
Solving Regular Tree Grammar Based Constraints?

Yanhong A. Liu1, Ning Li2, and Scott D. Stoller1

1 Computer Science Dept., State University of New York, Stony Brook, NY 11794
2 Computer Science Dept., University of Wisconsin, Madison, WI 53706

fliu,stollerg@cs.sunysb.edu, ning@cs.wisc.edu

Abstract. This paper describes the precise speci�cation, design, analy-
sis, implementation, and measurements of an eÆcient algorithm for solv-
ing regular tree grammar based constraints. The particular constraints
are for dead-code elimination on recursive data, but the method used for
the algorithm design and complexity analysis is general and applies to
other program analysis problems as well. The method is centered around
Paige's �nite di�erencing, i.e., computing expensive set expressions incre-
mentally, and allows the algorithm to be derived and analyzed formally
and implemented easily. We propose higher-level transformations that
make the derived algorithm concise and allow its complexity to be an-
alyzed accurately. Although a rough analysis shows that the worst-case
time complexity is cubic in program size, an accurate analysis shows that
it is linear in the number of live program points and in other parame-
ters, including mainly the arity of data constructors and the number of
selector applications into whose arguments the value constructed at a
program point might
ow. These parameters explain the performance of
the analysis in practice. Our implementation also runs two to ten times
as fast as a previous implementation of an informally designed algorithm.

1 Introduction

Regular tree grammar based methods are important for program analysis, es-
pecially for analyzing programs that use recursive data structures [22, 29, 17, 37,
25]. Basically, a set of grammar-based constraints is constructed from the pro-
gram and a user query and is then simpli�ed according to a set of simpli�cation
rules to produce the solution. Usually, the constraints are constructed in linear
time in the size of the program, and the eÆciency of the analysis is determined
by the constraint-simpli�cation algorithms.

This paper describes the precise speci�cation, design, analysis, implementa-
tion, and measurements of an eÆcient algorithm for solving regular tree grammar
based constraints. The particular constraints are for dead-code elimination on
recursive data, but the method used for the algorithm design and complexity
analysis is general and applies to other program analyses as well.

The method is centered around Paige's �nite di�erencing [31, 34, 32], i.e.,
computing expensive set expressions incrementally. It starts with a �xed-point
speci�cation of the problem, then applies (1) dominated convergence at the
higher level [8] to transform �xed-point expressions into loops, (2) �nite di�er-
encing [34, 32] to transform expensive set expressions in loops into incremental

? This work is supported in part by ONR under grants N00014-99-1-0132, N00014-
99-1-0358, and N00014-01-1-0109, by NSF under grants CCR-9711253 and CCR-
9876058, and by a Motorola University Partnership in Research Grant.

operations, and (3) real-time simulation at the lower level [33, 7] to transform
sets and set operations to use eÆcient data structures. This method allows the
algorithm to be derived and analyzed formally and implemented easily.

We �rst give a precise �xed-point speci�cation of the problem. We then
transform it into a loop and apply �nite di�erencing completely systematically,
making all the steps explicit. At the higher level, we study new transformations
that make the derived algorithm concise and allow its complexity to be analyzed
accurately. The complexity analysis captures the exact contribution of each pa-
rameter. In particular, although a rough analysis shows that the worst-case time
complexity is cubic in program size, an accurate analysis shows that it is linear
in the number of live program points and in other parameters, including mainly
the arity of data constructors and the number of selector applications into whose
arguments the value constructed at a program point might
ow. These param-
eters explain the performance of the analysis in practice. At the lower level, we
show that real-time simulation using based representation [33] applies only par-
tially to our application, and we discuss data structure choices and the trade-o�s.
In particular, our accurate complexity analysis at the higher-level suggests that
combination with unbased representation works well in our application, and our
experiments support this. Our implementation runs two to ten times as fast as
a previous implementation of an informally designed algorithm [25].

The main contributions of this work include

(1) the application of a powerful, systematic transformational design method-
ology that leads from a precise high-level �xed-point speci�cation of a non-
trivial problem to a highly eÆcient algorithmic solution,

(2) the identi�cation of parameters in problem instances and the precise expres-
sion of the algorithm complexity in terms of these parameters, and

(3) the implementation and experiments that help con�rm the accuracy of the
complexity analysis and compare the eÆciency of the algorithm with that of
an informally designed algorithm.

It is not the goal of this paper to show a drastically new algorithm or algorithm
design method. Instead, since program analysis is a central recurring task in
all kinds of program manipulation, and static analysis is naturally described as
computing �xed points, the goal is to show the systematic nature of the design
method in the hope that it can be more widely used for developing analysis algo-
rithms, to allow easier correctness proof, algorithm understanding, performance
analysis and comparison, and implementation. At the same time, through such
usage, one may further improve the design method, for example, as we study
the transformations and accurate complexity analyses enabled by Theorem 1.

2 Problem speci�cation

The speci�cation from the application. We �rst look at the grammar constraints
and the simpli�cation algorithm for the dead-code elimination application in [25].1

There, regular tree grammars, called liveness patterns, represent projection func-
tions that project out components of values and parts of programs that are of
interest.

1 The presentation here includes minor notational changes and simpli�cations. In par-
ticular, in [25], the condition in the �rst production for a binding expression is
unnecessary.

The grammar constraints constructed from a given program or given in a
user query consist of productions of the following standard forms:

N! d dead form, where d is a special constant
N! l live form, where l is a special constant
N! c(N1; :::; Nk) constructor form, where c is from a set of constructors and

may have arity 0
and the following extended forms:

N 0!N copy form
N 0! c�1i (N) selector form
N 0! [N]R0 conditional form,

where R0 is of forms l, c(N1; :::; Nk), and N 00. Symbols d, l, and c's are ter-
minals, and symbols N , N1; :::; Nk, N

0, N 00 are nonterminals. The extended
forms are simpli�ed away using the algorithm below, where R is of forms l and
c(N1; :::; Nk), which are called good forms.

input: productions P of standard forms and extended forms;
repeat

if P contains N 0!N and N!R, add N 0!R to P ;
if P contains N 0! c�1i (N) and N! l, add N 0! l to P ;
if P contains N 0! c�1i (N) and N! c(N1; :::; Nk), add N 0!Ni to P ;
if P contains N 0! [N]R0 and N!R, add N 0!R0 to P ;

until no more productions can be added;
output: the resulting productions in P that are of good forms.

(1)

Throughout the paper, we use R0 to denote right-side forms l, c(N1; :::; Nk), and
N 00. We use R to denote right-side good forms l and c(N1; :::; Nk); when R is a
variable whose value could be an N form, it is accompanied by a test to ensure
that its value is a good form.

In the application, extended forms are constructed from programs: for each
program construct below on the left, the corresponding productions on the right
are constructed, where a nonterminal associated with (at the left upper corner
of) a program point denotes the liveness pattern for the values at that point.

function de�nition:

f(N1:v1; :::;
Nn:vn)

�
= e Ni!N 0

i for i = 1::n and for each occurrence of
N0
i
:vi in e

data construction:
N:c(N1:e1; :::;

Nn :en) Ni! c�1i (N) for i = 1::n

selector application:
N:c�1i (N1:e) N1! [N]c(

i�1
z }| {

d; :::; d; N;

n�i
z }| {

d; :::; d) for c of arity n
tester application:
N:c?(N1:e) N1! [N]c(

n
z }| {

d; :::; d) for each possible c of arity n
primitive operation:
N:p(N1:e1; :::;

Nn:en) Ni! [N]l for i = 1::n
conditional:
N:if N1:e1 then

N2:e2 else
N3:e3 N1! [N]l; N2!N; N3!N

binding:
N:let u = N1:e1 in N2:e2 N1!N 0

1 for each free occurrence of
N01:u in e2, N2!N

function application:
N:f(N1:e1; :::;

Nn:en)

where f(N
0

1:v1; :::;
N0n:vn) =

N0: e

Ni! [N]N 0
i for i = 1::n, N 0!N

Standard forms are given in user queries to indicate program points of interest
and liveness patterns of interest at those points. For example, a user query N! l
indicates that the entire value at pointN is of interest. Simpli�cation aims to add
standard forms that capture the e�ects of extended forms. After simpli�cation,
program points whose associated nonterminals do not have a right-side good form
are identi�ed as dead. Appendix A gives a small example program together with
the constructed grammar, a user query, and the simpli�cation result.

