
Transformations for Model Checking Distributed
Java Programs ?

Scott D. Stoller and Yanhong A. Liu

Computer Science Dept., SUNY at Stony Brook, Stony Brook, NY 11794-4400

Abstract. This paper describes three program transformations that ex-
tend the scope of model checkers for Java programs to include distributed
programs, i.e., multi-process programs. The transformations combine
multiple processes into a single process, replace remote method invo-
cations (RMIs) with local method invocations that simulate RMIs, and
replace cryptographic operations with symbolic counterparts.

1 Introduction

There is growing interest in model checking of programs written in standard pro-
gramming languages. Java’s support for remote method invocation (RMI), an
object-oriented version of remote procedure call (RPC) [BN84], makes writing
distributed programs relatively painless. The current generation of model check-
ers for Java programs, e.g., [BHPV00,PSSD00,Sto00,CDH+00], work for multi-
threaded single-process programs but not distributed programs. This paper de-
scribes three program transformations that extend the scope of these model
checkers to include distributed programs, i.e., programs that involve communi-
cation among multiple processes.

Centralization: merge all processes into a single process. This yields a non-
distributed program.

RMI removal: replace RMIs with ordinary method invocations that simulate
RMIs.

Pseudo-crypto: replace cryptographic operations with symbolic counterparts,
which we call pseudo-cryptographic operations.

All three transformations improve performance of model checking. Central-
ization avoids the overhead of initializing multiple processes and Java Virtual
Machines (JVMs). RMI removal replaces genuine RMIs with faster simulated
RMIs. Pseudo-crypto replaces computationally expensive cryptographic opera-
tions, such as generation of public-private key pairs and verification of digital
signatures, with symbolic counterparts that are at least an order of magnitude
faster.

RMI removal and pseudo-crypto eliminate calls to native methods. Standard
implementations of RMI invoke native methods for serialization (i.e., conversion
? This work is supported in part by NSF under Grant CCR-9876058 and by ONR

under grants N00014-99-1-0132, N00014-99-1-0358, and N00014-01-1-0109. Email:
{stoller,liu}@cs.sunysb.edu Web: http://www.cs.sunysb.edu/˜{stoller,liu}



of data into a format suitable for network transmission) and network communica-
tion. Cryptographic operations are typically implemented using native methods
for efficiency. The simulated RMIs and pseudo-cryptographic operations intro-
duced by RMI removal and pseudo-crypto, respectively, do not invoke native
methods. This is significant, because supporting native methods in a model
checker is a non-trivial task. Furthermore, native methods for network com-
munication maintain state outside the JVM. Supporting such native methods in
a model checker is extremely problematic, because there is no general way for
the model checker to save and restore their state.

Centralization enables current model checkers for Java to be used to system-
atically test and verify distributed programs. It also suggests that there may
be little incentive to extend those model checkers to directly handle distributed
programs. Centralization can be used without RMI removal, because a single
process may be both the client and the server in a RMI.

Centralization by itself does not attempt to control non-determinism from
scheduling or other sources. Centralization is particularly useful in conjunction
with tools that do provide some control. This includes debuggers as well as
model checkers. For example, consider using the Java debugger jdb to debug a
distributed program. jdb supports breakpoints, but a breakpoint halts only a sin-
gle process. If jdb is used to debug the centralized program, then the breakpoint
halts the entire system, which is often what the user wants.

Many distributed programs are designed to work over an insecure network,
such as the Internet, and therefore use cryptography. During model checking,
such programs are usually executed together with a program that simulates an
adversary that controls communication over the insecure network. Cryptography
causes a special problem for model checking, in addition to the issues of perfor-
mance and native methods mentioned above. Specifically, if the program sends
actual ciphertexts and does not help the adversary program determine their con-
tents, then the adversary program would be extremely inefficient. For example,
to determine whether it can decrypt an intercepted ciphertext, it would have to
attempt the decryption with every key it knows. This problem arises in testing,
as well as model checking. Pseudo-cryptographic operations enable the adversary
program to efficiently determine the contents of intercepted ciphertexts.

