
Automated Symbolic Timing Analysis for Distributed Systems

Scott D. Stoller� and Leena Unnikrishnan

Computer Science Dept., Indiana University, Bloomington, IN 47405 USA

fstoller,lunnikrig@cs.indiana.edu

27 August 1999

Abstract

A timing property of a distributed system is an assertion about the time intervals between

events in executions of that system. There are three traditional approaches to determining

timing properties of distributed systems: measurement, simulation, and analysis. Results from

analysis can be symbolic and therefore much more general than results from measurement and

simulation. For example, analysis can express the end-to-end delay of an atomic commitment

protocol symbolically as a function of message delay and other system parameters. However,

manual analysis of distributed algorithms is often tedious and error-prone. We have developed

and implemented a state-exploration-based analysis that can automatically determine a large

class of timing properties of distributed systems.

Keywords: timing properties, synchronous distributed systems, automated state exploration,

symbolic computation, uniform timed reliable broadcast

1 Introduction

A timing property of a distributed system is an assertion about the time intervals between events in

executions of that system. A timing property might characterize the probability distribution of time

intervals between events, or the minimum, maximum, or mean of that distribution. For example,

for a distributed database system, typical timing properties of interest are the mean and maximum

times from when a transaction starts until it completes. There are three traditional approaches

to determining such properties: measurement, simulation, and analysis. Measurement can provide

very accurate information, but the results are speci�c to a particular compiler, operating system,

CPU, network, etc. Similarly, the results of a simulation reect speci�c values of or distributions

�Contact author. Tel.: 812-855-7979. Fax: 812-855-4829.

1

for the time needed for low-level operations. Analysis can provide much more general results by

expressing timing properties symbolically as functions of con�guration parameters (e.g., number

of processes, maximum number of failures, and network diameter), and timing parameters, which

characterize the time needed for low-level operations (e.g., minimum and maximum network delay,

hard-disk access time, and CPU time spent in protocol stack). For example, De Prisco, Lampson,

and Lynch's analysis shows that the time needed for the PAXOS algorithm (based on Lamport's

part-time parliament [Lam89]) to reach consensus after failures cease is at most 24`+ 10n`+ 13d,

where n is the number of processes, and ` and d are bounds on local processing time and message

delay, respectively. Determining and verifying such formulas by hand is tedious and error-prone,

due to non-determinism from concurrency and failures.This non-determinism also makes traditional

methods for analysis of the time complexity of sequential algorithms di�cult to apply.

This paper describes a novel method for automatically determining a large class of timing

properties of distributed systems. Timing parameters are handled symbolically (or numerically, if

desired) throughout the analysis. Con�guration parameters must be instantiated with particular

values. One can often obtain a good idea of the dependence of timing properties on con�guration

parameters by repeating the analysis for various values and plotting the results. Extending the

analysis to handle con�guration parameters symbolically, perhaps along the lines of [KM95], is an

area for future work.

We envision two main uses for this analysis. One is to determine \end-to-end" timing properties

of distributed algorithms, such as the property of PAXOS mentioned above. The other is to

facilitate the development of such algorithms by helping determine time-outs. For example, the

PAXOS algorithm, like many fault-tolerant algorithms, uses a timer that should expire just after

a certain message would have arrived if failures did not interfere; speci�cally, the time-out in the

PAXOS algorithm is 7` + 4n`+ 4d. For particular values of n, our timing analysis can determine

symbolically the time interval in which the message can arrive; the upper limit of this time interval

provides the correct time-out.1

Our analysis constructs a graph: each node corresponds to a (global) state of the system, and

each edge corresponds to an event (transition). The graph is constructed by starting with the

initial state and repeatedly generating new states by exploring events. Each event is tagged with

symbolic times that characterize when it can occur. A symbolic time is either an expression built

1It might seem like there is a circularity here: how can the algorithm be analyzed before it is completely designed?
In fact, this is not a problem, because the arrival time of the message in question does not depend on this time-out.
Thus, during this analysis, this timer can be removed from the algorithm or set to a very large value.

2

from timing parameters and arithmetic operators or the symbol 1 (in�nity). Symbolic times are

used to determine the order in which events can occur and to compute bounds on the minimum

and maximum time intervals between speci�ed classes of events.