All the production forms here are the same as or similar to those studied by
many people. For example, standard forms are as in [14, 22, 9], copy forms are
common in grammars, selector forms are �rst seen in [22], and conditional forms
have counterparts in [3, 17]. Overall, the constraints here extend those by Jones
and Muchnick [22].

Notation. We use a set-based language. It is based on SETL [41, 42] extended
with a �xed-point operation by Cai and Paige [8]; we allow sets of heterogeneous
elements and extend the language with pattern matching. Primitive data types
are sets, tuples, and maps, i.e., binary relations represented as sets of 2-tuples.
Their syntax and operations on them are summarized below:

fX1; :::; Xng a set with elements X1,...,Xn

[X1; :::; Xn] a tuple with elements X1,...,Xn in order
f[X1; Y1]; :::; [Xn; Yn]g a map that maps X1 to Y1, ..., Xn to Yn
fg empty set
S [T; S � T union and di�erence, respectively, of sets S and T

S with X; S less X S [fXg and S � fXg, respectively
S � T whether S is a subset of T
X in S; X notin S whether or not, respectively, X is an element of S
#S number of elements in set S
T (I) I'th component of tuple T
dom M domain of map M , i.e., fX : [X; Y] in Mg
MfXg image set of X under map M , i.e., fY : [Z; Y] in M j Z = Xg
inv M inverse of map M , i.e., f[Y;X] : [X; Y] in Mg

We use the notation below for pattern matching against constants and tuples.
The second returns false if X is not a tuple of length n; otherwise, it binds Yi to
the ith component of X if Yi is an unbound variable, and otherwise, recursively
tests whether the ith component of X matches Yi, until either a test fails or all
unbound variables in the pattern become bound.

X of c, where c is a constant whether X is constant c
X of [Y1; :::; Yn] whether X matches pattern [Y1; :::; Yn]

We use the notation below for set comprehension. Yi's enumerate elements of all
Si's; for each combination of Y1; :::; Yn, if the Boolean value of expression Z is
true, then the value of expression X forms an element of the resulting set. Each
Yi can be a tuple, in which case an enumerated element of Si is �rst matched
against it.

fX : Y1 in S1; :::; Yn in Sn j Zg set former
fX : Y1 in S1; :::; Yn in Sng abbreviation of fX : Y1 in S1; :::; Yn in Sn j trueg
fY in S j Zg abbreviation of fY : Y in S j Zg

LFP� ;X(F (Y); Y) denotes the minimum element Y , with respect to partial
ordering �, that satis�es the condition X � Y and F (Y) = Y . We abbreviate
X := X op Y as X op := Y . Also, we abbreviate X1 := Y ; :::;Xn := Y as
X1; :::; Xn := Y .

A set-based �xed-point speci�cation. We represent the right-side R0 forms as
follows:

l as l, where l is a special constant
c(N1; :::; Nk) as [c; [N1; :::; Nk]]
N as N

(2)

and represent the productions as follows:

N 0!R0 as [N 0; representation of R0]
N 0! c�1i (N) as [N 0; c; i; N]
N 0! [N]R0 as [N 0; N; representation of R0]

(3)

This representation allows us to distinguish all the production forms by simple
pattern matching against constants and tuples of di�erent lengths. We also need
to tell whether an R0 form is an R form or an N form, so for convenience, we
de�ne:

R0 isR = R0 of l or R0 of [C; T]
R0 isN = not (R0 of l or R0 of [C; T])

(4)

The simpli�cation algorithm in (1) can be speci�ed as follows. The input is a
set P of productions in the new representation. The repeat-loop computes the
minimum set Q that satis�es P � Q and F (Q) � Q, where F (Q) captures,
line-by-line, the four rules in the loop body:

F (Q) = f[N 0; R] : [N 0; N] in Q; [N;R] in Q j R isRg [
f[N 0; l] : [N 0; C; I;N] in Q; [N; l] in Qg [
f[N 0; T (I)] : [N 0; C; I;N] in Q; [N; [C; T]] in Qg [
f[N 0; R0] : [N 0; N; R0] in Q; [N;R] in Q j R isRg

(5)

Since F (Q) � Q i� F (Q) [Q = Q, the loop computes

LFP� ;P (F (Q)[Q; Q) (6)

The output is the set O of resulting productions whose right side is a good form:

O = f[N;R] in LFP� ;P (F (Q) [Q; Q) j R isRg (7)

Note that G = �Q:F (Q)[Q is monotone, i.e., if Q1 � Q2 then G(Q1) � G(Q2),
and is in
ationary at P , i.e., P � G(P).

The representation of constraints using SETL tuples is immaterial to the
problem. However, eÆcient algorithms for simplifying the constraints require
the use of auxiliary maps, as discussed in Section 4; both for discovering such
auxiliary expressions and for systematically manipulating them, uniform nota-
tion helps.

3 Approach

The method has three steps: (1) dominated convergence, (2) �nite di�erencing,
and (3) real-time simulation.

Dominated convergence [8] transforms a set-based �xed-point speci�cation
into a while-loop. The idea is to perform a small update operation in each iter-
ation. The �xed-point expression LFP� ;P (F (Q) [Q; Q) in (7) is transformed
into the following while-loop, making use of �Q:F (Q)[Q being monotone and
in
ationary at P :

Q := P ;
while exists p in F (Q)�Q

Q with := p;
(8)

This code is followed by

O = f[N;R] in Q j R isRg; (9)

Finite di�erencing [34, 32] transforms expensive set operations in a loop into
incremental operations. The idea is to replace expensive expressions exp1, ...,
expn in a loop LOOP with fresh variables E1, ..., En, respectively, and maintain
the invariants E1 = exp1, ..., En = expn by inserting appropriate initializa-
tions or updates to E1, ..., En at each assignment in LOOP . We denote the
transformed loop as

�E1; :::; En h LOOP i

For our program (8) and (9) from Step 1, expensive expressions, i.e., non-
constant-time expressions here, are the one that computes O and others that
are needed for computing F (Q)�Q. We use fresh variables to hold their values.
These variables are initialized together with the assignment Q := P and are
updated incrementally as Q is augmented by p in each iteration. Liu [23] gives
references to much work that exploited related ideas.

Real-time simulation [33, 7] selects appropriate data structures for represent-
ing sets so that operations on them can be implemented eÆciently. The idea is
to design sophisticated linked structures based on how sets and set elements are
accessed, so that each operation can be performed in constant time with at most
a constant (a small fraction) factor of overall space overhead.