All three transformations rely on the assumption that the original program
is not real-time and does not use reflection in a way that would detect the
transformation’s effects.

2 Centralization

We refer to programs produced by the centralization transformation as central-
ized programs. The transformed program is equivalent to the original program
in the sense that it has essentially the same possible executions as the original
program. More precisely, (1) there exists a refinement mapping f such that,
for each execution of the original program, there exists a stuttering-equivalent
[Lam94] execution of the transformed program relative to f , and (2) vice versa.



The basic idea underlying centralization is simple. Suppose the original sys-
tem consists of a process P1 with three threads and a process P2 with two
threads. Then the centralized program creates five threads, three of which cor-
respond to threads of P1, and two of which correspond to threads of P2. We
assume that the original program does not count the total number of instances
of Thread or ThreadGroup in the process, because this would detect the effect
of the transformation.

Centralization involves four steps. The first step generates a driver class
whose main method starts up the system. The driver is generated from a startup
file supplied by the user, which contains (roughly) a list of command lines of the
form “java optionsi classi argsi” used to start the processes of the original sys-
tem. We refer to the process created by the i’th line of this file as process i. We
assume that these processes can run on a single host, i.e., different hostnames
are not hardwired in the code. We currently do not support dynamic creation
of processes, though it would not be difficult. The main method of the driver
class creates, for each i, a thread that executes the main method of classi with
arguments argsi.

The second step deals with static fields (i.e., fields that are associated with
a class rather than an instance of a class). In the original system, each process
has its own copy of each class (the copy is created when the class is loaded by
the JVM) and therefore its own copy of each static field. In the transformed
system, there is only one copy of each class. The transformation introduces
arrays to simulate the effect of having multiple copies of the class. For example,
suppose the program uses a class C that contains a static field x of type T . The
transformed version of class C declares a static field of type T[], for an array
whose elements have type T . Threads that correspond to threads of the i’th
process access only C.x[i]. To allocate and initialize the arrays, we transform
class initialization code—<clinit> and methods invoked directly or indirectly
from <clinit>—appropriately.

Instructions that access static fields are transformed to access the appropri-
ate element of the array. The index into the array is the number of the “pro-
cess” to which the thread belongs. This value cannot easily be maintained in
a global variable, because the JVM does not provide hooks that would invoke
user-supplied code at every context switch. To determine this value efficiently,
the transformation replaces all uses of Thread in non-library classes (i.e., classes
not in the Java 2 API) with CentralizedThread.1 Class CentralizedThread
extends (i.e., inherits from) Thread, declares an instance field int procNum, and
overrides the constructors of Thread with constructors that initialize procNum
appropriately. When transforming an access to a static field, the index into the
array is the value of the procNum field of the current thread; specifically, it is
((CentralizedThread)Thread.currentThread()).procNum.

The third step deals with static synchronized methods, i.e., methods that
are associated with a class rather than an instance of a class and whose bod-

1 Recall that, in Java, each thread is associated with an instance of class Thread or a
subclass of Thread.



ies implicitly start with an acquire operation on the lock associated with the
class and end with a release operation on that lock.2 In the original system,
each process has its own copy of each class and the associated lock. To simulate
this, for each class C that declares static synchronized methods, the transfor-
mation introduces a static variable C.locks that points to an array of new
objects, and, for each static synchronized method C.m, it inserts an acquire on
C.locks[((CentralizedThread)Thread.currentThread()).procNum] at the
beginning of C.m, inserts a matching release at the end of C.m, and marks C.m
as not synchronized.

The fourth step deals with the method System.exit, which terminates the
process. In the transformed program, System.exit should terminate only threads
with the same value of procNum as the invoker. Java does not directly provide a
mechanism for one thread to terminate another thread. Transforming the pro-
gram to incorporate such a mechanism is non-trivial. Currently, we transform
calls to System.exit so that they throw java.lang.ThreadDeath, which should
terminate the calling thread. This is correct if all other threads with the same
value of procNum have terminated; this condition could easily be checked dy-
namically.

