
AUTOMATED SYMBOLIC TIMING ANALYSIS FOR

DISTRIBUTED SYSTEMS

Scott D. Stoller and Leena Unnikrishnan

Computer Science Dept., Indiana University, Bloomington, IN 47405 USA

fstoller,lunnikrig@cs.indiana.edu

Abstract

A timing property of a distributed system is an assertion about the time intervals between events

in executions of that system. There are three traditional approaches to determining timing prop-

erties of distributed systems: measurement, simulation, and analysis. Results from analysis can

be symbolic and therefore much more general than results from measurement and simulation.

For example, analysis can express the end-to-end delay of an atomic commitment protocol sym-

bolically as a function of message delay and other system parameters. However, manual analysis

of distributed algorithms is often tedious and error-prone. We have developed and implemented

a state-exploration-based analysis that can automatically determine a large class of timing prop-

erties of distributed systems.

1 Introduction

A timing property of a distributed system is an assertion about the time intervals between events in executions

of that system. A timing property might characterize the probability distribution of time intervals between

events, or the minimum, maximum, or mean of that distribution. For example, for a distributed database

system, typical timing properties of interest are the mean and maximum times from when a transaction starts

until it completes. There are three traditional approaches to determining such properties: measurement,

simulation, and analysis. Measurement can provide very accurate information, but the results are speci�c

to a particular compiler, operating system, CPU, network, etc. Similarly, the results of a simulation re
ect

speci�c values of or distributions for the time needed for low-level operations. Analysis can provide much

more general results by expressing timing properties symbolically as functions of con�guration parameters

(e.g., number of processes, maximum number of failures, and network diameter), and timing parameters,

which characterize the time needed for low-level operations (e.g., minimum and maximum network delay,

hard-disk access time, and CPU time spent in protocol stack). For example, De Prisco, Lampson, and Lynch's

analysis shows that the time needed for the PAXOS algorithm (based on Lamport's part-time parliament

[Lam89]) to reach consensus after failures cease is at most 24` + 10n` + 13d, where n is the number of

processes, and ` and d are bounds on local processing time and message delay, respectively. Determining

and verifying such formulas by hand is tedious and error-prone, due to non-determinism from concurrency

and failures.This non-determinism also makes traditional methods for analysis of the time complexity of

sequential algorithms di�cult to apply.

This paper describes a method for automatically determining a large class of timing properties of dis-

tributed systems. Timing parameters are handled symbolically (or numerically, if desired) throughout the

1

analysis. Con�guration parameters must be instantiated with particular values. One can often obtain a good

idea of the dependence of timing properties on con�guration parameters by repeating the analysis for vari-

ous values and plotting the results. Extending the analysis to handle con�guration parameters symbolically,

perhaps along the lines of [KM95], is an area for future work.

We envision two main uses for this analysis. One is to determine \end-to-end" timing properties of

distributed algorithms, such as the property of PAXOS mentioned above. The other is to facilitate the

development of such algorithms by helping determine time-outs. For example, the PAXOS algorithm, like

many fault-tolerant algorithms, uses a timer that should expire just after a certain message would have

arrived if failures did not interfere; speci�cally, the time-out in the PAXOS algorithm is 7`+ 4n`+ 4d. For

particular values of n, our timing analysis can determine symbolically the time interval in which the message

can arrive; the upper limit of this time interval provides the correct time-out.1

Our analysis constructs a graph: each node corresponds to a (global) state of the system, and each

edge corresponds to an event (transition). The graph is constructed by starting with the initial state

and repeatedly generating new states by exploring events. Each event is tagged with symbolic times that

characterize when it can occur. A symbolic time is either an expression built from timing parameters and

arithmetic operators or the symbol 1 (in�nity). Symbolic times are used to determine the order in which

events can occur and to compute bounds on the minimum and maximum time intervals between speci�ed

classes of events.

The use of (symbolic) time intervals (instead of numerical times, as in most simulators) has many rami�-

cations in the analysis. One is the inadequacy of the straightforward approach in which each event is tagged

with one symbolic time interval, representing the range of times that it can occur, measured from the start of

the execution. As we show in Section 4, it is often necessary to tag a pending event e with multiple symbolic

time intervals, each representing the range of times that e can occur, measured from a speci�ed point during

the execution. We call these points anchors.