4 Finite di�erencing

Identifying expensive subexpressions. The output O in (9) and expensive subex-
pressions used to compute O need to be computed incrementally in the loop.
The latter expressions are E1 to E4, one for each of the sets in F (Q) in (5), and
W , the workset:

E1 = f[N 0; R] : [N 0; N] in Q; [N;R] in Q j R isRg
E2 = f[N 0; l] : [N 0; C; I;N] in Q; [N; l] in Qg
E3 = f[N 0; T (I)] : [N 0; C; I;N] in Q; [N; [C; T]] in Qg
E4 = f[N 0; R0] : [N 0; N;R0] in Q; [N;R] in Q j R isRg
W = F (Q)�Q = E1 [E2 [E3 [E4�Q

(10)

Thus, the overall computation becomes

�O;E1; E2; E3; E4;W h Q := P ;
while exists p in W

Q with := p; i
(11)

Discovering auxiliary expressions. To compute E1 to E4 incrementally with
respect to Q with := p, the following auxiliary expressions E11 to E41 are
maintained. Expression E11 maps N to N 0 if there is a production of form
N 0!N . Expression E21 maps N to N 0 and expression E31 maps [c;N] to
[N 0; i] if there is a production of the form N 0! c�1i (N). Expression E41 maps N
to [N 0; R0] if there is a production of form N 0! [N]R0.

E11 = f[N;N 0] : [N 0; N] in Q j N isNg
E21 = f[N;N 0] : [N 0; C; I;N] in Qg
E31 = f[[C;N]; [N 0; I]] : [N 0; C; I;N] in Qg
E41 = f[N; [N 0; R0]] : [N 0; N;R0] in Qg

(12)

These expressions are introduced for di�erentiating E1 to E4, respectively. For
example, E11 is introduced for di�erentiating E1 in (10) after adding an element
[N;R] in Q|we need to add [N 0; R] to E1 for all [N 0; N] in Q, i.e., for all N 0

in E11fNg. These expressions can be obtained systematically based on the set
formers in (10): after adding an element corresponding to one enumerator, create
based on the other enumerator a map from variables that are already bound
to variables yet unbound. For example, consider E3 and adding an element
[N; [C; T]] in Q. Then, for [N 0; C; I;N] in Q, variables C and N are bound, and
N 0 and I are not. So, we create a map from [C;N] to [N 0; I] for each [N 0; C; I;N]
in Q, which is E31. Now, the overall computation becomes

�O;E1; E2; E3; E4;W;E11; E21; E31; E41 h Q := P ;
while exists p in W

Q with := p; i
(13)

These auxiliary maps provide, at a high level, the indexing needed to support
eÆcient incremental updates.

Transforming loop body. We apply �nite di�erencing to the loop body. This
means that we di�erentiate O, E1 to E4, W , and E11 to E41 with respect to
Q with := p in (13):

�O;E1; E2; E3; E4;W;E11; E21; E31; E41 h Q with := p; i (14)

Based on the elements added toW , which is through E1 to E4, p can be of forms
[N; l], [N; [C; T]], and [N 0; N] where N isN . For each form of p, we determine
how the sets O, E1 to E4, and E11 to E41 are updated. Also, for each of the
forms, we do two things to updateW . First, with anything added into E1 to E4,
if it is not in Q, then it is added to W . Second, remove p from W . We obtain

the following complete code for the loop body:

Q with := p;
W less := p;
case p of

[N;R]; where R isR : //if p is N!R
O with := [N;R];
E1 [:= f[N 0; R] : N 0

in E11fNgg; //add N 0!R for all N 0!N

W [:= f[N 0; R] : N 0
in E11fNg j [N 0; R] notin Qg;

E4 [:= f[N 0; R0] in E41fNgg; //add N 0!R0 for all N 0! [N]R0

W [:= f[N 0; R0] in E41fNg j [N 0; R0] notin Qg;
[N; l] : //if p is N! l

E2 [:= f[N 0; l] : N 0
in E21fNgg; //add N 0! l for all N 0!C

�1
I
(N)

W [:= f[N 0; l] : N 0
in E21fNg j [N 0; l] notin Qg;

[N; [C; T]] : //if p is N!C(T (1); :::; T (k))

E3 [:= f[N 0; T (I)] : [N 0; I] in E31f[C;N]gg; //add N 0! T (I) for all N 0!C
�1
I
(N)

W [:= f[N 0; T (I)] : [N 0; I] in E31f[C;N]g j [N 0; T (I)] notin Qg;
[N 0; N]; where N isN : //if p is N 0!N

E1 [:= f[N 0; R] : R in OfNgg; //add N 0!R for all N!R

W [:= f[N 0; R] : R in OfNg j [N 0; R] notin Qg;
E11with := [N;N 0];

(15)

These updates are keys for achieving high eÆciency: after adding a new produc-
tion, we consider only productions that are directly a�ected.

Initialization. Sets O, E1 to E4, W , and E11 to E41 need to be initialized
together with Q := P in (13). To do this, we add each p from P into Q one by
one, and update each of these sets incrementally as in the loop body. We have
the same four cases of p as in the loop body (15) and the cases for two additional
forms of p, namely [N 0; C; I;N] and [N 0; N;R]. We obtain the following complete
code for initialization:

O;E1; E2; E3; E4;W; E11; E21; E31; E41; Q := fg;
for p in P

Q with := p;
W less := p;
case p of

same four cases of p as in the loop body

[N 0; C; I;N] : //if p is N 0!C
�1
I
(N)

E2 [:= f[N 0; l] : l in QfNgg; //add N 0! l for all N! l

W [:= f[N 0; l] : l in QfNg j [N 0; l] notin Qg;
E21with := [N;N 0];
E3 [:= f[N 0; T (I)] : [C; T] in QfNgg; //add N 0! T (I) for all N!C(T (1); :::; T (k))
W [:= f[N 0; T (I)] : [C; T] in QfNg j [N 0; T (I)] notin Qg;
E31with := [[C;N]; [N 0; I]];

[N 0; N;R0] : //if p is N 0! [N]R0

E4 [:= f[N 0; R0] : R in QfNg j R isRg; //add N 0!R0 for all N!R

W [:= f[N 0; R0] : R in QfNg j R isR; [N 0; R0] notin Qg;
E41with := [N; [N 0; R0]];

(16)

Dead-code elimination. Since only O is the desired output, it is easy to see that
E1 to E4 are not needed, i.e., they are dead. Furthermore, Q can be eliminated
using the equivalences:

[N;R] in Q; where R isR () [N;R] in O

[N 0; N] in Q; where N isN () [N;N 0] in E11

We obtain the following complete algorithm:

O;W;E11; E21; E31; E41 := fg;
for p in P
W less := p;
case p of

same four cases of p as in the loop body
[N 0; C; I;N] :

W [:= f[N 0; l] : l in OfNg j [N 0; l] notin Og;
E21 with := [N;N 0];
W [:= f[N 0; T (I)] : [C; T] in OfNg j [T (I); N 0] notin E11g;
E31 with := [[C;N]; [N 0; I]];

[N 0; N;R0] :
W [:= f[N 0; R0] : R in OfNg j if R0 isR then [N 0; R0] notin O else [R0; N 0] notin E11g;
E41 with := [N; [N 0; R0]];

while exists p in W
W less := p;
case p of

[N;R]; where R isR :
O with := [N;R];
W [:= f[N 0; R] : N 0

in E11fNg j [N 0; R] notin Og;
W [:= f[N 0; R0] in E41fNg j if R0 isR then [N 0; R0] notin O else [R0; N 0] notin E11g;

[N; l] :
W [:= f[N 0; l] : N 0

in E21fNg j [N 0; l] notin Og;
[N; [C; T]] :

W [:= f[N 0; T (I)] : [N 0; I] in E31f[C;N]g j [T (I); N 0] notin E11g;
[N 0; N]; where N isN :

W [:= f[N 0; R] : R in OfNg j [N 0; R] notin Og;
E11 with := [N;N 0];

(17)

where W [:= fX : Y in S j Zg is implemented as

for Y in S

if Z then

W with := X;
(18)

Complexity analysis. For now, we assume that set initialization S := fg, retrieval
of an arbitrary element in a set by for or while or an indexed element by T (I),
element addition and deletion S with=less X , and associative access X notin S
andMfXg each takes O(1) time; Section 6 describes how to achieve this. Other
operations clearly take O(1) time.