The current implementation does not transform static fields of library classes.
Centralization is independent of the communication mechanisms used in the

program. It could be used in conjunction with a socket removal transformation
as well as RMI removal.

3 RMI Removal

Java RMI works roughly as follows. A process, called a server, makes an object
available to other processes, called clients, by registering the object in the RMI
registry, which is a simple database that maps strings (names of services) to
objects. A client locates a remote object by looking up a service name in the RMI
registry. A successful lookup creates a new object ostub in the client. ostub is called
a stub and contains the address of a server S and a reference to an object o in S.
The stub is an instance of an automatically generated class, called a stub class.
The stub class for class C is named C Stub. A remote reference is a reference to
a stub. For each remotely invokable method m of C, the automatically generated
method C Stub.m on the client serializes its arguments args and sends them
to server S; S unserializes the arguments, executes o.m(args) in a new thread,
serializes the return value (or exception), and sends it to ostub on the client;
the client unserializes the return value (or exception) and uses it as the result
of the RMI. As an optimization, the JVM may maintain a pool of re-usable
threads, rather than creating a new thread for each RMI. We do not describe
here how interfaces are used to indicate which methods are remotely invokable;
our transformation handles this aspect easily.

RMI removal replaces a RMI with an ordinary method invocation that sim-
ulates the RMI. The semantics of method invocation in Java is call-by-value
2 Recall that, in Java, each class and each object implicitly contains a unique lock.



for primitive data, and call-by-reference for remote references and ordinary ref-
erences. The semantics of RMI is different, because serialization followed by
unserialization effectively performs copying. Specifically, the semantics of RMI
is call-by-value for primitive data, call-by-reference for remote references (al-
though the stub object is copied, the copy refers to the same remote object,
not to a copy of the remote object), and call-by-deep-copy for local references.
“Deep copy” means that the entire subgraph of the heap reachable from the ar-
guments is copied; the copy is isomorphic to the original subgraph. In all cases,
the semantics for passing return values is the same as for passing arguments.

The transformed program uses a simulated RMI registry. Currently, the sim-
ulated RMI registry expects to find stub classes in the CLASSPATH.

Which thread should execute a remote invocation? To ensure a faithful sim-
ulation of RMI, the transformed code could create a new thread to execute each
RMI. This is easy to implement but inefficient and typically unnecessary, in the
sense that most applications are insensitive to the identity of the thread that
handles the RMI. Maintaining a pool of re-usable threads is not as easy to imple-
ment. In our current implementation, the calling thread executes the “remote”
invocation; we assume that the application does not detect this difference. While
the calling thread is executing a remote invocation of a method of an object o,
the thread’s procNum should be set to the number of the server that created
o, because that is the number of the process on which the method would be
executed in the original system. This requires an efficient mechanism for deter-
mining which process created each instance of each class with remotely-invokable
methods. Accordingly, we insert a field procNum in each such class C and modify
each constructor for C to initialize that field with the current thread’s procNum.

Implementing copying using reflection is tempting, but reflection uses native
methods, and we want to eliminate uses of native methods, so copying is imple-
mented as follows. The transformation identifies classes whose instances might
appear in arguments or return values of RMIs. For each such class C, it gener-
ates a method named C.copyRMI. Method C.copyRMI has a parameter h that
indicates which objects have already been copied; it is used to ensure that the
original subgraph and the copy are isomorphic. C.copyRMI(h) returns this if
this is a remote reference,3 and returns a deep copy of this if this is a local
reference. In the latter case, C.copyRMI(h) starts by checking whether this is in
the hash map h. If so, this has already been copied, so C.copyRMI(h) finds the
copy using h and returns it. Otherwise, C.copyRMI(h) creates a new instance o
of C, adds the mapping this 7→ o to h, copies from this to o the value of each
field of C with primitive type, recursively invokes copyRMI on the value of each
field of C with non-primitive type and stores the result in the corresponding
field of o, and returns o. Creation and initialization of o require special treat-
ment when C has a non-serializable superclass other than java.lang.Object;
we omit details of how the transformation handles this.