Section 2 describes our system model. Section 3 describes a simpli�ed symbolic timing analysis, called

the one-anchor analysis. Sections 4 and 5 motivate and describe, respectively, the multi-anchor analysis.

Section 6 describes a modular way of introducing failures. The analysis has been implemented in Java

in a prototype tool called TADA (Timing Analyzer for Distributed Algorithms). Section 7 describes the

application of TADA to a new message-e�cient algorithm for uniform timed reliable broadcast [MS98]. To

the best of our knowledge, this is the �rst automated analysis of symbolic timing properties of that or any

similar distributed algorithm.

Future work includes: (1) optimizing the analysis by developing a suitable partial-order optimization

[God96, PPH97] that avoids exploring all interleavings of concurrent pending events that \commute" (expe-

rience with analysis of untimed systems shows that this reduces the analysis cost by an exponential factor for

many systems), (2) optimizing the analysis by exploiting \monotonicity" to justify exploring some pending

events only at their earliest or latest possible occurrence time; (3) integrating the analysis with a symbolic

timing analysis for sequential programs written in a conventional programming language (cf. Section 3.1);

(4) empirically checking the accuracy of timing properties calculated by substituting measured values for

timing parameters into formulas obtained from the analysis; if necessary, the accuracy can be increased by

introducing additional timing parameters, possibly like those in the LogP model of parallel computation

[CKP+96]; (5) applying the analysis to agreement algorithms like those in [Lyn96, Part III] or [PLL97],

group communication protocols like those in [CZ85, RVR93, MR97], etc.

1How can the algorithm be analyzed before it is completely designed? The arrival time of the message in question does not
depend on this time-out. Thus, during this analysis, this timer can be removed from the algorithm or set to a very large value.

2

The work most closely related to ours is work on timed automata [AD94]. To the best of our knowledge,

of the numerous papers on timed automata, only [AHV93] treats timing parameters symbolically. The

analysis method described there is (apparently) unimplemented. More importantly, it represents passage of

time by explicitly subtracting the elapsed time from every clock on every transition. Such \global updates"

make partial-order optimizations di�cult, although they do allow more accurate analysis of some systems

(such as UTRB2 [BT93a, BT93b]), for which our method gives approximate results. Alur et al.'s work on

analysis of hybrid systems can also treat some system parameters symbolically [ACH+95]. Generalizing

from timed systems to hybrid systems complicates the analysis and makes development of partial-order

optimizations di�cult. We are currently developing partial-order optimizations for timed systems, based on

ideas in [God96, BJLY98], and plan to make that analysis parametric.

2 System Model

We model a distributed system as a collection of processes that communicate by message-passing over

reliable FIFO channels with unbounded capacity and bounded delay. It is easy to modify the analysis to

accommodate unreliable, unordered, or �nite-capacity channels. By convention, the symbols �1 and �2 are

lower and upper bounds, respectively, on message delay. Speci�cally, message delay is at least �1 and is less

than �2. Note that this implies �1 < �2.

We use a reactive model of processes: a process is inactive except when reacting to an input event.

There are three kinds of input events: message reception (with type MSG), timer expiration (TMR), and

signal reception (SIG). Each process can use multiple timers, so when a timer expires, the input event

contains a timer identi�er that indicates which timer expired. Signals are like messages except that signals

are transmitted instantaneously. Signals are useful for modeling communication between processes running

on the same machine; in this sense they are like UNIX signals. For example, communication between a

failure-detector process and its clients, which must be on the same machine as the failure detector, would be

modeled by signals rather than messages. Signals are also useful for enforcing global invariants; an example

of this appears in Section 6.

In reaction to an input event, a process may change its local state and produce a sequence of outputs.

There are four kinds of outputs: sending a message (MSG), setting a timer (SETTMR), cancelling a timer

(DELTMR), and sending a signal (SIG). Processes may be non-deterministic. We assume that a process's

reaction to an input event is not interrupted by processing of other input events. However, we do not assume

that the sequence of outputs is produced instantaneously.

We assume all timers run at the same rate as real time. It is straightforward to accommodate timers

that run too fast or too slow; bounds on their rates could be numerical or symbolic.