The use of symbolic time intervals (instead of numerical times, as in most simulators) has many

rami�cations in the analysis. One is the inadequacy of the straightforward approach in which each

event is tagged with one symbolic time interval, representing the range of times that it can occur,

measured from the start of the execution. As we show in Section 4, it is often necessary to tag a

pending event e with multiple symbolic time intervals, each representing the range of times that e

can occur, measured from a speci�ed point during the execution. We call these points anchors.

Section 2 describes our system model. Section 3 describes a simpli�ed symbolic timing analysis,

called the one-anchor analysis. Sections 4 and 5 motivate and describe, respectively, the multi-

anchor analysis. Section 6 describes a modular way of introducing failures. The analysis has

been implemented in Java in a prototype tool called TADA (Timing Analyzer for Distributed

Algorithms). Section 7 describes the application of TADA to a new message-e�cient algorithm for

uniform timed reliable broadcast [SS98]. To the best of our knowledge, this is the �rst automated

analysis of symbolic timing properties of that or any similar distributed algorithm.

Future work includes: (1) optimizing the analysis by developing a suitable partial-order method

[PPH97] that avoids exploring \equivalent" interleavings of concurrent pending events and by ex-

ploiting \monotonicity" to justify exploring some pending events only at their earliest or latest

possible occurrence time; (2) integrating the analysis with a symbolic timing analysis for sequen-

tial programs written in a conventional programming language (cf. Section 3.1); (3) empirically

checking the accuracy of timing properties calculated by substituting measured values for timing

parameters into formulas obtained from the analysis; if necessary, the accuracy can be increased by

introducing additional timing parameters, possibly like those in the LogP model of parallel com-

putation [CKP+96]; (4) applying the analysis to agreement algorithms like those in [Lyn96, Part

III] or [PLL97], group communication protocols like those in [CZ85, RVR93, MR97], etc.

2 System Model

We model a distributed system as a collection of processes that communicate by message-passing

over reliable FIFO channels with unbounded capacity and bounded delay. It is easy to modify

the analysis to accommodate unreliable, unordered, or �nite-capacity channels. By convention, the

symbols �1 and �2 are lower and upper bounds, respectively, on message delay. Speci�cally, message

3

delay is at least �1 and is less than �2. Note that this implies �1 < �2.

We use a reactive model of processes: a process is inactive except when reacting to an input

event. There are three kinds of input events: message reception (with type MSG), timer expiration

(TMR), and signal reception (SIG). Each process can use multiple timers, so when a timer expires,

the input event contains a timer identi�er that indicates which timer expired. Signals are like

messages except that signals are transmitted instantaneously. Signals are useful for modeling

communication between processes running on the same machine; in this sense they are like UNIX

signals. For example, communication between a failure-detector process and its clients, which must

be on the same machine as the failure detector, would be modeled by signals rather than messages.

Signals are also useful for enforcing global invariants; an example of this appears in Section 6.

In reaction to an input event, a process may change its local state and produce a sequence of

outputs. There are four kinds of outputs: sending a message (MSG), setting a timer (SETTMR),

cancelling a timer (DELTMR), and sending a signal (SIG). Processes may be non-deterministic.

We assume that a process's reaction to an input event is not interrupted by processing of other

input events. However, we do not assume that the sequence of outputs is produced instantaneously.

We assume all timers run at the same rate as real time. It is straightforward to accommodate

timers that run too fast or too slow; bounds on their rates could be numerical or symbolic.

3 One-Anchor Analysis

This section describes a simpli�ed analysis, called the one-anchor analysis. The following system

serves as a running example. The system contains two processes, p0 and p1. At the start of the

execution, p0 sends a message m0 to p1 and sets a timer to 2�2. On receiving m0, p1 sends a reply

m1 to p0. On receiving m1, p0 sends an acknowledgment m2 to p1 and cancels the timer, if it has

not yet expired. If the timer expires, then p0 retransmits m0. The �rst timing property that we

consider is the minimum and maximum time from when p0 sends m0 until p0 receives m1.