3 A more faithful alternative would be to clone (i.e., create a shallow copy of) the
stub, but the identity of a stub should not be significant to a normal application, so
this cloning would be unnecessary overhead.



The transformation also generates stub classes. The standard stub classes
produced by the compiler are not used by the transformed program, so we re-
use their names for our stub classes. Thus, the stub class generated for class C is
named C Stub and declares an instance field target with type C, which refers to
the object registered by the server. We still say that a reference to an instance of
a stub class is a “remote reference”. The generated method C Stub.m(args) cre-
ates new hashmaps hArgs and hRet, invokes copyRMI(hArgs) on arguments that
are local references, sets the current thread’s procNum to this.target.procNum,
and invokes this.target.m on a combination of original arguments (that are
not local references) and copies of arguments (that are local references); when
the invocation of m returns, C Stub.m(args) restores the previous value of
the current thread’s procNum, invokes copyRMI(hRet) on the return value v
of this.target.m if v is a local reference, and returns v (if v is not a local
reference) or the copy of v (if v is a local reference) to the caller.

To efficiently check whether a reference is remote, the transformation intro-
duces an interface StubInterface. All stub classes implement StubInterface.
Thus, (r instanceof StubInterface) is true iff r is a remote reference.

Java RMI allows the user to specify a security policy that controls which
remote methods may be invoked by which clients. Currently, we do not simulate
checking of security policies; in effect, we assume that all RMIs performed by
the original program are permitted by the security policy.

4 Pseudo-Cryptography

java.security provides a standard API for cryptography libraries. We assume
that the original program uses this API. The original program is transformed
by replacing all occurrences of java.security with PseudoCrypto; for example,
java.security.Signature.sign is replaced with PseudoCrypto.Signature.sign.

The central issue in designing PseudoCrypto is the representation of cipher-
texts. To solve the problem discussed in Section 1, the obvious approach is to
use a symbolic representation. For example, the result of encrypting a plaintext
t with a key k would be an object containing t and k. Given such a symbolic
“ciphertext”, the adversary program can trivially determine the key used to cre-
ate it. This approach is standard in model checking of security protocols with
traditional model checkers such as FDR and Murφ [Low96,MMS97].

However, in the java.security API, ciphertexts are not an abstract data
type. Ciphertexts are byte arrays, and this representation is visible to the ap-
plication. Transforming the application to accommodate a different representa-
tion of ciphertexts would be difficult. Our approach is to maintain byte arrays
and a symbolic representation. The symbolic representation is used only within
PseudoCrypto and the adversary program; it is not visible to the application.
A hash map is used to map the byte array representation of a ciphertext to its
symbolic representation. A mapping is inserted in the hash map every time a
ciphertext is created. The adversary program looks up intercepted ciphertexts
in the hash map.



It is the responsibility of the author of the adversary program to simulate
an adversary that controls an insecure network. For example, the author must
determine which cryptographic keys stored in the hash table are known to the
adversary.

If the original cryptographic operations are computed in the transformed
program, then this transformation does not affect the contents of the byte arrays
seen by the application and hence does not affect the behavior of the application.

Computing cryptographic operations during state-space exploration is often
impractical, because of performance and native methods, as discussed in Section
1. Therefore, PseudoCrypto computes “pseudo-cryptographic” operations that
maintain the byte array and symbolic representations, as above, except the byte
arrays are filled with pseudo-random data, not genuine ciphertexts. This change
in the contents of the byte arrays could affect the behavior of the application,
e.g., if the application does not trust its cryptography library and therefore
checks whether ciphertexts have the expected format. Typical applications treat
the byte arrays as “atomic values”, merely passing them around and then using
them as arguments to other cryptographic operations. Such applications are
not affected by this transformation. Currently, manual inspection of the original
program is used to check whether this could happen. A conservative automatic
check based on static analysis could be developed.