3 One-Anchor Analysis

This section describes a simpli�ed analysis, called the one-anchor analysis. The following system serves as

a running example. The system contains two processes, p0 and p1. At the start of the execution, p0 sends

a message m0 to p1 and sets a timer to 2�2. On receiving m0, p1 sends a reply m1 to p0. On receiving m1,

p0 sends an acknowledgment m2 to p1 and cancels the timer, if it has not yet expired. If the timer expires,

then p0 retransmits m0. The �rst timing property that we consider is the minimum and maximum time

from when p0 sends m0 until p0 receives m1.

3

3.1 Processes

We model a process as an automaton, de�ned by: a set of (local) states, a transition function, an initial

state, and an optional initial output. The arguments of the transition function are the current local state

of the process and an input event. Processes are non-deterministic, so the transition function returns

a set of possible reactions, each represented by a pair hs; outsi, where s is a state of the process and

outs = hho0; o1; : : : ; onii is a sequence of outputs (we use double angle brackets to denote sequences). Each

output oi is tagged with a time interval called its o�set, which bounds the time that elapses from when oi�1

is produced until oi is produced; as a special case, the o�set of o0 is measured from when the input event

occurs. The optional initial output, if present, must be of type SETTMR. Thus, each process can set an

initial timer, and when that timer expires, the process can send messages, etc.

Let r0 be the transition function for p0 in the running example. The initial output of p0 sets a timer

to expire after a delay of zero; thus, that timer expires immediately at the start of the execution. Let s0

be the initial state of p0, and let itmr0 be an input event representing the expiration of p0's initial timer.

When applied to the arguments s0 and itmr0, r0 returns fhs00; hhomsg0; otmr0iiig, where s
0
0 is a state of p0,

and outputs omsg0 and otmr0 correspond to sending m0 and setting a timer to 2�2, respectively.

Using automata simpli�es the implementation of the analysis, but writing distributed algorithms as

automata is often inconvenient. Programs in a conventional programming language augmented with Send and

Receive statements could be used instead, provided the duration of local processing is expressed symbolically

(as in the o�sets in automata outputs). One approach is to have the user annotate program segments with

symbolic times. A more automatic approach is to associate timing parameters with each program construct

and use, e.g., Shaw's timing analysis to symbolically determine execution times for sequential code fragments

[Sha89]. The analysis in [Sha89] is suitable for many real-time programs but does not deal with message

passing or (more importantly) the high degree of non-determinism resulting from failures.

3.2 Timing Properties

We consider timing properties that characterize the minimum and maximum time between classes of events.

A timing property is expressed as a start condition and a stop condition, each being a predicate on message

sending or receiving events, e.g., \p1 receiving a message containing dlvr mcast from any process". A start

event or stop event is an event satisfying the start or stop condition, respectively. In the running example,

the start condition is \p0 sends m0 to p1", and the end condition is \p0 receives m1 from p1".

Our analysis provides symbolic bounds on the minimum and maximum time between a start event and

a causally subsequent stop event. The following restricted notion of causality simpli�es the calculations

in Section 5 and is su�cient for many examples, so we adopt it in this paper. However, using Lamport's

causality relation (\happened before") [Lam78] or temporal ordering (instead of causality) is not di�cult.

Our causality relation! for a computation c is the smallest transitive relation on pending events and outputs

in c such that: (1) for each pending event pe and each output o produced by pe, pe ! o and, if there is a

pending event pe0 corresponding to o (e.g., o is not of type SIG), then pe! pe0; (2) for consecutive outputs

o and o0 in a sequence of outputs produced by some pending event, o ! o0. Note that ! is a subset of

Lamport's causality relation. Speci�cally, ! ignores local orderings between processing of di�erent inputs.

Semantics. Let � be an instantiation of the timing parameters of the system, with �(�1) < �(�2); for

example, �(�1) = 1:5 msec, etc. Let t̂min and t̂max be the least and greatest times, respectively, between the

�rst occurrence of a start event and the �rst causally-subsequent occurrence of an end event in any possible

execution of the system with timing parameter values given by �. If there is no execution in which a start

4

event is causally followed by a stop event, then t̂min is in�nity; if there is some execution not containing

a start event, or in which the �rst occurrence of a start event is not causally followed by an end event,

then t̂max is in�nity. The analysis computes sets mins and maxs of symbolic times such that there exist

tmin 2 mins and tmax 2 maxs such that �(tmin) � t̂min and t̂max � �(tmax), where for a symbolic time t,

�(t) is the value of t with the timing parameters instantiated with the values in �. Thus, mins and maxs

provide a lower bound on t̂min and an upper bound on t̂max , respectively.