Besides input size #P and output size #O, i.e., the number of productions in
input and output, respectively, we use the following parameters. The meanings
of these parameters are based on how the constraints were constructed. Note
that sets E11 to E41 only grow during the computation, so we consider their
values at the end.

{ Let a be the maximum of #E21fNg, #E31f[C;N]g, and #E41fNg for any
N and C.
Meaning: In the application, a is the maximum of the arities of construc-
tors, primitive functions, and user-de�ned functions and the number of pos-
sible outermost constructors in the argument of a tester (such as null). In
fact, #E21fNg and #E31f[C;N]g are bounded by the maximum arity of
constructors only.

{ Let h be the maximum number of nonterminals to the left of a nonterminal:

h = max N in dom E11#E11fNg (19)

Meaning: In the application, for productions built from programs,
#E11fNg � 2 for any N (2 for a conditional expression, 1 for a binding

expression and a function call, 0 for others). However, E11 and h may grow
during simpli�cation.

{ Let g be the maximum number of good forms a nonterminal goes to:

g = max N in dom O#OfNg (20)

Meaning: In the application, a good form is either l or the right side of
a constructor form constructed at the argument of a selector or a tester,
and testers together generate no more than a constructor forms. Thus, g
corresponds to the maximum of a and the maximum number of selector
applications into whose arguments the value constructed at a program point
might
ow.

{ Let r be the size of the domain of O:

r = #dom O (21)

Meaning: In the application, r is the number of live program points. Note
that #O � r � g.

{ Let n be the number of nonterminals in P .
Meaning: In the application, n is the number of program points plus the
number of nonterminals introduced in a user query. A user query usually has
a small number of productions, and at most a+1 productions are constructed
at each program point, so usually #P � n � a.
Parameter n is not used in the precise complexity analysis, but it best cap-
tures program size. Also, n bounds h, and #P bounds g; the latter is because
all good forms are in the given productions, so there are at most #P of them.

The complexity is the sum of (i) a constant for each element considered for
addition to W , as in all the assignments to W , (ii) a constant for each element
in W , as in the iterations, and (iii) a constant for each element in P , as in the
initialization. Clearly, (ii) is bounded by (i), and (iii) is O(#P). The total for
(i) is the sum of (c1) to (c8) below, where (c1) to (c5) are for cases 1 to 4 in
both the iteration and initialization, and (c6) to (c8) are for cases 5 and 6 in the
initialization, explained below.

cases 1-3: � [N;R] in O#E11fNg (c1)
� [N;l] in O#E21fNg (c2)
� [N;[C;T]] in O#E31f[C;N]g (c3)
� [N;R] in O#E41fNg (c4)

case 4: � [N;N0] in E11#OfNg (c5)
case 5: � [N0;C;I;N] in P #fl in OfNgg (c6)

� [N0;C;I;N] in P #f[C; T] in OfNgg (c7)
case 6: � [N0;N;R0] in P #fR in OfNgg (c8)

For each p of form [N;R], all N 0 in E11fNg and all [N 0; R0] in E41fNg are
considered; since each p of form [N;R] is added to set O, the total complexity
for case 1 is (c1) plus (c4). The other cases are similar.

Using the parameters introduced above, we have

(c1) � h �#O (c2) � a � r (c3) � a �#O (c4) � a �#O (22)

Note that
(c1) = (c5) = � N in dom O#E11fNg �#OfNg (23)

A second way of estimating (c1) and (c5) is

(c1) = (c5)� #f[N;N 0] in E11 j N in dom Og � g by (23)
= #f[N 0; N] in Q j N in dom Og � g by de�nition of E11
� (#f[N 0; N] in P j N in dom Og+ those of form [N 0; N] in P

#f[N 0; N] in E3 j N in dom Og+ those of form [N 0; N] in E3
#f[N 0; N] in E4 j N in dom Og) � g those of form [N 0; N] in E4 where N isN

these three contribute all of form [N 0; N] in Q
� (r + (c3) + (c4)) � g
� (r + a �#O + a �#O) � g

(24)

Therefore, (c1) and (c5) are O(#O �g �a). Thus, the sum of (c1) through (c5) is
O(#O�(h+a)), using the �rst way of estimating (c1) and (c5), and O(#O�g�a),
using the second way. Also,

(c6), (c7), (c8) � g �#P (25)

Thus, the total complexity of (i) to (iii) is O(#O�min(h+a; g�a)+#P �g+#P),
which is

O(#O �min(h+ a; g � a) + #P � g) (26)

since #O 6= 0 and thus g 6= 0 in the application.
In the application, productions in P with right sides in good forms are from

the user query; if we assume there is a constant number of them, then (c6) to
(c8) are O(#P), and the total complexity is O(#O �min(h+ a; g � a) + #P).

5 Higher-level design and analysis

Avoiding duplication of code for initialization. Algorithm (17) duplicates the
code in the loop body in the initialization. Cai and Paige [8] proposed a high-
level transformation that can drastically simplify the initialization and do all
the work in the loop body. By Theorem 5 in [8], the �xed-point expression (6)
is equivalent to

LFP� ;fg(P [F (Q) [Q; Q) (27)

which can be transformed into

Q := fg;
while exists p in P [F (Q)�Q

Q with := p;
(28)

This merges the initialization for Q := P into the iteration and thus avoids
code duplication. However, this merging reduces the accuracy of the complex-
ity analysis. The complexity analysis is similar to that in Section 4. The total
complexity is again O(#O � min(h + a; g � a) + #P � g). We can not obtain
O(#O �min(h+ a; g � a)+#P) here, even if we have the additional assumption
about the user query, because (c6) to (c8) are now from the main loop, where g
is not bounded by a constant.

We propose a general method that not only eliminates code duplication com-
pletely but also yields overall even smaller code and more accurate complexity.
The method is to merge into the main loop only the cases in the initialization
that must be handled in the main loop, not the cases that are needed only in
initialization. Our method is supported by the following theorem.

Theorem 1. For all P0 � P , LFP� ;P0((P � P0) [F (Q)[Q;Q) exists if and
only if LFP� ;P (F (Q) [Q;Q) exists, and if they exist, they are equal.

Proof. LFP� ;P0((P� P0) [F (Q) [Q;Q) = LFP� ;fg(P0 [(P� P0) [F (Q) [Q;Q)
= LFP� ;fg(P [F (Q) [Q;Q) = LFP� ;P (F (Q) [Q;Q): ut

We apply Theorem 1 with P0 = fp in P j p of [N 0; C; I;N] or p of [N 0; N;R0]g.
The �xed-point expression (6) is equivalent to LFP� ;P0(P �P0[F (Q)[Q; Q).
Transforming this into a while-loop and applying �nite di�erencing yields the
following complete algorithm, which has the same iteration as in algorithm (17)
and initializes O and E11 to fg, E21 through E41 for p in P0 as in (17), and W
to P � P0:

O;W;E11; E21; E31; E41 := fg;
for p in P

case p of

[N 0; C; I;N] :
E21 with := [N;N 0];
E31 with := [[C;N]; [N 0; I]];

[N 0; N;R0] :
E41 with := [N; [N 0; R0]];

other :
W with := p;

same iteration as in algorithm (17)

(29)

The complexity analysis is the same as in Section 4, except that the corre-
sponding (c6) to (c8) in (i) equal zero here, and (ii) here is bounded by the sum
of (ii) and (iii) there. Thus, the total complexity is

O(#O �min(h+ a; g � a) + #P) (30)

which is better than the complexity (26) obtained for (17).