3.1 Processes

We model a process as an automaton, de�ned by: a set of (local) states, a transition function, an

initial state, and an optional initial output. The arguments of the transition function are the current

local state of the process and an input event. Processes are non-deterministic, so the transition

function returns a set of possible reactions, each represented by a pair hs; outsi, where s is a state

of the process and outs = hho0; o1; : : : ; onii is a sequence of outputs (we use double angle brackets

4

to denote sequences). Each output oi is tagged with a time interval called its o�set, which bounds

the time that elapses from when oi�1 is produced until oi is produced; as a special case, the o�set

of o0 is measured from when the input event occurs. The optional initial output, if present, must

be of type SETTMR. Thus, each process can set an initial timer, and when that timer expires, the

process can send messages, etc.

Let r0 be the transition function for p0 in the running example. The initial output of p0

sets a timer to expire after a delay of zero; thus, that timer expires immediately at the start of

the execution. Let s0 be the initial state of p0, and let itmr0 be an input event representing

the expiration of p0's initial timer. When applied to the arguments s0 and itmr0, r0 returns

fhs00; hhomsg0; otmr0iiig, where s00 is a state of p0, and outputs omsg0 and otmr0 correspond to

sending m0 and setting a timer to 2�2, respectively.

Using automata simpli�es the implementation of the analysis, but writing distributed algorithms

as automata is often inconvenient. Programs in a conventional programming language augmented

with Send and Receive statements could be used instead, provided the duration of local processing

is expressed symbolically (as in the o�sets in automata outputs). One approach is to have the

user annotate program segments with symbolic times. A more automatic approach is to associate

timing parameters with each program construct and use, e.g., Shaw's timing analysis to symbolically

determine execution times for sequential code fragments [Sha89]. The analysis in [Sha89] is suitable

for many real-time programs but does not deal with message passing or (more importantly) the

high degree of non-determinism resulting from failures.

3.2 Timing Properties

We consider timing properties that characterize the minimum and maximum time between classes

of events. A timing property is expressed as a start condition and a stop condition, each being a

predicate on message sending or receiving events, e.g., \p1 receiving a message containing dlvr mcast

from any process". A start event or stop event is an event satisfying the start or stop condition,

respectively. In the running example, the start condition is \p0 sends m0 to p1", and the end

condition is \p0 receives m1 from p1".

Our analysis provides symbolic bounds on the minimum and maximum time between a start

event and a causally subsequent stop event. The following restricted notion of causality simpli�es

the calculations in Section 5 and is su�cient for many examples, so we adopt it in this paper.

However, using Lamport's causality relation (\happened before") [Lam78] or temporal ordering

(instead of causality) is not di�cult. Our causality relation ! for a computation c is the smallest

5

transitive relation on pending events and outputs in c such that: (1) for each pending event pe and

each output o produced by pe, pe! o and, if there is a pending event pe0 corresponding to o (e.g.,

o is not of type SIG), then pe! pe0; (2) for consecutive outputs o and o0 in a sequence of outputs

produced by some pending event, o! o0. Note that ! is a subset of Lamport's causality relation.

Speci�cally, ! ignores local orderings between processing of di�erent inputs.

Semantics. Let � be an instantiation of the timing parameters of the system, with �(�1) < �(�2);

for example, �(�1) = 1:5 msec, etc. Let t̂min and t̂max be the least and greatest times, respectively,

between the �rst occurrence of a start event and the �rst causally-subsequent occurrence of an end

event in any possible execution of the system with timing parameter values given by �. If there

is no execution in which a start event is causally followed by a stop event, then t̂min is in�nity;

if there is some execution not containing a start event, or in which the �rst occurrence of a start

event is not causally followed by an end event, then t̂max is in�nity. The analysis computes sets

mins and maxs of symbolic times such that there exist tmin 2 mins and tmax 2 maxs such that

�(tmin) � t̂min and t̂max � �(tmax), where for a symbolic time t, �(t) is the value of t with the

timing parameters instantiated with the values in �. Thus, mins and maxs provide a lower bound

on t̂min and an upper bound on t̂max , respectively.