To see why mins and maxs sometimes need to be sets of symbolic times, suppose the analysis determines

that the minimum separation between the start and end events is either 3�1 or 2�2, depending on some non-

deterministic choice. Given only that �1 < �2, there is no way to determine whether 3�1 or 2�2 is smaller, so

the analysis would return mins = f3�1; 2�2g. Ordering relationships between symbolic times are discussed

further in Section 3.3.

3.3 One-Anchor Analysis Algorithm

Timing properties are evaluated by constructing a graph with nodes corresponding to global states of the

system and with edges corresponding to transitions, and then calculatingmins and maxs from the occurrence

intervals of the start and end events. Each global state g has a �eld g:LS containing an array of local states

and a �eld g:PE containing a set of pending events. The set of pending events re
ects the state of the

operating systems and network. There are two kinds of pending events: messages in transit (MSG), and

ticking timers (TMR). Each pending event pe has a �eld pe:P ID containing the name of the process that

will execute pe and a �eld pe:OI containing an occurrence interval [t1; t2], where t1 and t2 are lower and

upper bounds, respectively, on the time at which pe occurs. Occurrence intervals are implicitly anchored

at (i.e., measured with respect to) the start of the execution. Each edge in the graph is labeled with the

pending event that occurs along that edge.

The graph constructed for the running example is shown in Figure 1, wheremsgi corresponds to reception

of message mi, tmr0 is p0's initial timer, etc.

g2

LS: s0

0; s1

PE: msg0 [�1; �2]

tmr1 [2�2; 2�2]

LS: s0

0; s
0

1 LS: s00

0 ; s
0

1

PE: msg2 [3�1; 3�2]

g1 g3

msg0 msg1 msg2
PE: tmr1 [2�2; 2�2]

msg1 [2�1; 2�2]

LS: s00

0 ; s
00

1

PE:

g4tmr0

LS: s0; s1

PE: tmr0 [0; 0]

g0

Figure 1: The graph computed in the one-anchor analysis of the running example.

Exploring a Pending Event. The graph is constructed by starting with the initial state (i.e., the global

state with every process in its local state and with pending events corresponding to the initial outputs) and

repeatedly selecting a global state g and a pending event pe in g:PE and exploring pe, as follows. Apply the

transition function for pe:P ID to the local state g:LS[pe:P ID] of pe:P ID and the pending event pe (now

regarded as an input event) to obtain the set S of possible outcomes. For each hs; outsi 2 S, construct a

global state g0 by copying g and then applying the following updates: set g0:LS[pe:P ID] to equal s; remove

5

pe from g0:PE; process the elements of outs, as follows, in the order they appear. A MSG output adds

to g0:PE a MSG pending event with the speci�ed destination, message contents, etc. A SETTMR output

adds to g0:PE an appropriate TMR pending event. A DELTMR output removes a speci�ed TMR pending

event from g0:PE. A SIG output is regarded as an input event of the speci�ed destination process q and is

processed in essentially the same way that a pending event is explored, namely, by updating the local state

of q and processing the resulting outputs of q, if any.2 Calculation of occurrence intervals associated with

new pending events and signals is discussed below. If the resulting global state g0 does not already appear

in the graph, then it is added. Also, an edge from g to g0 labeled with pe is added. An enhancement that

sometimes yields tighter bounds is: update the lower bounds of other pending events in g0 to re
ect that

in g0, those pending events must occur after pe, and update the upper limit of pe on the edge from g to g0

to indicate that it must occur before all other pending events in g:PE. For example, let pe be a pending

event with occurrence interval [�1+�2; 3�2]init in global state g. Let pe0 be a pending event with occurrence

interval [2�1; 2�2]init in global state g. Then, in the global state g0 reached from g by executing pe, we can

replace pe0 with a new pending event whose occurrence interval is [�1+�2; 2�2]init . Similarly, the upper limit

of the occurrence interval of pe on this edge can be changed to 2�2. If pe or a causally subsequent event is

an end event, this can lead to tighter mins .