Currently, we assume that all operations that produce ciphertexts involve
pseudo-random initialization, so invoking an operation twice on the same ar-
guments produces different ciphertexts. Operations that are “functional” (i.e.,
whose return value depends only on the arguments) could easily be accommo-
dated using memoization [CLR90].

A separate issue is that the adversary program needs to efficiently deter-
mine which parts of intercepted “messages” might be ciphertexts. Currently,
the author of the adversary program must deal with this. We are working on a
static program analysis, based on points-to escape analysis [WR99], that aims
to automate this and some other aspects of producing the adversary program.

Package PseudoCrypto currently supports commonly used methods for gen-
eration of public-private key pairs and generation and verification of digital sig-
natures. Support for symmetric-key cryptography can easily be added.

5 Implementation and Case Study

The implementation of all three transformations is mostly complete. The im-
plementation transforms bytecode using the Byte Code Engineering Library
(BCEL), formerly called JavaClass [Dah99]. We hope to incorporate these trans-
formations into Bandera [CDH+00], which provides an excellent framework for
model checking and the associated program analyses. The first public release of
Bandera is expected soon.

The first major case study will be a secure and scalable distributed voting
system, whose design is described in [MR98]. Students implemented that design



in Java as a course project. We plan to model check it using the above transfor-
mations and Java PathFinder [BHPV00]. Java PathFinder is not yet available
to us, but its first public release is imminent. We anticipate completion of this
case study before SPIN 2001 and expect to present the results there.

Acknowledgments. Ziyi Zhou and Dezhuang Zhang implemented centralization.
Srikant Sharma and Kartik Gopalan implemented RMI removal.

References

[BHPV00] Guillaume Brat, Klaus Havelund, Seung-Joon Park, and Willem Visser.
Model checking programs. In IEEE International Conference on Automated
Software Engineering (ASE), September 2000.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2:39–59, February 1984.

[CDH+00] James C. Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu,
Robby, Shawn Laubach, and Hongjun Zheng. Bandera: Extracting finite-
state models from Java source code. In Proc. 22nd International Conference
on Software Engineering (ICSE), June 2000.

[CLR90] Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction to
Algorithms. MIT Press and McGraw-Hill, 1990.

[Dah99] Markus Dahm. Byte code engineering with the JavaClass API. Techni-
cal Report B-17-98, Institut für Informatik, Freie Universität Berlin, 1999.
Available via http://www.inf.fu-berlin.de/˜dahm/JavaClass/.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872–923, May 1994.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR. In Proc. Workshop on Tools and Algorithms for The
Construction and Analysis of Systems (TACAS), volume 1055 of Lecture
Notes in Computer Science, pages 147–166. Springer-Verlag, 1996.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of
cryptographic protocols using Murφ. In Proc. 18th IEEE Symposium on
Research in Security and Privacy, pages 141–153. IEEE Computer Society
Press, 1997.

[MR98] Dahlia Malkhi and Michael Reiter. Secure and scalable replication in pha-
lanx. In 17th IEEE Symposium on Reliable Distributed Systems (SRDS),
pages 51–60, October 1998.

[PSSD00] David Y.W. Park, Ulrich Stern, Jens U. Skakkebaek, and David L. Dill.
Java model checking. In Proc. First International Workshop on Automated
Program Analysis, Testing, and Verification, 2000.

[Sto00] Scott D. Stoller. Model-checking multi-threaded distributed Java programs.
In Proc. 7th Int’l. SPIN Workshop on Model Checking of Software, volume
1885 of Lecture Notes in Computer Science, pages 224–243. Springer-Verlag,
August 2000.

[WR99] John Whaley and Martin Rinard. Compositional pointer and escape analysis
for Java programs. In Proc. ACM Conference on Object-Oriented Systems,
Languages and Applications (OOPSLA), pages 187–206. ACM Press, Octo-
ber 1999. Appeared in ACM SIGPLAN Notices 34(10).