To see why mins and maxs sometimes need to be sets of symbolic times, suppose the analysis

determines that the minimum separation between the start and end events is either 3�1 or 2�2,

depending on some non-deterministic choice. Given only that �1 < �2, there is no way to determine

whether 3�1 or 2�2 is smaller, so the analysis would returnmins = f3�1; 2�2g. Ordering relationships

between symbolic times are discussed further in Section 3.3.

3.3 One-Anchor Analysis Algorithm

Timing properties are evaluated by constructing a graph with nodes corresponding to global states

of the system and with edges corresponding to transitions, and then calculating mins and maxs

from the occurrence intervals of the start and end events. Each global state g has a �eld g:LS

containing an array of local states and a �eld g:PE containing a set of pending events. The set

of pending events reects the state of the operating systems and network. There are two kinds of

pending events: messages in transit (MSG), and ticking timers (TMR). Each pending event pe has

a �eld pe:P ID containing the name of the process that will execute pe and a �eld pe:OI containing

an occurrence interval [t1; t2], where t1 and t2 are lower and upper bounds, respectively, on the time

at which pe occurs. Occurrence intervals are implicitly anchored at (i.e., measured with respect to)

6

the start of the execution. Each edge in the graph is labeled with the pending event that occurs

along that edge.

The graph constructed for the running example is shown in Figure 1, where msgi corresponds

to reception of message mi, tmr0 is p0's initial timer, etc.

g2

LS: s00; s1

PE: msg0 [�1; �2]

tmr1 [2�2; 2�2]

LS: s00; s
0

1 LS: s000 ; s
0

1

PE: msg2 [3�1; 3�2]

g1 g3

msg0 msg1 msg2
PE: tmr1 [2�2; 2�2]

msg1 [2�1; 2�2]

LS: s000 ; s
00

1

PE:

g4tmr0

LS: s0; s1

PE: tmr0 [0; 0]

g0

Figure 1: The graph computed in the one-anchor analysis of the running example.

Exploring a Pending Event. The graph is constructed by starting with the initial state (i.e.,

the global state with every process in its local state and with pending events corresponding to

the initial outputs) and repeatedly selecting a global state g and a pending event pe in g:PE and

exploring pe, as follows. Apply the transition function for pe:P ID to the local state g:LS[pe:P ID]

of pe:P ID and the pending event pe (now regarded as an input event) to obtain the set S of possible

outcomes. For each hs; outsi 2 S, construct a global state g0 by copying g and then applying the

following updates: set g0:LS[pe:P ID] to equal s; remove pe from g0:PE; process the elements of

outs, as follows, in the order they appear. A MSG output adds to g0:PE a MSG pending event with

the speci�ed destination, message contents, etc. A SETTMR output adds to g0:PE an appropriate

TMR pending event. A DELTMR output removes a speci�ed TMR pending event from g0:PE. A

SIG output is regarded as an input event of the speci�ed destination process q and is processed in

essentially the same way that a pending event is explored, namely, by updating the local state of

q and processing the resulting outputs of q, if any.2 Calculation of occurrence intervals associated

with new pending events and signals is discussed below. If the resulting global state g0 does not

already appear in the graph, then it is added. Also, an edge from g to g0 labeled with pe is added.

An enhancement that sometimes yields tighter bounds is: update the lower bounds of other pending

2If the outputs of two processes p and q both contain signals sent to some process r, then one must be careful
to specify the order in which those signals are processed by r. Our current implementation simply prohibits such
situations, i.e., it prohibits race conditions involving signals.

7

events in g0 to reect that in g0, those pending events must occur after pe, and update the upper

limit of pe on the edge from g to g0 to indicate that it must occur before all other pending events

in g:PE. For example, let pe be a pending event with occurrence interval [�1+�2; 3�2]init in global

state g. Let pe0 be a pending event with occurrence interval [2�1; 2�2]init in global state g. Then,

in the global state g0 reached from g by executing pe, we can replace pe0 with a new pending event

whose occurrence interval is [�1+�2; 2�2]init . Similarly, the upper limit of the occurrence interval of

pe on this edge can be changed to 2�2. If pe or a causally subsequent event is an end event, this

can lead to tighter mins .