Computing Occurrence Intervals. When a pending event pe with occurrence interval [t1; t2] is explored,

occurrence intervals are computed as follows for the resulting signals and pending events. Let out be an

output produced by exploring pe. Let [o� 1; o� 2] be the o�set associated with out. If out is the sending

of a message m, then the occurrence interval of the pending event corresponding to reception of m is

[t1 + o� 1 + �1; t2 + o� 2 + �2]. If out is the setting of a timer to expire after time t, then the occurrence

interval of the pending event corresponding to expiration of that timer is [t1 + o� 1 + t; t2 + o� 2 + t]. If

out is a signal, then the occurrence interval of the input event corresponding to reception of that signal is

[t1 + o� 1; t2 + o� 2].

In the running example, the o�set intervals are all [0; 0]. When msg1 is explored in global state g2, p0

produces two outputs: it sends m2 and cancels the timer. The former output creates a pending event msg2

with occurrence interval [�1 + 0 + �1; �2 + 0 + �2].

Enabled Pending Events. For a global state g, only pending events in g:PE that could occur next in an

execution of the system should be explored in g. We introduce an ordering -1, called \can occur before", and

explore a pending event pe in g:PE i� pe can occur before every other pending event in g:PE, in which case

we say that pe is enabled in g. The ordering -1 is determined by comparing symbolic times in occurrence

intervals. The comparisons are based on arithmetic identities (e.g., �1 is less than 2�1) and the premise

that �1 is less than �2.
3 The results of some comparisons (e.g., between 3�1 and 2�2) are undetermined, a

situation denoted by ?. Thus, for symbolic times t and t0, we de�ne

cmp(t; t0) =

8>><
>>:

EQ if t and t0 are equal
LT if t is de�nitely less than t0

GT if t is de�nitely greater than t0

? otherwise

2If the outputs of two processes p and q both contain signals sent to some process r, then one must be careful to specify the
order in which those signals are processed by r. Our current implementation simply prohibits such situations, i.e., it prohibits
race conditions involving signals.

3It is straightforward to allow linear inequalities involving all timing parameters to be supplied as premises. If the symbolic
times are all linear expressions, comparisons can be evaluated using, e.g., Shostak's loop residue approach [Sho91].

6

A pending event pe with occurrence interval [t1; t2] can occur before a pending event pe0 with occurrence

interval [t01; t
0
2], denoted pe -1 pe

0, i� cmp(t1; t
0
2) 2 fLT;EQ;?g and it is not the case that pe is a timer

expiration, pe0 is a message reception, and cmp(t1; t
0
2) = EQ. The exception re
ects the fact that time

intervals associated with message reception are implicitly right-open, because �2 is a strict upper bound on

message delay. In the running example, tmr1 -1msg1 does not hold because of this exception, so tmr1 is

not enabled in g2. Our \can occur before" relation is reminiscent of Lamport's \can a�ect" relation [Lam86];

however, we consider events to be atomic, so the lack of a de�nite event ordering stems only from the lack

of exact (numerical) occurrence times for events.

Evaluating Timing Properties. Timing properties can be evaluated as follows. (1) The entire graph is

constructed. (2) The graph is searched to obtain a set S containing every pair he; e0i of events such that e

is a �rst occurrence of a start event and e0 is a �rst causally-subsequent occurrence of an end event. (3) For

each pair he; e0i in S, t01 � t2 is inserted in mins and t02 � t1 is inserted in maxs , where [t1; t2] and [t01; t
0
2] are

the occurrence intervals of e and e0, respectively.4 (4) mins is simpli�ed by removing each element t such

that there is some t0 2 mins such that cmp(t0; t) = LT . maxs is simpli�ed by removing each element t such

that there is some t0 2 maxs such that cmp(t0; t) = GT .

For brevity, we have elided checks for special cases, e.g., existence of a start event not causally followed

by a stop event, in which case maxs = f1g. As an optimization, steps (1) and (2) are combined in our

implementation. This sometimes enables us to avoid constructing part of the graph, because there is no need

to explore pending events that occur after a stop event that causally follows a start event.

For the running example: (1) construct the graph in Figure 1; (2) the only start event is the output that

produces msg0, and the only end event is msg1; these events have occurrence intervals [0; 0] and [2�1; 2�2],

respectively; (3),(4) the result of the analysis is mins = f2�1g and maxs = f2�2g. Note that these bounds

are tight.

