constructed from the given program is

N24!N22; N22! [N23]N5; N4!N23; N21!N20;

N19!N16; N16! [N17]N21; N20!N17; N17! [N18]pair(N18; N0);
N15!N11; N11! [N12]N21; N20!N12; N12! [N13]pair(N13; N0); N13! [N14]N19; N18!N14;

N10!N6; N6! [N7]N21; N20!N7; N7! [N8]pair(N8; N0); N8! [N9]N15; N14!N9;

N5!N1; N1! [N2]N21; N20!N2; N2! [N3]pair(N3; N0); N3! [N4]N10; N9!N4; N0!D

User query. A user query is

N23!L

Simpli�cation result. Clearly, N2, N7, N12, N17 at all calls to id, i.e., at arguments of calls to fst, have
liveness patterns pair(N3; N0), pair(N8; N0), pair(N13; N0), pair(N18; N0), respectively. Then N1, N6, N11,
N16 at arguments of all calls to id each goes to all these right sides. These right sides are also included
in the liveness patterns at formal parameters of all fi's, since in each fi they are for the same variable x,
and �nally, these right sides are also included in the liveness patterns at arguments of all calls to fi's. The
output of simpli�cation, sorted by nonterminal numbers, is

N24! pair(N18; N0); N24! pair(N13; N0); N24! pair(N8; N0); N24! pair(N3; N0); N23!L;

N22! pair(N18; N0); N22! pair(N13; N0); N22! pair(N8; N0); N22! pair(N3; N0);
N21! pair(N18; N0); N21! pair(N13; N0); N21! pair(N8; N0); N21! pair(N3; N0);
N20! pair(N18; N0); N20! pair(N13; N0); N20! pair(N8; N0); N20! pair(N3; N0);
N19! pair(N18; N0); N19! pair(N13; N0); N19! pair(N8; N0); N19! pair(N3; N0); N18!L;

N17! pair(N18; N0);
N16! pair(N18; N0); N16! pair(N13; N0); N16! pair(N8; N0); N16! pair(N3; N0);
N15! pair(N18; N0); N15! pair(N13; N0); N15! pair(N8; N0); N15! pair(N3; N0); N14!L;

N13! pair(N18; N0); N13! pair(N13; N0); N13! pair(N8; N0); N13! pair(N3; N0);
N12! pair(N13; N0);
N11! pair(N18; N0); N11! pair(N13; N0); N11! pair(N8; N0); N11! pair(N3; N0);
N10! pair(N18; N0); N10! pair(N13; N0); N10! pair(N8; N0); N10! pair(N3; N0); N9!L;

N8! pair(N18; N0); N8! pair(N13; N0); N8! pair(N8; N0); N8! pair(N3; N0);
N7! pair(N8; N0);
N6! pair(N18; N0); N6! pair(N13; N0); N6! pair(N8; N0); N6! pair(N3; N0);
N5! pair(N18; N0); N5! pair(N13; N0); N5! pair(N8; N0); N5! pair(N3; N0); N4!L;

N3! pair(N18; N0); N3! pair(N13; N0); N3! pair(N8; N0); N3! pair(N3; N0);
N2! pair(N3; N0);
N1! pair(N18; N0); N1! pair(N13; N0); N1! pair(N8; N0); N1! pair(N3; N0); N0!D
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