Computing Occurrence Intervals. When a pending event pe with occurrence interval [t1; t2] is

explored, occurrence intervals are computed as follows for the resulting signals and pending events.

Let out be an output produced by exploring pe. Let [o� 1; o� 2] be the o�set associated with out. If

out is the sending of a message m, then the occurrence interval of the pending event corresponding

to reception of m is [t1 + o� 1 + �1; t2 + o� 2 + �2]. If out is the setting of a timer to expire after

time t, then the occurrence interval of the pending event corresponding to expiration of that timer

is [t1 + o� 1 + t; t2 + o� 2 + t]. If out is a signal, then the occurrence interval of the input event

corresponding to reception of that signal is [t1 + o� 1; t2 + o� 2].

In the running example, the o�set intervals are all [0; 0]. When msg1 is explored in global state

g2, p0 produces two outputs: it sends m2 and cancels the timer. The former output creates a

pending event msg2 with occurrence interval [�1 + 0 + �1; �2 + 0 + �2].

Enabled Pending Events. For a global state g, only pending events in g:PE that could occur

next in an execution of the system should be explored in g. We introduce an ordering -1, called

\can occur before", and explore a pending event pe in g:PE i� pe can occur before every other

pending event in g:PE, in which case we say that pe is enabled in g. The ordering -1 is determined

by comparing symbolic times in occurrence intervals. The comparisons are based on arithmetic

identities (e.g., �1 is less than 2�1) and the premise that �1 is less than �2.
3 The results of some

comparisons (e.g., between 3�1 and 2�2) are undetermined, a situation denoted by ?. Thus, for

symbolic times t and t0, we de�ne

3It is straightforward to allow linear inequalities involving all timing parameters to be supplied as premises. If the
symbolic times are all linear expressions, comparisons can be evaluated using, e.g., Shostak's loop residue approach
[Sho91].

8

cmp(t; t0) =

8>>><
>>>:

EQ if t and t0 are equal
LT if t is de�nitely less than t0

GT if t is de�nitely greater than t0

? otherwise

A pending event pe with occurrence interval [t1; t2] can occur before a pending event pe0 with

occurrence interval [t01; t
0
2], denoted pe -1 pe

0, i� cmp(t1; t
0
2) 2 fLT;EQ;?g and it is not the case

that pe is a timer expiration, pe0 is a message reception, and cmp(t1; t
0
2) = EQ. The exception

reects the fact that time intervals associated with message reception are implicitly right-open,

because �2 is a strict upper bound on message delay. In the running example, tmr1 -1msg1 does

not hold because of this exception, so tmr1 is not enabled in g2. Our \can occur before" relation is

reminiscent of Lamport's \can a�ect" relation [Lam86]; however, we consider events to be atomic,

so the lack of a de�nite event ordering stems only from the lack of exact (numerical) occurrence

times for events.

Evaluating Timing Properties. Timing properties can be evaluated as follows. (1) The entire

graph is constructed. (2) The graph is searched to obtain a set S containing every pair he; e0i

of events such that e is a �rst occurrence of a start event and e0 is a �rst causally-subsequent

occurrence of an end event. (3) For each pair he; e0i in S, t01 � t2 is inserted in mins and t02 � t1

is inserted in maxs , where [t1; t2] and [t01; t
0
2] are the occurrence intervals of e and e0, respectively.4

(4) mins is simpli�ed by removing each element t such that there is some t0 2 mins such that

cmp(t0; t) = LT . maxs is simpli�ed by removing each element t such that there is some t0 2 maxs

such that cmp(t0; t) = GT .

For brevity, we have elided checks for special cases, e.g., existence of a start event not causally

followed by a stop event, in which case maxs = f1g. As an optimization, steps (1) and (2)

are combined in our implementation. This sometimes enables us to avoid constructing part of the

graph, because there is no need to explore pending events that occur after a stop event that causally

follows a start event.

For the running example: (1) construct the graph in Figure 1; (2) the only start event is the

output that produces msg0, and the only end event is msg1; these events have occurrence intervals

[0; 0] and [2�1; 2�2], respectively; (3),(4) the result of the analysis ismins = f2�1g andmaxs = f2�2g.

Note that these bounds are tight.