4 Limitations of One-Anchor Analysis

The one-anchor analysis often produces loose bounds. We illustrate this with a di�erent timing property of

the running example. The start condition is \p1 sends m1 to p0"; the stop condition is \p1 receives m2 from

p0". Referring to the graph in Figure 1, there is one start event (the output that produces msg1) and one

end event (msg2), with occurrence intervals [�1; �2] and [3�1; 3�2], respectively, so mins = f3�1 � �2g and

maxs = f3�2 � �1g. These bounds are loose; tight bounds are 2�1 and 2�2, respectively.

The root of the problem is that occurrence intervals are measured only from the start of the execution,

so they get wider and wider along paths from the initial state. Thus, the later the start event occurs in the

execution, the looser are the bounds computed by the one-anchor analysis. The bounds obtained for the

example in Section 3 are tight because the start event occurs at the start of the execution.

This phenomenon also a�ects calculations of enabledness. For example, consider a modi�ed version of the

running example in which p1 sets a timer to 2�2 (and sends m1) when it receives m0. Let tmr2 denote the

pending event corresponding to that timer. tmr2 has occurrence interval [�1+2�2; 3�2]. Let g
0
3 be the global

state with pending events tmr2 and msg2, where msg2 is as in Figure 1. tmr2 is enabled in g03, because

tmr2 -1msg2, because cmp(�1+2�2; 3�2) = LT . However, it is clear that tmr2 cannot actually occur before

msg2. Thus, the one-anchor analysis produces a graph containing paths that do not correspond to possible

4For some values of the timing parameters, t0
2
� t1 might be negative. It is still a legitimate lower bound on the minimum

time from a start event until an end event.

7

executions, and this may cause the bounds in mins and maxs to be loose. The one-anchor analysis is sound,

because the graph does contain a path corresponding to each possible execution.

5 Multi-Anchor Analysis

Tighter bounds are obtained by tagging each pending event with a set of occurrence intervals, each of which

is an anchored time interval [t1; t2]a, where the anchor a is an event from whose occurrence t1 and t2 are

measured. As a special case, the anchor can be init , representing the start of the execution. Every event has

an occurrence interval anchored at init . For e�ciency, only selected events are used as anchors. Speci�cally,

all start events and SETTMR or MSG outputs are used as anchors, except those that occur at the start

of the execution (i.e., have occurrence interval [0; 0]init); we call these anchor events. Pending events are

explored in the same way as in the one-anchor analysis, with the calculation of occurrence intervals and the

de�nition of enabledness modi�ed as follows.

Computing Occurrence Intervals. When a pending event pe is explored, producing a set S of signals

and pending events, each occurrence interval of pe is propagated to all elements of S in essentially the same

way that occurrence intervals are propagated in the one-anchor analysis. Furthermore, if processing of pe

involves an anchor event a (which could be pe itself or a MSG output in S) that does not occur at the start

of the execution, then occurrence intervals anchored at a are added to a and all events in S that causally

follow a; these occurrence intervals are easily computed from the o�sets. For example, if a is pe and the

o�set of some MSG output is [o� 1; o� 2], then the corresponding MSG pending event in S has an occurrence

interval [o� 1 + �1; o� 2] + �2. A simple inductive proof shows: for every anchor event a that does not occur

at the start of the execution, every event that causally follows a has an occurrence interval anchored at a.

Enabled Pending Events. A pending event pe can occur before another pending event pe0 only if this

ordering is consistent with all of the occurrence intervals of those events. Let A be the set of anchors common

to pe and pe0; thus, for all a 2 A, pe and pe0 have occurrence intervals [t1(a); t2(a)]a and [t01(a); t
0
2(a)]a, re-

spectively. Then pe can occur before pe0, denoted pe - pe0, i� for all a 2 A, cmp(t1(a); t
0
2(a)) 2 fLT;EQ;?g

and it is not the case that pe is a timer expiration, pe0 is a message reception, and cmp(t1(a); t
0
2(a)) = EQ.

For a global state g and a pending event pe in g:PE, pe is enabled in g i� for all other pending events pe0 in

g:PE, pe - pe0.

Evaluating timing properties. Timing properties are evaluated in essentially the same way as in the

one-anchor analysis, except step (3) is modi�ed to be: for each pair he; e0i in S, t01 is added to mins and t02

is added to maxs, where [t01; t
0
2]e is the occurrence interval of e

0 anchored at e (if e occurs at the start of the

execution, the occurrence interval of e0 anchored at init is used instead). The de�nition of causality in Section

3.2 ensures that e0 has an occurrence interval anchored at e. If we base the semantics of timing properties on

Lamport's causality relation or temporal ordering instead, this might not be the case, so occurrence intervals

with other anchors would need to be considered in this calculation.