Handling multiple queries. In the application, there can be many queries about
a program. We can transform the above algorithm, so that initialization is done
once in linear time in the size of the program, and simpli�cation after each query
takes time roughly linear in the number of live program points. In particular,
initialization can be done concurrently with the construction of the productions.

Let P0 be the set of productions constructed from the given program; it
contains only productions of copy, selector, and conditional forms. Let P1 be the
set of productions from a user query; they are all in good forms. Thus, based
on Theorem 1, initialization using P0 followed by simpli�cation using P1 can be
speci�ed as

LFP� ;P0(P1 [F (Q) [Q; Q) (31)

which is transformed into

Q := P0;
while exists p in P1 [F (Q)�Q

Q with := p;
(32)

Applying �nite di�erencing in a similar way as above yields an algorithm that
takes

O(#O �min(h+ a; g � a)) (33)

time for simpli�cation after a query.

An optimization to conditional forms. For production p of form [N;R] where
R isR, we can add the following updates at the end of handling that form, so
as to avoid unnecessarily enabling any conditional form more than once:

Q � := f[N 0; N;R0] in Qg
E41 � := f[N; [N 0; R0]] in E41g

Then the assignment to Q will be deleted by dead-code elimination, and the
assignment to E41 is simply E41fNg := fg. This optimization can be applied
to all algorithms derived above.

For complexity analysis, we only need to change formula (c4) to

� N in dom O #E41fNg (c4')

Therefore, (c4') � a�r. This does not change the overall asymptotic complexities.
For handling multiple queries, since this optimization updates E41 in the

iteration, we need to preserve E41 after the initialization. To do this, we simply
use a new set E410 to function as E41 in the iteration: insert E410 := E41
immediately before the iteration, which can be a pointer assignment, and in the
iteration, replace all uses of E41 by E410. This does not change the complexity.

6 Lower-level implementation and experiments

We consider implementation of the two best algorithms, (29) for one query and
the algorithm obtained from (32) for multiple queries. The same data structures
for representing sets are suitable for both. All sets involved are clearly �nite
based on the analysis in Sections 4 and 5.

Low-level set operations. All the sets constructed in our algorithms are in fact
maps, i.e., sets of pairs. To make this explicit, we do the following three groups
of replacements in order:

1) while exists Z in M

:::Z:::

with while exists X in dom M

while exists Y in MfXg
:::[X; Y]:::

2) M with := [X; Y] with MfXg with := Y

M less := [X; Y] with MfXg less := Y

[X;Y] notin M with Y notin MfXg
3) S with := X with if X notin S

S with := X

The �rst two groups clearly treat the domain of a map M as a set and the
image of M at each element X as a set. The third guarantees that an addition
is only for an element not located in the set; in general, similar replacements
are done for deletions as well, but the only deletion in our algorithms is for an
arbitrary element retrieved from the same set and thus already located in it. We
do not need to transform for-loops in our algorithms, since they enumerate sets
of tuples that are only read; we introduce pattern matching to make components
of these tuples explicit, so other replacements apply in the loop body.

After the replacements, all the set operations are restricted to those described
in Section 4, with the above guarantees about elements added or deleted. To
support the complexity analysis in Sections 4 and 5, each of these operations
needs to be done in O(1) time.

Data structure selection. Consider using a singly linked list for each of the do-
main and image sets of O, W , and E11 to E41. Let each element in a domain
linked list contain a pointer to its image linked list, i.e., represent a map as a
linked list of linked lists. It is easy to see that all operations except indexed re-
trieval and associative access can be done in worst-case O(1) time. The indexed
retrievals are for tuples never updated and can be implemented using arrays.
However, an associative access would take linear time if a linked list is naively
traversed. A classical approach is to use hash tables instead of linked lists. This
gives average, rather than worst-case, O(1) time for each operation, and has an
overhead of computing hashing related functions for each operation.

Paige et al. [33, 7] describe a technique for designing linked structures that
support associative access in worst-case O(1) time with little space overhead.
Consider

for X in W or while exists X in W

:::X in S::: or :::X notin S::: or :::MfXg::: where the domain of M is S

We want to locate value X in S after it has been located in W . The idea is to
use a �nite universal set B, called a base, to store values for both W and S, so
that retrieval from W also locates the value in S. B is represented as a set (this
set is only conceptual) of records, with a K �eld storing the key (i.e., value).
Set S is represented using a S �eld of B: records of B whose keys belong to S
are connected by a linked list where the links are stored in the S �eld; records
of B whose keys are not in S store a special value for unde�ned in the S �eld.
Set W is represented as a separate linked list of pointers to records of B whose
keys belong to W . Thus, an element of S is represented as a �eld in the record,
and S is said to be strongly based on B; and element of W is represented as a
pointer to the record, andW is said to be weakly based on B. This representation
allows an arbitrary number of weakly based sets but only a constant number of
strongly based sets. Essentially, base B provides a kind of indexing.

Our while-loop retrieves elements from the domain of W and locates these
elements in the domains of O and E11 to E41. For example, at OfNg in case
4 in the main loop, nonterminal N needs to be located in the domain of O. We
use a base B for the set of nonterminals. The domain of W is weakly based on
B, and the domains of O and E11 to E41 are strongly based on B. The only
exception is that the domain of E31 needs a two-element key of the form [C;N],
but in the application, each N has only one corresponding C, so we simply use
N as the key and record the corresponding C in a separate �eld to be checked
against.

Our algorithms test whether a value is not in the images of O, W , and E11
to E41 at any element in their domains, so there are O(n) sets that need to be
strongly based, and thus the based-representation method does not apply here.
We describe three representations for these images and discuss the trade-o�s.

Data structure choices and trade-o�s. The images of O, W , and E11 to E41
can be implemented using arrays, linked lists, hash tables, or a combination of
linked lists and hash tables.

First, for the O(n) images of each of O, W , E11 to E41, we may make them
strongly based using an array of �elds. This includes making a base B2 for the set
of good forms. Each membership test takes worst-case O(1) time. However, this

requires a total of quadratic space. Quadratic initialization time can be avoided
using the technique in [1, Exercise 2.12].

Second, we may use a singly linked list for each of the images of O, W ,
and E11 to E41. Such a list is called unbased representation [33] if it is a list of
elements rather than a list of pointers to the elements in some base. Due to other
associative accesses in the main loop body, any mention of a nonterminal (in
images ofW , E11, and E21, in domains of the images of E31, and in domains and
images of the images of E41) should be implemented as a pointer to an element in
base B. We also make a base B2 for the set of good forms (where nonterminals in
the arguments of constructor forms are also implemented as pointers to elements
in B), and represent any mention of a good form (in images of O and W and in
images of the images of E41) as a pointer to an element in B2; use of B2 avoids
an extra factor of a in the time complexity for comparing constructor forms
if specialized constructor forms are not used. Linked-list representation incurs
no asymptotic space overhead, but each membership test takes worst-case O(l)
time where l is the length of such a linked list. Based on parameters introduced
in Section 4, we know that l = a for the images of E21, E31, and E41, l = h
for the images of E11, and l = g for the images of O. Also, each element in W
either has a right side in a good form or is a copy form, and thus l = g + f for
the images of W , where f is the dual of h, i.e., it is the maximum number of
nonterminals to the right of a nonterminal:

f = max N in dom (inv E11)#(inv E11)fNg (34)

In the application, f is bounded by the maximum of g+1, the number of live call
sites of any function, and the number of live occurrences of any formal parameter
or bound variable. For (29) and the algorithm obtained from (32), the time for
initialization is increased by a factor of a, and the time for the main loop is
increased by a factor of h + g + f . This representation works well if h, g, and
f are small. It works well for all our examples except a contrived worst-case
example.