4For some values of the timing parameters, t02 � t1 might be negative. It is still a legitimate lower bound on the
minimum time from a start event until an end event.

9

4 Limitations of One-Anchor Analysis

The one-anchor analysis often produces loose bounds. We illustrate this with a di�erent timing

property of the running example. The start condition is \p1 sends m1 to p0"; the stop condition is

\p1 receives m2 from p0". Referring to the graph in Figure 1, there is one start event (the output

that produces msg1) and one end event (msg2), with occurrence intervals [�1; �2] and [3�1; 3�2],

respectively, so mins = f3�1 � �2g and maxs = f3�2 � �1g. These bounds are loose; tight bounds

are 2�1 and 2�2, respectively.

The root of the problem is that occurrence intervals are measured only from the start of the

execution, so they get wider and wider along paths from the initial state. Thus, the later the start

event occurs in the execution, the looser are the bounds computed by the one-anchor analysis. The

bounds obtained for the example in Section 3 are tight because the start event occurs at the start

of the execution.

This phenomenon also a�ects calculations of enabledness. For example, consider a modi�ed

version of the running example in which p1 sets a timer to 2�2 (and sends m1) when it receives

m0. Let tmr2 denote the pending event corresponding to that timer. tmr2 has occurrence interval

[�1+2�2; 3�2]. Let g
0
3 be the global state with pending events tmr2 and msg2, where msg2 is as in

Figure 1. tmr2 is enabled in g03, because tmr2 -1msg2, because cmp(�1+2�2; 3�2) = LT . However,

it is clear that tmr2 cannot actually occur before msg2. Thus, the one-anchor analysis produces

a graph containing paths that do not correspond to possible executions, and this may cause the

bounds in mins and maxs to be loose. The one-anchor analysis is sound, because the graph does

contain a path corresponding to each possible execution.

5 Multi-Anchor Analysis

Tighter bounds are obtained by tagging each pending event with a set of occurrence intervals, each

of which is an anchored time interval [t1; t2]a, where the anchor a is an event from whose occurrence

t1 and t2 are measured. As a special case, the anchor can be init , representing the start of the

execution. Every event has an occurrence interval anchored at init . For e�ciency, only selected

events are used as anchors. Speci�cally, all start events and SETTMR or MSG outputs are used

as anchors, except those that occur at the start of the execution (i.e., have occurrence interval

[0; 0]init); we call these anchor events. Pending events are explored in the same way as in the

one-anchor analysis, with the calculation of occurrence intervals and the de�nition of enabledness

modi�ed as follows.

10

Computing Occurrence Intervals. When a pending event pe is explored, producing a set S

of signals and pending events, each occurrence interval of pe is propagated to all elements of S

in essentially the same way that occurrence intervals are propagated in the one-anchor analysis.

Furthermore, if processing of pe involves an anchor event a (which could be pe itself or a MSG

output in S) that does not occur at the start of the execution, then occurrence intervals anchored

at a are added to a and all events in S that causally follow a; these occurrence intervals are easily

computed from the o�sets. For example, if a is pe and the o�set of some MSG output is [o� 1; o� 2],

then the corresponding MSG pending event in S has an occurrence interval [o� 1 + �1; o� 2] + �2.

A simple inductive proof shows: for every anchor event a that does not occur at the start of the

execution, every event that causally follows a has an occurrence interval anchored at a.

Enabled Pending Events. A pending event pe can occur before another pending event pe0 only

if this ordering is consistent with all of the occurrence intervals of those events. Let A be the

set of anchors common to pe and pe0; thus, for all a 2 A, pe and pe0 have occurrence intervals

[t1(a); t2(a)]a and [t01(a); t
0
2(a)]a, respectively. Then pe can occur before pe0, denoted pe - pe0, i�

for all a 2 A, cmp(t1(a); t
0
2(a)) 2 fLT;EQ;?g and it is not the case that pe is a timer expiration,

pe0 is a message reception, and cmp(t1(a); t
0
2(a)) = EQ. For a global state g and a pending event

pe in g:PE, pe is enabled in g i� for all other pending events pe0 in g:PE, pe - pe0.