For the running example of Section 3, the graph produced by the multi-anchor analysis is the same as in

Figure 1, except with [� � �] changed to [� � �]init . The start event (i.e., the sending of msg0) and the SETTMR

output of p0 have occurrence interval [0; 0]init , so they are not anchor events. The calculations of mins and

maxs yield the same results as in Section 3.

8

For the timing property considered in Section 4: (1) construct the graph in Figure 2, where omsg1 denotes

the MSG output of p1 representing the sending of m1; (2) omsg1 is the only start event and msg2 is the only

stop event; (3),(4) the result of the analysis is mins = f2�1g and maxs = f2�2g. These bounds are tight.

LS: s0

0; s1

PE: msg0 [�1; �2]init

tmr1 [2�2; 2�2]init

LS: s00

0 ; s
0

1

g3

msg1

g2

LS: s0

0; s
0

1msg0

msg1 [2�1; 2�2]init

PE: tmr1 [2�2; 2�2]init

[�1; �2]omsg1

LS: s00

0 ; s
00

1

g4

msg2
PE:PE: msg2 [3�1; 3�2]init

g1

g0

: : :

[2�1; 2�2]omsg1

[�1; �2]omsg2

Figure 2: The graph computed in the multi-anchor analysis of the running example. g0 is the same as in
Figure 1, except [� � �] is changed to [� � �]init . Two occurrence intervals are shown for msg1; three occurrence
intervals are shown for msg2.

6 Failures

Failures can be introduced in two ways: by adding them to the system model or the processes. We take

the latter approach, because it keeps the analyzer simple and because a failure mode can be added to

processes in a modular way, by embodying the failure mode as a process transformer, i.e., a function that

takes a process (i.e., an automaton) as input and returns a new process. For example, consider a process

transformer T that embodies crash failures. Given a system with processes p0; : : : ; pN , the system with

processes T (p0); : : : ; T (pN) is the same except that each process might crash at any time. The set of states

of T (p) is the set of states of p plus a new state sdead . The transition function r of T (p) is de�ned as follows.

When T (p) is in state sdead , inputs are \ignored", i.e., r returns fhsdead ; "ig, where " is the empty sequence.

We do not assume that a sequence of outputs produced by an input event is failure-atomic; thus, there is

a possibility of crashing before each output. When T (p) is in a state of p, r calls the transition function

of p to obtain the set S of p's possible behaviors and then returns S [(
S
hs;outsi2S

S
os�outsfhsdead ; osig),

where x � y means x is a pre�x of y. Similarly, one can de�ne process transformers that add crashes and

recoveries, timing failures, message loss, etc.

Timing properties for executions involving limited numbers of failures are often of interest, so we param-

eterize process transformers by the number of failures. For example, Tf is de�ned so that f crashes occur

in executions of the system Tf (p0); : : : ; Tf (pN). To enforce this, when Tf (p) crashes, it informs every other

process of this by sending signals. Each process Tf (p) keeps track of the number of such signals received and

does not crash if this number equals f . The synchronous nature of signals is essential here. Of course, these

signals do not correspond to actual communication in an implementation of the system.

7 Example: Uniform Timed Reliable Broadcast

We are applying TADA to a new rotating-coordinator algorithm, called UTRB4 [MS98], for uniform timed

reliable broadcast (UTRB) [BT93a, BT93b] that tolerates crash failures. A UTRB algorithm can form the

heart of an implementation of non-blocking atomic commitment in a distributed database system [BT93a,

9

BT93b]. UTRB4 uses carefully designed patterns of time-outs to help each process determine the status

of other processes (e.g., whether they received certain messages) without sending messages. UTRB4 has

a worst-case message complexity of 2(N �1) + 1

2
(f �1)f , where N is the number of processes and f is

the number of crashes, compared to 2(N�1) + 2(N�1)f for UTRB2 [BT93a, BT93b], which is the most

message-e�cient UTRB algorithm we have found in the literature. For example, when f = 1, UTRB4 uses

half as many messages as UTRB2. The manual calculations of the time-outs are non-trivial, because they

require consideration of chains of events involving multiple failures. The times for these chains of events

can be expressed as timing properties and checked with TADA. That will be an interesting test of those

calculations and the analysis.