Third, we may maintain a hash table for each of the image sets. This achieves
the time complexities analyzed in Sections 4 and 5, but they become average-
case, rather than worst-case, complexities.

Finally, we can use linked lists when the images are small, and use hash
tables when the images are larger. This achieves the same complexities analyzed
in Sections 4 and 5, also for average case.

Experiments. We implemented the simpli�cation algorithm obtained from (32)
with the optimization to conditional forms and used it to replace a previous
algorithm in a prototype system for dead-code analysis and elimination [25].
The prototype system is implemented using the Synthesizer Generator [36], and
the simpli�cation algorithms are written in a dialect of Scheme. We have used
the system to analyze dozens of examples. Table 1 reports measurements of the
most relevant parameters|as de�ned in the complexity analysis in Section 4,
plus c4' in Section 5 and f in Section 6|and simpli�cation times from analyzing
14 programs with 25 di�erent queries using the new simpli�cation algorithm.

Programs bigfun, minmax, and biggerfun are examples from [25]. worst,
worst10, and worst20 are examples contrived to demonstrate the worst-case
cubic-time complexity. incsort and incout are incremental programs for selec-
tion sort and outer product, respectively, derived using incrementalization [27],

where dead code after incrementalization is to be eliminated. cachebin and
cachelcs are dynamic-programming programs for binomial coeÆcients and
longest common subsequences, respectively, derived using cache-and-prune [26,
24], where cached intermediate results that are not used are to be pruned.
calend, symbdiff, takr, and boyer are taken from the Internet Scheme Repos-
itory [21]. calend is a collection of calendrical functions [10]. takr is a 100-
function version of TAK that tries to defeat cache memory e�ects. symbdiff
does symbolic di�erentiation. boyer is a logic programming benchmark.

The queries are in the form N! l, where N corresponds to the return value
of a function in the second column of Table 1. In general, especially for libraries,
such as the calend example, there may be multiple functions of interest; we
included an example where we picked 22 functions at once.

First of all, the analysis is e�ective, re
ected in the resulting number of
live program points r compared to the total number of program points n. For
some examples, the program after dead-code elimination is even asymptotically
faster [25]. We also observe: 1) #P ranges from 1:02n to 1:56n, 2) a is consistently
very small, 3) h varies widely, 4) g and f are typically quite small, 5) #O is
roughly linear in r and in g. Whether the observations about g and f hold for
large programs need more experiments, but regardless, the measurements help
con�rm that the second way of estimating (c1) and (c5), not using h, better
explains the running time in practice.

The simpli�cation time after initialization, in milliseconds, with and without
garbage-collection time, is measured on a SUN station SPARC 20 with 60 MHz
CPU and 256 MB main memory. The times in Table 1 are for when linked lists
are used for images of O, W , and E11 to E41. We also measured the times for
hash tables and for linked lists combined with hash tables; both of these are
slower. Optimization to conditional forms gives up to 15% speedup.

We can see that the simpli�cation time is very much linear in c=(c1)+(c2)+
(c3)+(c4), that is, it is roughly linear in #O with a small factor from g, and
thus, it is linear in r and quadratic in g. Being close to linear in r rather than
n is important, especially for analyzing libraries. Again, experiments measuring
g for large programs are needed, but our measurements con�rm the accurate
complexities analyzed in terms of the identi�ed parameters.

7 Related work and conclusion

Regular tree grammar based constraints have been used for analyzing recursive
data in other applications and go back at least to Reynolds [38] and Schwartz [40].
Related work includes
ow analysis for memory optimization by Jones andMuch-
nick [22], binding-time analysis for partial evaluation by Mogensen [29], set-based
analysis of ML by Heintze [17], type inference by Aiken et al. [2, 3], backward
slicing by Reps and Turnidge [37], and set-based analysis for debugging Scheme
by Flanagan and Felleisen [13]. Some of these are general type inference and are
only shown to be decidable [3] or take exponential time in the worst case [2]. For
others, either a cubic time complexity is given based on a simple worst-case anal-
ysis of a relatively straightforward algorithm [17, 13], or algorithm complexity is
not discussed explicitly [22, 29, 37].

Constraints have also been used for other analyses, in particular, analyses
handling mainly higher-order functions or pointers. This includes higher-order

program
name

user
query

#P #O n r a h g f c1,c5 c2 c3 c4 c4' c
simp.
w/gc

time
no gc

bigfun lenf 48 47 36 23 2 2 3 3 40 0 4 24 14 68 .002 .001

minmax getlen 112 89 81 31 3 2 5 11 76 0 8 48 23 132 .006 .005
minmax getmin 112 149 81 49 3 2 8 11 129 2 38 72 33 241 .010 .007

biggerfun evef 115 114 84 64 2 2 5 10 86 2 14 64 45 166 .008 .007
biggerfun oddf 115 115 84 56 2 2 6 6 94 2 16 60 36 172 .008 .007

worst f 28 69 24 24 2 4 4 4 64 0 0 21 12 85 .005 .004

worst10 f 70 419 59 59 2 11 11 11 407 0 0 133 33 540 .028 .018

worst20 f 130 1429 109 109 2 21 21 21 1407 0 0 463 63 1870 .097 .068

incsort sort 144 132 108 49 3 2 11 5 139 2 20 98 29 259 .010 .007
incsort sort' 144 33 108 24 3 2 5 5 24 6 0 15 11 45 .002 .001

incout out 152 53 117 30 5 2 4 3 43 4 0 24 18 71 .003 .002
incout out' 152 77 117 55 5 2 5 4 56 8 0 48 36 112 .005 .004

cachebin bin 91 113 74 67 3 4 5 5 105 0 51 65 41 221 .009 .006

cachelcs lcs 140 205 117 89 4 6 7 5 214 0 152 104 48 470 .018 .014

calend gregorian- 1840 228 1551 192 5 12 4 25 178 0 66 115 111 359 .018 .015
calend islamic- 1840 418 1551 346 5 12 4 25 339 4 144 199 189 686 .034 .024
calend eastern- 1840 460 1551 375 5 24 4 25 380 4 186 207 197 777 .038 .030
calend yahrzeit 1840 484 1551 428 5 11 4 25 373 0 108 293 290 774 .038 .030
calend 22 functions 1861 1604 1551 1352 5 37 4 25 1329 41 614 791 777 2775 .13 .10

symbdiff deriv 1974 7636 1264 1221 3 65 13 65 11045 28 206 6639 855 17918 .59 .48
symbdiff derivations-x 1974 7784 1264 1261 3 65 13 65 11214 30 206 6686 878 18136 .60 .48

takr tak99 4005 2800 2804 2800 3 4 1 5 3000 0 0 2200 2200 5200 .23 .21
takr run-takr 4005 2804 2804 2804 3 5 1 5 3004 0 0 2203 2203 5207 .23 .21

boyer setup 4496 4513 4347 3755 3 106 8 6 1152 3496 1316 92 31 6056 .29 .23
boyer setup,run-boyer 4497 39501 4347 4302 3 924 25 13 83925 3684 38370 1377 254 127356 4.9 3.2

gregorian-: gregorian{>absolute islamic-: islamic-date eastern-: eastern-orthodox-christmas

Table 1. Measurements for Example Programs.

binding-time analysis by Henglein [20], Bondorf and J�rgensen [6], and Birkedal
and Welinder [4, 5], points-to analysis by Steensgaard [44], and control
ow anal-
ysis for special cases by Heintze and McAllester [19]. The last restricts type sizes
and has a linear time complexity, and the others use union-�nd algorithms [20]
and have an almost linear time complexity. These analyses either do not con-
sider recursive data structures [20, 44], or use bounded domains [6, 4, 5, 19] and
are thus less precise than grammar constraints constructed based on uses of
recursive data in their contexts.