Evaluating timing properties. Timing properties are evaluated in essentially the same way as

in the one-anchor analysis, except step (3) is modi�ed to be: for each pair he; e0i in S, t01 is added

to mins and t02 is added to maxs , where [t01; t
0
2]e is the occurrence interval of e

0 anchored at e (if e

occurs at the start of the execution, the occurrence interval of e0 anchored at init is used instead).

The de�nition of causality in Section 3.2 ensures that e0 has an occurrence interval anchored at e.

If we base the semantics of timing properties on Lamport's causality relation or temporal ordering

instead, this might not be the case, so occurrence intervals with other anchors would need to be

considered in this calculation.

For the running example of Section 3, the graph produced by the multi-anchor analysis is the

same as in Figure 1, except with [� � �] changed to [� � �]init . The start event (i.e., the sending of

msg0) and the SETTMR output of p0 have occurrence interval [0; 0]init , so they are not anchor

events. The calculations of mins and maxs yield the same results as in Section 3.

For the timing property considered in Section 4: (1) construct the graph in Figure 2, where

omsg1 denotes the MSG output of p1 representing the sending of m1; (2) omsg1 is the only start

11

event and msg2 is the only stop event; (3),(4) the result of the analysis is mins = f2�1g and

maxs = f2�2g. These bounds are tight.

LS: s00; s1

PE: msg0 [�1; �2]init

tmr1 [2�2; 2�2]init

LS: s000 ; s
0

1

g3

msg1

g2

LS: s00; s
0

1msg0

msg1 [2�1; 2�2]init

PE: tmr1 [2�2; 2�2]init

[�1; �2]omsg
1

LS: s000 ; s
00

1

g4

msg2
PE:PE: msg2 [3�1; 3�2]init

g1

g0

: : :

[2�1; 2�2]omsg
1

[�1; �2]omsg
2

Figure 2: The graph computed in the multi-anchor analysis of the running example. g0 is the same
as in Figure 1, except [� � �] is changed to [� � �]init . Two occurrence intervals are shown for msg1;
three occurrence intervals are shown for msg2.

6 Failures

Failures can be introduced in two ways: by adding them to the system model or the processes.

We take the latter approach, because it keeps the analyzer simple and because a failure mode can

be added to processes in a modular way, by embodying the failure mode as a process transformer,

i.e., a function that takes a process (i.e., an automaton) as input and returns a new process. For

example, consider a process transformer T that embodies crash failures. Given a system with

processes p0; : : : ; pN , the system with processes T (p0); : : : ;T (pN) is the same except that each

process might crash at any time. The set of states of T (p) is the set of states of p plus a new state

sdead . The transition function r of T (p) is de�ned as follows. When T (p) is in state sdead , inputs

are \ignored", i.e., r returns fhsdead ; "ig, where " is the empty sequence. We do not assume that

a sequence of outputs produced by an input event is failure-atomic; thus, there is a possibility of

crashing before each output. When T (p) is in a state of p, r calls the transition function of p to

obtain the set S of p's possible behaviors and then returns S [(
S
hs;outsi2S

S
os�outsfhsdead ; osig),

where x � y means x is a pre�x of y. Similarly, one can de�ne process transformers that add

crashes and recoveries, timing failures, message loss, etc.

Timing properties for executions involving limited numbers of failures are often of interest, so

we parameterize process transformers by the number of failures. For example, Tf is de�ned so that

f crashes occur in executions of the system Tf (p0); : : : ;Tf (pN). To enforce this, when Tf (p) crashes,

it informs every other process of this by sending signals. Each process Tf(p) keeps track of the

12

number of such signals received and does not crash if this number equals f . The synchronous nature

of signals is essential here. Of course, these signals do not correspond to actual communication in

an implementation of the system.