We have used TADA to verify for particular values of N and f that the worst-case delay from when a

broadcast is initiated until all non-faulty processes have delivered the message is �2 + � for f =0, 3�2 + �

for f=1, and 2f+1�2 + 2f�2� � �2 for f >1, where the timing parameter � characterizes the local overhead

of sending messages to all other processes. For N = 7 and f = 0, the analysis took approximately 26.5 min

(on a 75 MHz MIPS R8000) and 1.8 MB of heap memory; for N = 4 and f = 3 (the case f = N isn't

interesting), the analysis took approximately 4.5 min and 2.2 MB of heap memory; for N = 5 and f = 4,

the analysis took approximately 6.5 hours and 62 MB of heap memory.

The current implementation is simple but ine�cient. The performance can be improved by a signi�cant

constant factor by using more e�cient data structures and algorithms (e.g., incrementally maintaining the

set of enabled events, rather than recomputing it from scratch after each transition). More importantly, as

mentioned in the Introduction, we expect a partial-order optimization to reduce the analysis cost (time and

space) by an exponential factor for many systems, including UTRB4.

References

[ACH+95] R. Alur, C. Coucoubetis, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3{34, 1995.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183{235,
1994.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time reasoning. Technical
Report 93-1345, Cornell University, Department of Computer Science, 1993.

[BJLY98] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial order reductions for timed systems.
In Proc. 9th Int'l. Conference on Concurrency Theory (CONCUR), 1998.

[BT93a] �Ozalp Babao�glu and Sam Toueg. Non-blocking atomic commitment. In Sape Mullender, editor, Distributed
Systems, chapter 6, pages 147{168. Addison Wesley, 2nd edition, 1993.

[BT93b] �Ozalp Babao�glu and Sam Toueg. Understanding non-blocking atomic commitment. Technical Report
UBLCS-93-2, University of Bologna, Laboratory for Computer Science, 1993.

[CKP+96] David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay, Eunice E. Santos, Klaus Erik Schauser,
Ramesh Subramonian, and Thorsten von Eicken. LogP: A practical model of parallel computation.
Communications of the ACM, 39(11), November 1996.

[CZ85] David R. Cheriton and Willy Zwaenepoel. Distributed process groups in the V kernel. ACM Transactions
on Computer Systems, 3(2):77{107, 1985.

[God96] Patrice Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems, volume 1032 of
Lecture Notes in Computer Science. Springer-Verlag, 1996.

[KM95] R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes. Information and
Computation, 117(1), 1995.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the
ACM, 21(7):558{564, 1978.

10

[Lam86] Leslie Lamport. On interprocess communication: Part 1. Distributed Computing, 1:76{101, 1986.

[Lam89] Leslie Lamport. The part-time parliament. Technical Report SRC-49, Digital Equipment Corporation,
Systems Research Center, 1989.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MR97] Dahlia Malkhi and Michael Reiter. A high-throughput secure reliable multicast protocol. The Journal of
Computer Security, 5:113{127, 1997.

[MS98] Yu Ma and Scott D. Stoller. Message-e�cient uniform timed reliable broadcast. Technical Report 515,
Computer Science Dept., Indiana University, September 1998.

[PLL97] Roberto De Prisco, Butler Lampson, and Nancy Lynch. Revisiting the Paxos algorithm. In M. Mavroni-
colas and P. Tsigas, editors, Proc. 11th International Workshop on Distributed Algorithms (WDAG '97),
volume 1320 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

[PPH97] Doron Peled, Vaughan R. Pratt, and Gerard J. Holzmann, editors. Proc. Workshop on Partial Order
Methods in Veri�cation, volume 29 of DIMACS Series. American Mathematical Society, 1997.

[RVR93] L. Rodrigues, P. Ver��ssimo, and J. Ru�no. A low-level processor group membership protocol for lans. In
Proc. IEEE 13th International Conference on Distributed Computing Systems (ICDCS). IEEE Computer
Society Press, 1993.

[Sha89] Alan C. Shaw. Reasoning about time in higher-level language software. IEEE Transactions on Software
Engineering, 15(7):875{889, July 1989.

[Sho91] Robert E. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM,
28(4):769{779, October 1991.

11