People study methods to speed up the cubic-time analysis algorithms. For
example, Heintze [16] describes implementation techniques such as dependency
directed updating and special representations, which has the same idea as incre-
mental update by �nite di�erencing and eÆcient access by real-time simulation.
Flanagan and Felleisen [13] study techniques for component-wise simpli�cation.
F�ahndrich et al. [11] study a technique for eliminating cycles in the inclusion con-
straint graphs. Su et al. [45] study techniques for reducing redundancies caused
by transitivity in the constraint graphs. These improvements are all found to
be very e�ective. Moreover, sometimes a careful implementation of a worst-
case cubic-time [18, 25] (or quadratic-time [43]) analysis algorithm seems to give
nearly linear behavior [18, 43, 25]. Our work in this paper is a start in the formal
study of the reasons.

Our analysis adds edges through selecting components of constructions and
enabling conditions, and our application also has the cycle and redundancy
problems caused by dynamic transitivity, as studied in [11, 45]. However, our
algorithm still proceeds in a linear fashion. That is, if we have constraints
N1!N2; :::; Nk�1!Nk, we do not add any edges Ni!Nj for any i; j such
that 1 � i � j � k; only when a new Nk!R is added, we add an Nk�1!R
if it is not already added and subsequently an Nk�2!R and so on. This for-
malizes Heintze's algorithm [16]. For comparison, a future work would be to
formalize the algorithms in [11, 45]. It will also be interesting to formalize and
compare with [47]. As our problem is related to computing Datalog queries, it

will be worthwhile to see to what degree McAllester's complexity results for
Datalog queries [28] could be applied; note, however, that those results are ob-
tained based on extensive hashing and thus are for average cases, not worst
cases. Compared with the magic-sets transformation [46], �nite di�erencing or
incrementalization [23] based methods derive more specialized algorithms and
data structures, yielding more eÆcient programs, often asymptotically better.

To summarize, for the problem of dead-code elimination on recursive data,
this paper shows that formal speci�cation, design, and analysis lead to an ef-
�cient algorithm with exact complexity factors. Clearly, there is a large body
of work on all kinds of program analysis algorithms [30], from type inference
algorithms, e.g., [35], to eÆcient �xed-point computation, e.g., [12]. Precise and
uni�ed speci�cation, design, and complexity analysis of all kinds of program
analysis algorithms deserve much further study. We believe that such study can
bene�t greatly from the approach of Paige et al. [34, 32, 8, 33, 7], as illustrated
in this work, and from the more formal characterization by Goyal [15].

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

2. A. Aiken and B. R. Murphy. Static type inference in a dynamically typed lan-
guage. In Conference Record of the 18th Annual ACM Symposium on Principles
of Programming Languages. ACM, New York, Jan. 1991.

3. A. Aiken, E. Wimmers, and T. Lakshman. Soft typing with conditional types. In
Conference Record of the 21st Annual ACM Symposium on Principles of Program-
ming Languages. ACM, New York, Jan. 1994.

4. L. Birkedal and M. Welinder. Binding-time analysis for standard ML. In Proceed-
ings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, Technical Report 94/9, pages 61{71. Department of Com-
puter Science, The University of Melbourne, June 1994.

5. L. Birkedal and M. Welinder. Binding-time analysis for Standard ML. Lisp and
Symbolic Computation, 8(3):191{208, Sept. 1995.

6. A. Bondorf and J. J�rgensen. EÆcient analyses for realistic o�-line partial evalu-
ation. Journal of Functional Programming, 3(3):315{346, July 1993.

7. J. Cai, P. Facon, F. Henglein, R. Paige, and E. Schonberg. Type analysis and data
structure selection. In B. M�oller, editor, Constructing Programs from Speci�cations,
pages 126{164. North-Holland, Amsterdam, 1991.

8. J. Cai and R. Paige. Program derivation by �xed point computation. Sci. Comput.
Program., 11:197{261, Sept. 1988/89.

9. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In Proceedings of the 7th International
Conference on Functional Programming Languages and Computer Architecture,
pages 170{181. ACM, New York, June 1995.

10. N. Dershowitz and E. M. Reingold. Calendrical calculations. Software|Practice
and Experience, 20(9):899{928, Sept. 1990.

11. M. F�ahndrich, J. S. Foster, Z. Su, and A. Aiken. Partial online cycle elimination in
inclusion constraint graphs. In Proceedings of the ACM SIGPLAN '98 Conference
on Programming Language Design and Implementation, pages 85{96. ACM, New
York, June 1998.

12. C. Fecht and H. Seidl. Propagating di�erences: An eÆcient new �xpoint algorithm
for distributive constraint systems. In C. Hankin, editor, Proceedings of the 7th
European Symposium on Programming, volume 1381 of Lecture Notes in Computer
Science, pages 90{104. Springer-Verlag, Berlin, 1998.

13. C. Flanagan and M. Felleisen. Componential set-based analysis. ACM Trans.
Program. Lang. Syst., 21(2):370{416, Mar. 1999.

14. F. Gecseg and M. Steinb. Tree Automata. Akademiai Kiado, Budapest, 1984.
15. D. Goyal. A Language Theoretic Approach to Algorithms. PhD thesis, Department

of Computer Science, New York University, Jan. 2000.
16. N. Heintze. Practical aspects of set based analysis. In K. Apt, editor, Proceedings of

the Joint International Conference and Symposium on Logic Programming, pages
765{779. The MIT Press, Cambridge, Mass., Nov. 1992.

17. N. Heintze. Set-based analysis of ML programs. In Proceedings of the 1994 ACM
Conference on LISP and Functional Programming, pages 306{317. ACM, New
York, June 1994.

18. N. Heintze and J. Ja�ar. Set constraints and set-based analysis. In Proceed-
ings of the 2nd International Workshop on Principles and Practice of Constraint
Programming, volume 874 of Lecture Notes in Computer Science, pages 281{298.
Springer-Verlag, Berlin, 1994.

19. N. Heintze and D. McAllester. Linear-time subtransitive control
ow analysis.
In Proceedings of the ACM SIGPLAN '97 Conference on Programming Language
Design and Implementation. ACM, New York, June 1997.

20. F. Henglein. EÆcient type inference for higher-order binding-time analysis. In
Proceedings of the 5th International Conference on Functional Programming Lan-
guages and Computer Architecture, volume 523 of Lecture Notes in Computer Sci-
ence, pages 448{472. Springer-Verlag, Berlin, Aug. 1991.

21. The Internet Scheme Repository. http://www.cs.indiana.edu/scheme-repository/.
22. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of LISP-like

structures. In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis,
pages 102{131. Prentice-Hall, Englewood Cli�s, N.J., 1981.

23. Y. A. Liu. EÆciency by incrementalization: An introduction. Higher-Order and
Symbolic Computation, 13(4):289{313, Dec. 2000.

24. Y. A. Liu and S. D. Stoller. Dynamic programming via static incrementalization.
In Proceedings of the 8th European Symposium on Programming, volume 1576 of
Lecture Notes in Computer Science, pages 288{305. Springer-Verlag, Berlin, Mar.
1999.