7 Example: Uniform Timed Reliable Broadcast

We are applying TADA to a new rotating-coordinator algorithm, called UTRB4 [SS98], for uniform

timed reliable broadcast (UTRB) that tolerates crash failures. A UTRB algorithm can form the

heart of an implementation of non-blocking atomic commitment [BT93b, BT93a]. UTRB4 uses

carefully designed patterns of time-outs to help each process determine the status of other processes

(e.g., whether they received certain messages) without sending messages. UTRB4 has a worst-case

message complexity of 2(N �1) + 1

2
(f �1)f , where N is the number of processes and f is the

number of crashes, compared to 2(N�1) + 2(N�1)f for UTRB2 [BT93b, BT93a], which is the

most message-e�cient UTRB algorithm we have found in the literature. For example, when f = 1,

UTRB4 uses half as many messages as UTRB2. The manual calculations of the time-outs are

non-trivial, because they require consideration of chains of events involving multiple failures. The

times for these chains of events can be expressed as timing properties and checked with TADA.

That will be an interesting test of those calculations and the analysis.

We have used TADA to verify for particular values of N and f that the worst-case delay from

when a broadcast is initiated until all non-faulty processes have delivered the message is �2 + �

for f = 0, 3�2 + � for f = 1, and 2f+1�2 + 2f�2� � �2 for f > 1, where the timing parameter �

characterizes the local overhead of sending messages to all other processes. For N = 7 and f = 0,

the analysis took approximately 26.5 min (on a 75 MHz MIPS R8000) and 1.8 MB of heap memory;

for N = 4 and f = 3 (the case f = N isn't interesting), the analysis took approximately 4.5 min

and 2.2 MB of heap memory; for N = 5 and f = 4, the analysis took approximately 6.5 hours and

62 MB of heap memory.

References

[BT93a] �Ozalp Babao�glu and Sam Toueg. Non-blocking atomic commitment. In Sape Mullender, editor,
Distributed Systems, chapter 6, pages 147{168. Addison Wesley, 2nd edition, 1993.

[BT93b] �Ozalp Babao�glu and Sam Toueg. Understanding non-blocking atomic commitment. Technical
Report UBLCS-93-2, University of Bologna, Laboratory for Computer Science, 1993.

13

[CKP+96] David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay, Eunice E. Santos, Klaus Erik
Schauser, Ramesh Subramonian, and Thorsten von Eicken. LogP: A practical model of parallel
computation. Communications of the ACM, 39(11), November 1996.

[CZ85] David R. Cheriton and Willy Zwaenepoel. Distributed process groups in the V kernel. ACM
Transactions on Computer Systems, 3(2):77{107, 1985.

[KM95] R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes. Information
and Computation, 117(1), 1995.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558{564, 1978.

[Lam86] Leslie Lamport. On interprocess communication: Part 1. Distributed Computing, 1:76{101, 1986.

[Lam89] Leslie Lamport. The part-time parliament. Technical Report SRC-49, Digital Equipment Cor-
poration, Systems Research Center, 1989.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MR97] Dahlia Malkhi and Michael Reiter. A high-throughput secure reliable multicast protocol. The
Journal of Computer Security, 5:113{127, 1997.

[PLL97] Roberto De Prisco, Butler Lampson, and Nancy Lynch. Revisiting the Paxos algorithm. In
M. Mavronicolas and P. Tsigas, editors, Proc. 11th International Workshop on Distributed Algo-
rithms (WDAG '97), volume 1320 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

[PPH97] Doron Peled, Vaughan R. Pratt, and Gerard J. Holzmann, editors. Proc. Workshop on Partial
Order Methods in Veri�cation, volume 29 of DIMACS Series. American Mathematical Society,
1997.

[RVR93] L. Rodrigues, P. Ver��ssimo, and J. Ru�no. A low-level processor group membership protocol for
lans. In Proc. IEEE 13th International Conference on Distributed Computing Systems (ICDCS).
IEEE Computer Society Press, 1993.

[Sha89] Alan C. Shaw. Reasoning about time in higher-level language software. IEEE Transactions on
Software Engineering, 15(7):875{889, July 1989.

[Sho91] Robert E. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM,
28(4):769{779, October 1991.

[SS98] Scott D. Stoller and Fred B. Schneider. Automated stream-based analysis of fault-tolerance.
In Fifth International Symposium on Formal Techniques in Real Time and Fault Tolerant Sys-
tems (FTRTFT), volume 1486 of Lecture Notes in Computer Science, pages 113{122, Lyngby,
Denmark, September 1998. Springer-Verlag.

14