25. Y. A. Liu and S. D. Stoller. Eliminating dead code on recursive data. In SAS 1999
[39], pages 211{231.

26. Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for incremental com-
putation. ACM Trans. Program. Lang. Syst., 20(3):546{585, May 1998.

27. Y. A. Liu and T. Teitelbaum. Systematic derivation of incremental programs. Sci.
Comput. Program., 24(1):1{39, Feb. 1995.

28. D. McAllester. On the complexity analysis of static analyses. In SAS 1999 [39],
pages 312{329.

29. T. Mogensen. Separating binding times in language speci�cations. In Proceedings
of the 4th International Conference on Functional Programming Languages and
Computer Architecture, pages 12{25. ACM, New York, Sept. 1989.

30. F. Nielson, H. R. Nielson, and C. Hankin, editors. Principles of Program Analysis.
Springer-Verlag, 1999.

31. R. Paige. Formal Di�erentiation: A Program Synthesis Technique, volume 6 of
Computer Science and Arti�cial Intelligence. UMI Research Press, Ann Arbor,
Michigan, 1981. Revision of Ph.D. dissertation, New York University, 1979.

32. R. Paige. Programming with invariants. IEEE Software, 3(1):56{69, Jan. 1986.
33. R. Paige. Real-time simulation of a set machine on a RAM. In Computing and

Information, Vol. II, pages 69{73. Canadian Scholars Press, 1989. Proceedings of
ICCI '89: The International Conference on Computing and Information, Toronto,
Canada, May 23-27, 1989.

34. R. Paige and S. Koenig. Finite di�erencing of computable expressions. ACM
Trans. Program. Lang. Syst., 4(3):402{454, July 1982.

35. J. Rehof. The Complexity of Simple Subtyping Systems. PhD thesis, DIKU, Uni-
versity of Copenhagen, Copenhagen, Denmark, Apr. 1998.

36. T. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Constructing
Language-Based Editors. Springer-Verlag, New York, 1988.

37. T. Reps and T. Turnidge. Program specialization via program slicing. In O. Danvy,
R. Gl�uck, and P. Thiemann, editors, Proceedings of the Dagstuhl Seminar on Par-
tial Evaluation, volume 1110 of Lecture Notes in Computer Science, pages 409{429.
Springer-Verlag, Berlin, 1996.

38. J. C. Reynolds. Automatic computation of data set de�nitions. In A. J. H. Morrell,
editor, Information Processing 68: Proceedings of IFIP Congress 1968, volume 1,
pages 456{461. North-Holland, Amsterdam, 1969.

39. Proceedings of the 6th International Static Analysis Symposium, volume 1694 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Sept. 1999.

40. J. T. Schwartz. Optimization of very high level languages { I: Value transmission
and its corollaries. Journal of Computer Languages, 1(2):161{194, 1975.

41. J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming
with Sets: An Introduction to SETL. Springer-Verlag, Berlin, New York, 1986.

42. W. K. Snyder. The SETL2 Programming Language. Technical report 490, Courant
Institute of Mathematical Sciences, New York University, Sept. 1990.

43. B. Steensgaard. Points-to analysis by type inference of programs with structures
and unions. In T. Gyimothy, editor, Proceedings of the 6th International Conference
on Compiler Construction, volume 1060 of Lecture Notes in Computer Science,
pages 136{150. Springer-Verlag, Berlin, 1996.

44. B. Steensgaard. Points-to analysis in almost linear time. In Conference Record of
the 23rd Annual ACM Symposium on Principles of Programming Languages, pages
32{41. ACM, New York, Jan. 1996.

45. Z. Su, M. F�ahndrich, and A. Aiken. Projection merging: Reducing redundancies
in inclusion constraint graphs. In Conference Record of the 27th Annual ACM
Symposium on Principles of Programming Languages, pages 81{95. ACM, New
York, Jan. 2000.

46. J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume II.
Computer Science Press, New York, 1988.

47. D. M. Yellin. Speeding up dynamic transitive closure for bounded degree graphs.
Acta Informatica, 30(4):369{384, July 1993.

A An example program

Program. A program is a set of recursive function de�nitions, together with a set of
constructor de�nitions, each with the corresponding tester and selectors.

f(x)
�
= if null(x) then nil else cons(g(car(x)); f(cdr(x)));

g(x)
�
= x � x � x � x � x;

len(x)
�
= if null(x) then 0 else 1 + len(cdr(x));

lenf(x)
�
= len(f(x));

cons : cons?(car; cdr);
nil : null();

Labeled program. The program is labeled, with a distinct nonterminal associated with
each program point, as follows:

f(N36:x)
�
= N35:if N34:null(N33:x) thenN32:nil elseN31:cons(N30:g(N29:car(N28:x));N27:f(N26:cdr(N25:x)));

g(N24:x)
�
= N23:N22:N21:N20:N19:x �N18:x �N17:x �N16:x �N15:x;

len(N14:x)
�
= N13:if N12:null(N11:x) then

N10:0 else
N9:N8:1 +N7: len(N6:cdr(N5:x));

lenf(N4:x)
�
= N3:len(N2:f(N1:x));

Constructed grammar. The grammar constructed from the given program is

N36!N33; N36!N28; N36!N25; N33! [N34]cons(N0; N0); N33! [N34]nil(); N34! [N35]L;N32!N35;

N28! [N29]cons(N29; N0); N29! [N30]N24; N23!N30; N30! car(N31);
N25! [N26]cons(N0; N26); N26! [N27]N36; N35!N27; N27! cdr(N31); N31!N35;

N24!N19; N24!N18; N24!N17; N24!N16; N24!N15; N19! [N20]L;N18! [N20]L;N20! [N21]L;
N17! [N21]L;N21! [N22]L;N16! [N22]L;N22! [N23]L;N15! [N23]L;

N14!N11; N14!N5; N11! [N12]cons(N0; N0); N11! [N12]nil(); N12! [N13]L;N10!N13;
N8! [N9]L;N5! [N6]cons(N0; N6); N6! [N7]N14; N13!N7; N7! [N9]L;N9!N13;
N4!N1; N1! [N2]N36; N35!N2; N2! [N3]N14; N13!N3; N0!D

User query. A user query is
N3!L

Simpli�cation result. The output of simpli�cation, sorted by nonterminal number, is

N36!nil(); N36! cons(N0; N0); N36! cons(N0; N26);
N35!nil(); N35! cons(N0; N0); N35! cons(N0; N6);
N34!L;

N33!nil(); N33! cons(N0; N0);
N32!nil(); N32! cons(N0; N0); N32! cons(N0; N6);
N31!nil(); N31! cons(N0; N0); N31! cons(N0; N6);
N27!nil(); N27! cons(N0; N0); N27! cons(N0; N6);
N26!nil(); N26! cons(N0; N0); N26! cons(N0; N26);
N25! cons(N0; N26);
N14!nil(); N14! cons(N0; N0); N14! cons(N0; N6);
N13!L;

N12!L;

N11!nil(); N11! cons(N0; N0);
N10!L;

N9!L;

N8!L;

N7!L;

N6!nil(); N6! cons(N0; N0); N6! cons(N0; N6);
N5! cons(N0; N6);
N4!nil(); N4! cons(N0; N0); N4! cons(N0; N26);
N3!L;

N2!nil(); N2! cons(N0; N0); N2! cons(N0; N6);
N1!nil(); N1! cons(N0; N0); N1! cons(N0; N26);
N0!D

Nonterminals N15 to N24 and N28 to N30 do not have a right-side good form. The
corresponding program points are dead.

